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We examine the emergence of collective dynamical structures and complexity in a
network of interacting populations of neuronal oscillators. Each population consists of
a heterogeneous collection of globally-coupled theta neurons, which are a canonical
representation of Type-1 neurons. For simplicity, the populations are arranged in a
fully autonomous driver-response configuration, and we obtain a full description of
the asymptotic macroscopic dynamics of this network. We find that the collective
macroscopic behavior of the response population can exhibit equilibrium and limit cycle
states, multistability, quasiperiodicity, and chaos, and we obtain detailed bifurcation
diagrams that clarify the transitions between these macrostates. Furthermore, we show
that despite the complexity that emerges, it is possible to understand the complicated
dynamical structure of this system by building on the understanding of the collective
behavior of a single population of theta neurons. This work is a first step in the construction
of a mathematically-tractable network-of-networks representation of neuronal network
dynamics.
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1. INTRODUCTION
The brain is a complex hierarchical network of networks (Zhou
et al., 2006; Bullmore and Sporns, 2009; Meunier et al., 2010).
Neurons are organized into different neuronal assemblies, and
these neuronal assemblies interact with each other, forming
larger assemblies (Sherrington, 1906; Hebb, 1949; Harris, 2005).
But while there is a wealth of knowledge on the microscopic
scale regarding the dynamics of individual neurons, the macro-
scopic behavior of such interacting populations of neurons is
not well understood. Indeed, the functional and information-
processing activity of the brain, from perception to consciousness,
is thought to result from the emergent collective behavior of these
assemblies.

In recent years, the mathematical study of networks of this
kind, based on globally-coupled populations of simple phase
oscillators, has advanced significantly. This is in large part due
to new analytical techniques (Ott and Antonsen, 2008, 2009;
Marvel et al., 2009; Ott et al., 2011; Pikovsky and Rosenblum,
2011). These techniques enable the derivation of low-dimensional
dynamical systems that reveal the collective emergent behav-
ior of the full discrete population (in the limit of an infinite
number of interacting elements). In the context of computa-
tional neuroscience, these methods were applied to autonomous
globally-coupled networks of canonical Type-I neurons (i.e., theta
neurons) by Luke et al. (2013), and to non-autonomous theta
neuron networks by So et al. (2014). More recently, Laing (2014)
extended these results to include space-dependent coupling. A
similar approach, based on phase-response curves, was pursued
by Pazó and Montbrió (2014).

Of course, such networks lack the intricate connectivity found
in real biological networks. Nevertheless, they are ideal building
blocks for the construction of a more realistic, yet mathematically
tractable, network-of-networks representation of the brain. In the
current study, we consider the simplest hierarchical structure as
a first step in this process. Using two globally-coupled networks
of theta neurons, we arrange for the activity of one population
to drive the second population. Thus, the overall network has an
autonomous driver-response configuration. We demonstrate that
even in this simplest network-of-networks, the collective behav-
ior of the response network can exhibit a full range of complex
behavior, from simple collective rhythms to temporally chaotic
dynamics. Most importantly, we provide a complete non-linear
dynamical analysis of this system, including predictive bifurcation
diagrams for the behavior of the response population in terms of
the driver’s dynamics and the network characteristics.

2. RECAP OF SINGLE POPULATION RESULTS
2.1. THE THETA NEURON
Neurons are typically classified into two types, based on the
nature of the onset of spiking as a constant injected current
exceeds an effective threshold (Hodgkin, 1948; Ermentrout, 1996;
Izhikevich, 2007). Type-I neurons begin to spike at an arbitrar-
ily low rate, whereas Type-II neurons spike at a non-zero rate
as soon as the threshold is exceeded. Neurophysiologically, exci-
tatory pyramidal neurons are often of Type-I, and fast-spiking
inhibitory interneurons are often of Type-II (Nowak et al., 2003;
Tateno et al., 2004). Near the onset of spiking, Type-I neurons
can be represented by a canonical phase model that features a
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saddle-node bifurcation on an invariant cycle, or SNIC bifur-
cation (Ermentrout and Kopell, 1986; Ermentrout, 1996). This
model has come to be known as the theta neuron, and is
given by

θ̇ = (1 − cos θ) + (1 + cos θ)η, (1)

where θ is a phase variable on the unit circle and η is a bifur-
cation parameter related to the injected current. For η < 0, the
neuron is attracted to a stable equilibrium which represents the
resting state. An unstable equilibrium is also present, representing
the threshold. If an external stimulus pushes the neuron’s phase
across the unstable equilibrium, θ will move around the circle
and approach the resting equilibrium from the other side. When θ

crosses θ = π , the neuron is said to have spiked. Thus, for η < 0,
the neuron is excitable. As the parameter η increases, these equi-
libria approach each other and merge via the SNIC bifurcation at
η = 0. At this point, the equilibria disappear, leaving a limit cycle.
The neuron spikes regularly for η > 0. In the following, we call η

the “excitability parameter.”

2.2. A NETWORK OF THETA NEURONS
We formulate a single population of N theta neurons as follows:

θ̇j = (
1 − cos θj

) + (
1 + cos θj

) [
ηj + Isyn

]
, (2)

where j = 1, . . . , N is the index for the j-th neuron. The neurons
are coupled via a pulse-like synaptic current

Isyn = k

N

N∑
i = 1

Pn(θi), (3)

where Pn(θ) = an (1 − cos θ)n, n ∈ N, and an is a normalization
constant1 such that

∫ 2π

0
Pn(θ)dθ = 2π.

The parameter n defines the sharpness of the pulse-like synapse in
that Pn(θ) becomes more and more sharply peaked as n increases.
We assume that the synaptic strength k is the same for all neurons.

Note that the connectivity described by Equations (2) and (3)
includes self-coupling terms. These have negligible effect on the
collective network dynamics (data not shown), which is to be
expected since they represent only one out of N inputs to any
given neuron. Nevertheless, we note that these self-connections
have real-world analogs in “autapses,” which have been found in
several regions of the brain (e.g., Bacci et al., 2003; Bekkers, 2003).

Neurons in real biological networks exhibit a range of differ-
ent intrinsic dynamics. We model this by taking the excitability
parameter ηj of each neuron to be different, with each ηj being
drawn randomly from a distribution g(η). In the following anal-
ysis, we assume a Lorentzian distribution,

g(η) = 1

π

�

(η − η0)2 + �2
, (4)

1an = 2π/
∫ π

−π
(1 − cos (x))n = n!/(2n − 1)!!

where η0 is the center of the distribution, and �, the half-width
at half-maximum, describes the degree of heterogeneity in the
population.

2.3. REDUCTION AND ASYMPTOTIC STATES OF THE SINGLE
POPULATION

The macroscopic behavior of our network can be quantified by
the “macroscopic mean field,” or order parameter, defined as

z̃(t) =
N∑

j = 1

eiθj , (5)

where the tilde indicates that the sum is over a finite population
of N oscillators. (Below we will drop the tilde in the case of an
infinite network.) The magnitude of the order parameter |z̃(t)| ∈
[0, 1] quantifies the degree of synchronization present at time t.

In Luke et al. (2013), we used the Ott-Antonsen method (Ott
and Antonsen, 2008, 2009; Ott et al., 2011) to derive a low-
dimensional dynamical system whose asymptotic dynamics can
be shown to coincide with that of the order parameter of the
single-population network defined above (Equations 2–4), in the
limit N → ∞. This reduced dynamical system is

ż = −i
(z − 1)2

2
+ (z + 1)2

2
{−� + i [η0 + kHn(z)]} , (6)

where

Hn(z) = Isyn/k = an

⎛
⎝A0 +

n∑
q = 1

Aq(zq + z∗q)

⎞
⎠ , (7)

Aq =
n∑

j,m = 0

δj−2m,qQjm, (8)

and

Qjm = ( − 1)j − 2mn!
2jm!(n − j)!(j − m)! . (9)

In these equations, z∗ denotes the complex conjugate of z, and
δi,j is the Kronecker delta function on the indices (i, j). Note that
Hn(z) = H∗

n (z) is a real-valued function.
The analysis of Equations (6–9) reported in Luke et al. (2013)

showed that the theta neuron network can exhibit three types
of asymptotic states. These correspond to a node, a focus, and a
limit cycle in the order parameter. A complete bifurcation analysis
describing how these states change as the parameters k, η0, and �

change was also reported. For our purposes in the current work,
we now briefly describe the three possible collective macroscopic
states.

We called the node, focus, and limit cycle solutions the
“Partially Synchronous Rest” (PSR), “Partially Synchronous
Spiking” (PSS), and “Collective Periodic Wave” (CPW) states,
respectively. In the PSR state, most neurons remain at rest, while
in the PSS state, most neurons spike continuously. Nevertheless,
in both these states, the macroscopic mean field (or order param-
eter) sits at an equilibrium. In contrast, the CPW state corre-
sponds to periodic oscillations of the complex order parameter,
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and typically, both |z(t)| and arg (z) oscillate in time indicating
that the individual neurons clump together and spread apart in
a periodic fashion. We refer the interested reader to Luke et al.
(2013) for further details, including movies that illustrate both
the microscopic and macroscopic behaviors of these collective
states.

3. FORMULATION OF THE DRIVER-RESPONSE NETWORK
In this work, we are interested in the dynamics exhibited by a
network of two coupled populations of theta neurons. We for-
mulate the general case, but restrict analysis to the simplest such
configuration: a driver-response network.

3.1. GENERAL TWO-POPULATION MODEL
Extending the model described above, a general formulation of a
pair of interacting populations of theta neurons can be expressed
as follows:

θ̇1,j = 1 + η1,j − (1 − η1,j) cos θ1,j + an(1 + cos θ1,j)⎡
⎣k11

N1

N1∑
p = 1

(1 − cos θ1,p)n + k12

N2

N2∑
q = 1

(1 − cos θ2,q)n

⎤
⎦,

θ̇2,j = 1 + η2,j − (1 − η2,j) cos θ2,j + an(1 + cos θ2,j)⎡
⎣k21

N1

N1∑
p = 1

(1 − cos θ1,p)n + k22

N2

N2∑
q = 1

(1 − cos θ2,q)n

⎤
⎦, (10)

where θ1,j and θ2,j denote the jth neuron in the first and sec-
ond populations, respectively, and the extension to any number
of interacting populations is straightforward. The excitability
parameters η1,j and η2,j are randomly drawn from two indepen-
dent Lorentzian distributions as in Equation (4), with medians
η1, η2 and widths �1, �2, respectively. We take the sharpness
parameter of the pulse-like synaptic interaction, n, to be the
same for both populations. Macroscopic mean field parameters
z̃1(t), z̃2(t) can be defined for each population by analogy with
Equation (5).

Adapting the procedures described in Luke et al. (2013), we
derived the Ott-Antonsen reduction of the coupled networks of
Equation (10). This resulted in the following dynamical system:

ż1 = −i
(z1 − 1)2

2
+ (z1 + 1)2

2

{−�1 + i [η1 + k11Hn(z1) + k12Hn(z2)]} ,

ż2 = −i
(z2 − 1)2

2
+ (z2 + 1)2

2

{−�2 + i [η2 + k21Hn(z1) + k22Hn(z2)]} . (11)

with Hn(z) defined as in Equations (7–9). As before, the asymp-
totic dynamics of Equation (11) can be shown to coincide with
that of the order parameters of the populations in the network of
Equation (10), in the limit N1, N2 → ∞.

We showed in Luke et al. (2013) that the dynamical structure
of the single population depends rather weakly on the synaptic
sharpness parameter n. Furthermore, we argued that a modest
sharpness is more biophysically plausible than the δ-function
coupling obtained in the limit n → ∞. Thus, from here on, we
fix n = 2 and drop the subscript on Hn to ease notation.

3.2. THE DRIVER-RESPONSE SYSTEM
To put our network in the driver-response form, we set k12 = 0, so
that population 1 receives no input from population 2. Therefore,
the macrostates and bifurcations of population 1 are identical to
those explored in Luke et al. (2013), described above. However,
we allow k21 �= 0. Our goal is to examine the consequences of the
influence of population 1 on population 2. We call population 1
the “driver” and population 2 the “response” system. See Figure 1.

Writing the governing equation of population 2 as

ż2 = −i
(z2 − 1)2

2
+ (z2 + 1)2

2

{−�2 + i
[
ηeff + k22H(z2)

]}
(12)

with
ηeff ≡ η2 + k21H(z1), (13)

and comparing to Equation (6), we see that the behavior of popu-
lation 2 is the same as that of a single population of theta neurons
with an effective median excitability parameter ηeff . This effective
parameter depends on the median excitability parameter intrin-
sic to population 2 η2, the inter-population coupling k21, and the
state of the driver z1.

Note that ηeff depends linearly on both η2 and k21 and non-
linearly on the driver’s state z1 through H(z1). Additionally, ηeff

FIGURE 1 | The driver-response configuration. k11 and k22 are the intra-population coupling strengths for populations 1 and 2, respectively, and k21 is the
uni-directional coupling strength between the driver population (1) and the response population (2).
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may be time-dependent if population 1 exhibits a CPW state,
since in that case z1 oscillates periodically. In the following, we
will examine all these cases.

4. RESULTS
We will examine the behavior of population 2 as various parame-
ters are varied. We organize the presentation of our results by first
considering the case in which the driver population exhibits an
equilibrium state. Later, we consider the case in which the driver
population exhibits periodic behavior.

We will mainly consider two configurations of the response
system. The “excitatorily coupled” response system has k22 > 0,

and the “inhibitorily coupled” response system has k22 < 0. Other
parameters are as noted below.

The bifurcation diagrams that appear below in Figures 2, 3,
4B, 5B, 8C were obtained using XPPAUT (Ermentrout, 2002).
Data for all other figures were generated using custom-designed
code.

4.1. DRIVER ON A MACROSCOPIC EQUILIBRIUM
We begin by fixing the driving population’s parameters at
η1 = −0.2, �1 = 0.1, and k11 = −2, which corresponds to a PSR
state. Thus, z1 remains fixed at a constant value. We examine the
behavior of the two response system configurations as we vary the

FIGURE 2 | (A) A two-dimensional bifurcation diagram of the
excitatorily-coupled response system. The heavy black lines are
saddle-node (SN) bifurcation curves, and the solid dot denotes the
parameters of the response system when decoupled from the driver.
In the cases considered in the main text, the driver causes ηeff to
vary along the horizontal dotted line. The parameters are: η1 = −0.2,

�1 = 0.1, k11 = −2, and k22 = 9. (B) The one-dimensional bifurcation
diagram showing the asymptotic values of y2 = Im(z2) vs. k21. Solid
and dashed curves indicate stable and unstable equilibria,
respectively, corresponding to partially synchronous spiking (PSS) and
partially synchronous resting (PSR) states. The parameters are as in
(A), with η2 = −10 and �2 = 0.5.

FIGURE 3 | (A) The two-dimensional bifurcation diagram of the
inhibitorily-coupled response system. The heavy black lines are
saddle-node (SN) bifurcation curves, green is a homoclinic (HC)
bifurcation curve, and red is an Andronov-Hopf (AH) bifurcation curve.
The latter two curves emerge from a Bogdanov-Takens (BT) point. The
solid dot denotes the parameters of the response system when
decoupled from the driver. In the cases considered in the main text,

the driver causes ηeff to vary along the horizontal dotted line. The
parameters are: η1 = −0.2, �1 = 0.1, k11 = −2, and k22 = −9. (B) The
one-dimensional bifurcation diagram showing the asymptotic value of
x2 = Re(z2) vs. k21. Solid curves denote stable equilibria; dashed black
curves are unstable equilibria. Green represents the maxima and
minima of a collective periodic wave (CPW) limit cycle. The parameters
are as in (A), with η2 = 5 and �2 = 0.5.
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FIGURE 4 | (A) The non-linear behavior of ηeff as a function of k11 for the
excitatorily-coupled response system. ηeff is plotted horizontally to facilitate
comparison with Figure 2A. The parameters are: η1 = −0.05, �1 = 0.05,
η2 = −10, with the inter-population coupling fixed at k21 = 2.0. (B) The

one-dimensional bifurcation diagram showing the asymptotic value of
y2 = Im(z2) vs. k11. Solid and dashed curves indicate stable and unstable
equilibria, respectively. The parameters are as in (A), with �2 = 0.5 and
k22 = 9.

FIGURE 5 | (A) The non-linear behavior of ηeff as a function of k11 for the
inhibitorily-coupled response system. ηeff is plotted horizontally to facilitate
comparison with Figure 3A. (B) The one-dimensional bifurcation diagram
showing the asymptotic value of x2 = Im(z2) vs. k11. Solid and dashed black

curves indicate stable and unstable equilibria, respectively, and green
represents the maxima and minima of a CPW limit cycle state. The
parameters are: η1 = −0.05, �1 = 0.05, η2 = 5, �2 = 0.5, and k22 = −9. The
inter-population coupling is fixed at k21 = 3.5.

inter-population coupling parameter, k21. From Equation (13),
ηeff varies linearly with respect to k21.

4.1.1. Excitatorily-coupled response system
We set the response system’s internal coupling to k22 = 9, and
show in Figure 2A the two-parameter bifurcation diagram of the
response system with respect to �2 and ηeff . Two saddle-node
bifurcation curves which meet at a cusp are seen. To the left of
these curves, the response network exhibits a PSR state, and to
the right, a PSS state. These states coexist inside the approximately
triangular region.

We set the remaining parameters of the response system to
η2 = −10 and �2 = 0.5. Thus, for k21 = 0, ηeff = η2, and the
response system is situated at the solid black point marked in
Figure 2A. As k21 increases from zero, ηeff increases linearly along
the dotted line in Figure 2A, starting from the black point. In
so doing, it traverses the SN bifurcation curves. Figure 2B shows

how the imaginary part of the response’s asymptotic macroscopic
mean field [y2 = Im(z2)] changes with respect to k21, illustrating
the coexistence of the stable PSR and PSS states, along with an
unstable PSR state (uPSR).

The point marked “SN/NF” in Figure 2B indicates that as k21

increases, a saddle node bifurcation is encountered, correspond-
ing to the left SN curve in Figure 2A. This creates a stable and an
unstable PSS state. However, the unstable PSS state converts into
an unstable PSR state at a value of k21 very slightly beyond the
SN bifurcation. That is, the node corresponding to the unstable
PSS state becomes a unstable PSR focus, a transition we called a
Node-Focus (NF) transition in Luke et al. (2013). The distinction
between these events is indistinguishable in the figure.

4.1.2. Inhibitorily-coupled response system
We performed a similar analysis for the case in which the response
system’s internal coupling is k22 = −9, i.e., inhibitory, and η2 =
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5. The remaining parameters were unchanged. The results are
shown in Figure 3. In this case, the two-dimensional bifurca-
tion diagram of the response system with respect to �2 and ηeff

(Figure 3A) shows a similar (but mirror-image) cusp of saddle-
node curves. A new feature is the occurrence of a codimension-2
Bogdanov-Takens (BT) point on the left SN curve, and the
emergence of homoclinic (HC; green) and Andronov-Hopf (AH;
red) bifurcation curves from the BT point.

Figure 3B shows how the real part of the response’s asymp-
totic macroscopic mean field [x2 = Re(z2)] changes with respect
to k21. As before, ηeff increases linearly as k21 increases, starting
from the black solid point in Figure 3A and moving toward the
right, traversing the various bifurcation curves along the dotted
line. Note the presence of the attracting limit cycle CPW state in
Figure 3B, which emerges at the HC bifurcation and terminates
at the AH bifurcation as k21 increases.

It is interesting to note that in both cases described above, the
same bifurcation structure would be encountered if, instead of
varying k21 with a fixed value η2, we varied η2 with a fixed value of
k21. While this is obvious from Equation (13) since H(z1) is con-
stant in these cases, this leads to the non-obvious conclusion that
by modifying either the inter-population coupling or the intrinsic
median excitability of the response population—two rather dif-
ferent system characteristics—one obtains identical transitions in
the response network.

4.1.3. Variation of the driver’s macroscopic equilibrium
In the cases we considered previously, ηeff changed linearly with
respect to the inter-population coupling k21. We now turn our
attention to the effects incurred by altering the value of the driver
influence function H(z1) in Equation (13). We do this by vary-
ing the driver’s internal coupling strength k11, thus causing the
driver’s asymptotic macroscopic mean field z1 to change. This
manipulation has the effect of changing ηeff non-linearly with
respect to k11.

For simplicity, we only consider a range of k11 such that the
driver always remains on a macroscopic equilibrium state, and we
fix the inter-population coupling at k21 = 2.

We begin with the case of the excitatorily-coupled response
system considered above, with η2 = −10, �2 = 0.5, and k22 = 9,
and choose the remaining driver parameters to be η1 = −0.05
and �1 = 0.05. Figure 4A shows the non-linear behavior of ηeff

as k11 is varied. Even though we are considering k11 to be the
independent parameter, we plot ηeff horizontally so that it may
be easily compared to Figure 2A; recall that this shows the two-
dimensional bifurcation diagram of the response system. Now,
as k11 changes, ηeff moves back and forth along the dotted line
non-linearly. In particular, Figure 4A shows that for very nega-
tive values of k11, ηeff is near −5, which corresponds to a point
in Figure 2A to the right of the SN curves. As k11 increases, ηeff

decreases to approximately −10, thus crossing both SN curves
in Figure 2A from right to left in the process. ηeff subsequently
increases, and goes back across the SN curves from left to right.
Note that Figure 4A includes vertical lines marking the posi-
tion of the SN bifurcations (i.e., the values of ηeff at which
the horizontal line at �2 = 0.5 in Figure 2A crosses the SN
curves).

Figure 4B shows the behavior of the asymptotic state of the
response system [y2 = Im(z2)] as a function of k11. This shows
that as k11 increases, the response system passes through two sep-
arate regions of bistability, corresponding to the two traversals of
the triangular bistable region in Figure 2A. Thus, Figure 4B is
qualitatively similar to two copies of Figure 2B, with the struc-
ture for k11 < 0 reversed. Note that the two regions are not
symmetrical. This is due to the non-symmetric behavior of ηeff

as k11 changes.
Next, we examine how the same manipulation of the driver

system affects the inhibitorily-coupled response system. The
parameters are as above, but with η2 = 5 and k22 = −9.
Figure 5A shows how ηeff changes as k11 is varied, again plot-
ted with ηeff on the horizontal axis for ease of comparison with
Figure 3A. Note the vertical lines in Figure 5A marking the SN,
HC, and AH bifurcations.

The one-dimensional bifurcation diagram depicting the
asymptotic state of the response system as a function of k11 is
shown in Figure 5B. A situation similar to the previous case is
observed. Two distorted versions of the structure of Figure 3B,
with the features for k11 < 0 being reversed, are seen. Again, this
is due to the non-linear and asymmetric behavior of ηeff as it tra-
verses the bifurcations in Figure 3A twice: first right to left, and
then left to right, as k11 is increased. Note also the presence of an
attracting limit cycle CPW state in intervals of both positive and
negative k11.

4.2. DRIVER ON A MACROSCOPIC LIMIT CYCLE
We now focus on the behavior of the response population when
the driver is on a CPW state, which is a limit cycle of the driver’s
macroscopic mean field (or order parameter). Throughout this
section, we fix the driver parameters at η1 = 10.75, k11 = −9, and
�1 = 0.5, which results in a CPW driver state for which H(z1)
oscillates periodically in time. In particular, we have H(z1) > 0
for all time. Thus, according to Equation (13), ηeff also oscillates
periodically for k21 �= 0, and both the centroid and the amplitude
of the ηeff oscillation increase as k21 increases.

We show below that in this configuration, the response popu-
lation can exhibit periodic, multistable, chaotic, and/or quasiperi-
odic behavior, depending on the response system’s parameters
and the interpopulation coupling strength k21.

4.2.1. Periodic behavior in the response system
We begin by considering the excitatorily coupled response system,
with �2 = 0.5 and k22 = 9, but with η2 = −20. When decoupled
from the driver, this places the response system at a point well to
the left in the parameter space of Figure 2A. Thus, the response
system in isolation asymptotes to a PSR state. As k21 is increased
from zero to eight, ηeff oscillates back and forth along the hori-
zontal line in Figure 2A at �2 = 0.5, but always stays to the left
of the SN curves shown in that figure. Thus, the driver simply
pushes the response system’s PSR state back and forth, avoid-
ing any bifurcations. The result is simple periodic behavior in
the driven response system. Figure 6A shows a plot of the max-
imum and minimum of x2 = Re(z2) vs. k21. As k21 increases, the
amplitude of this simple periodic behavior increases. We observe
that the frequency of the response system’s oscillation is the same
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FIGURE 6 | (A) Simple periodic behavior in the response system driven
by a CPW state of the driver as a function of the inter-population
coupling strength k21. The curves are local maxima and minima of
x2 = Re(z2). The driver parameters are η1 = 10.75, �1 = 0.5, and

k11 = −9, and the response parameters are η2 = −20, �2 = 0.5, and
k22 = 9. (B) Slightly more complicated periodic behavior obtained at the
same parameters, except with η2 = −5. The curves are local maxima
and minima of y2 = Im(z2).

as that of the driver throughout this range of interpopulation
coupling.

We now change the response system such that η2 = −5, and
leave all other parameters the same as above. This change places
the response system at a point to the right of the SN curves in
Figure 2A, and for these parameters, the uncoupled response sys-
tem asymptotes to a PSS state. Once again, as k21 increases, ηeff

oscillates back and forth along the �2 = 0.5 line in Figure 2A, but
this time it does so always staying to the right of the SN curves.

The result is multi-frequency periodic behavior in the response
system that is more complicated than in the previous exam-
ple. Figure 6B shows a plot of the local minima and maxima of
y2 = Im(z2) vs. k21. Figure 7 shows y2 vs. x2 plots of the periodic
orbits at k21 = 6 (upper panels) and k21 = 10 (lower panels). As
k21 increases from zero, a periodic orbit with winding number
two emerges (similar to that shown in Figure 7A) and grows in
amplitude, peaking near k21 ≈ 2.5. The amplitude subsequently
decreases to a minimum near k21 ≈ 7.2, and then slowly increases
again. Note that the four curves in Figure 6B for k21 ∈ [0, 7.2]
correspond to two pairs of alternating local maxima and minima
in the time series of y2, as shown in Figure 7B.

Interestingly, near k21 ≈ 7.2, an additional loop appears in the
orbit, as shown in Figure 7C. This is reflected in the additional
inner curves in Figure 6B that appear for k21 � 7.2, and the two
additional local maxima and minima in the time series of y2 in
Figure 7D.

4.2.2. Multistability in the response system
Continuing with the excitatorily coupled response system (with
k22 = 9 > 0), we set η2 = −10 and leave all other parameters
unchanged. In this case the uncoupled response system is at a
point just to the left of the left SN curve in Figure 2A, and as k21

increases, ηeff again sweeps back and forth along the horizontal
line at �1 = 0.5. However, now this sweeping cuts across both SN
curves. Thus, the response system sweeps back and forth across
the approximately triangular multistable region bounded by the
SN curves.

Figure 8A shows the maxima and minima of y2 vs. k21 for this
case. The first feature to emerge as k21 increases from zero is a
simple periodic orbit whose amplitude increases, similar to the
example in Figure 6A. At k21 ≈ 0.5, a new and separate coexisting
limit cycle appears, as indicated by the upper curves that emerge
in Figure 8A. Figure 8B shows the y2 vs. x2 plots of these two
limit cycles at k21 = 1.5, where the larger orbit corresponds to the
upper two curves in Figure 8A. In this bistable region, the macro-
scopic dynamics of the response system approaches one or the
other of these periodic states, depending on the initial conditions.

Figure 8C shows, in black, the asymptotic states of y2 vs. ηeff

for fixed values of ηeff , with k21 = 1.5. These curves show that
for a large interval of ηeff , a stable PSR coexists with a stable PSS
and an unstable PSR state for the frozen (i.e., ηeff fixed) system.
With the driver on the CPW state, ηeff sweeps from approxi-
mately −9.1 to −7.6 and back again–a range which is well within
the bistable region. Superimposed in green in Figure 8C are pro-
jections of the two coexisting limit cycles onto this space, showing
that the lower limit cycle is a simple periodic perturbation of the
response system’s underlying PSR state, and the upper limit cycle
is a periodic perturbation of the underlying PSS state.

4.2.3. Chaos in the response system
We now switch to the inhibitorily coupled response system,
with parameters η2 = 5, �2 = 0.5, and k22 = −9. The parame-
ter space of this system is shown in Figure 3A, and the uncoupled
response system resides at the solid black dot in that figure, to
the left of all the bifurcations. As the interpopulation coupling
strength k21 increases, ηeff sweeps across the same horizontal
line at �2 = 0.5 with increasing amplitude and centroid, ini-
tially crossing just the left SN bifurcation curve. At k21 ≈ 5.2,
ηeff begins sweeping across the homoclinic and the Andronov-
Hopf bifurcation curves. Eventually, for sufficiently large k21, ηeff

sweeps across all four bifurcation curves (SN, AH, HC, and SN).
Figure 9A shows the local maxima and minima of x2 = Re(z2)

vs. k21. We initially see the emergence of a simple periodic orbit
that grows slowly in amplitude. However, at k21 ≈ 5.2, chaos
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FIGURE 7 | The response system’s behavior at parameters corresponding to Figure 6B at k21 = 6 (A,B) and k21 = 10 (C,D), with z2 = x2 + iy2.

FIGURE 8 | Multistability in the response system driven by a CPW state

of the driver. (A) Local maxima and minima of y2 = Re(z2) vs. the
inter-population coupling k21. (B) y2 vs. x2 plots showing two coexisting limit
cycles of the response system at k21 = 1.5 (dotted vertical line in A). (C) The

solid and dashed black curves show the asymptotic states of the response
for fixed values of ηeff , with k21 = 1.5. Green curves are coexisting limit
cycles of the response system when coupled to the driver. Parameters are:
η1 = 10.75, �1 = 0.5, k11 = −9; η2 = −10, �2 = 0.5, k22 = 9.

suddenly emerges through a crisis. Figure 9B shows a magnifi-
cation of this region, with a plot of the two largest Lyapunov
exponents. We see that there are significant intervals of k21 for
which there is a positive Lyapunov exponent, indicating the
presence of macroscopic chaos.

As k21 increases, the first chaotic band, beginning at k21 ≈
5.28, coexists with the simple periodic loop that was present for
smaller k21 (this coexistence is not apparent in the figure). Outside

of this band, there is a window dominated by periodic behavior
of rather high period. A second chaotic band appears at approxi-
mately k21 = 5.48. This second band terminates at approximately
k21 = 5.65, after which a series of reverse period-doubling cas-
cades are seen.

The y2 vs. x2 plot of the chaotic attractor present at k21 =
5.296, for which the largest Lyapunov exponent is approximately
0.2118, is shown in Figure 10A.
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FIGURE 9 | Emergence of macroscopic chaos in the response system

driven by a CPW state of the driver. (A) Local minima and maxima
of x2 = Re(z2) vs. the inter-population coupling k21. (B) Magnification of

the chaotic region (top), with a plot of the largest two Lyapunov
exponents. Parameters are: �1 = 0.5, k11 = −9, η1 = 10.75; �2 = 0.5,
k22 = −9, η2 = 5.

FIGURE 10 | (A) Chaotic (y2 vs. x2) and (B) Quasiperiodic (y2 vs. x1 vs. y1) attractors in the response system driven by a CPW state of the driver. Parameters
are: k11 = k22 = −9, with (A) η2 = 5, �1 = �2 = 0.5 and k21 = 5.296, and (B) η2 = 10.75, �1 = 0.5, �2 = 0.3, and k21 = 0.1.

4.2.4. Quasiperiodicity in the response system
Finally, we consider the case in which the response system exhibits
a CPW state when uncoupled from the driver, and ask what hap-
pens when this is driven by another CPW state in the driver.
We use the same drive system parameters as above, and set the
response system’s parameters to be the same except for �2 = 0.3.
As the inter-population coupling strength k21 is increased, vari-
ous phase-locked and quasiperiodic states are seen. An example
of quasiperiodic behavior in the response system for k21 = 0.1 is
shown in Figure 10B.

5. DISCUSSION
In this work, we have taken the first step toward designing a
mathematically tractable modular network-of-networks repre-
sentation of neuronal systems. Our approach is based on dynam-
ical analysis techniques that enable a complete description of the

emergent macroscopic behavior of large, heterogeneous discrete
networks of globally-coupled phase oscillators. Building on pre-
vious results (Luke et al., 2013) in which we used these techniques
to show that the collective dynamics of a single such population
of theta neurons is relatively simple (exhibiting just equilibria
and limit cycle states), we constructed the next simplest hierar-
chical structure: a driver-response configuration of theta neuron
populations. Our results show that even in this simplest of config-
urations, the response system (and hence, the network as a whole)
can exhibit a full range of dynamical behaviors and surprising
complexity. A notable strength of our work is that despite the
complexity that emerges from this arrangement, the behavior can
be understood and explained in terms of what is known about a
single population’s dynamics and bifurcation structure.

With the driving system on a fixed equilibrium, we showed
that the response system is equivalent to a single population with
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a simple shift in one parameter. Specifically, this parameter is
the median of the distribution of excitability parameters in the
response system, which indicates whether the response popula-
tion is dominated by excitable or intrinsically-spiking neurons.
Although this arrangement does not introduce any new dynami-
cal features, we showed that the response system can nevertheless
still exhibit an interesting bifurcation structure involving macro-
scopic equilibria, limit cycles, and multistability as the strength
of the inter-population coupling varies. More interestingly, we
found that the inter-population coupling strength is effectively
equivalent to the response system’s median intra-population
excitability. By this we mean that changes in either of these rather
different network parameters lead to identical bifurcation sce-
narios. This surprising result follows from the drive-response
network configuration in particular.

The first level of additional complication arose when mod-
estly altering an internal parameter of the drive system. This
effectively led to a non-linear change in the response system’s
median excitability, causing a dramatic change in the response’s
bifurcation structure. Such bifurcation structures might be diffi-
cult to understand if encountered blindly, as might be the case
when studying the dynamics of a network without knowledge
of its internal structure. Experimental studies of neuronal net-
works often take a similar “black box” approach out of necessity,
since detailed knowledge of connectivity (i.e., the “connectome”)
is rarely available. In our case, however, we showed that knowl-
edge of the non-linearity, along with knowledge of the bifurcation
structure of a single network, leads to a natural explanation of
the additional features that arise due to the network-of-networks
structure. In our particular case studies, we observed multiple
distorted and reversed copies of the bifurcation structure that is
associated with a single population of theta neurons. We there-
fore speculate that in “black box” investigations, the observation
of such repeated and/or distorted bifurcation structures might be
indicative of driver-response-type connectivity in the network of
study.

Finally, we investigated the consequences of placing the driver
system on a collective rhythmic state (i.e., a macroscopic periodic
orbit). Our results were consistent with previous results that stud-
ied non-autonomous phase oscillator (So and Barreto, 2011) and
theta neuron systems (So et al., 2014). In those investigations, it
was shown that networks of oscillators subjected to a sinusoidal
variation of a network parameter led to complicated dynam-
ics including quasiperiodicity and macroscopic chaos. Here, our
driver-response arrangement of two separate interacting popu-
lations of theta neurons leads to an overall autonomous system,
but with the response system being subjected to a periodic driv-
ing signal from the driver. Such arrangements might be found in
real neuronal systems at the early stages of sensory input process-
ing. For example, the lateral geniculate nucleus may be driven by
a periodic visual signal delivered to the retina. Another candidate
might be the trisynaptic circuit of the dentate gyrus and the CA3
and CA1 regions of the hippocampus (Kandel et al., 2000). More
generally, the information-processing capabilities of the brain are
thought to be regulated by collective rhythms, notably theta and
gamma oscillations, which arise in various areas and periodically
drive other areas (Buzsáki, 2006).

Our results may also have implications for populations of
bursting neurons (So et al., 2014). Neuronal bursting in indi-
vidual neurons is commonly understood to arise as the result of
the interplay between a slowly oscillating neuronal parameter (or
“slow variable”) and the neuron’s fast spiking dynamics. Bursting
arises if the slow parameter sweeps back and forth across bifur-
cations, and (Rinzel and Ermentrout, 1989) classified bursters as
square, parabolic, or elliptic based on the bifurcations encoun-
tered in this process. It has also been demonstrated that slowly
oscillating intra- and extra-cellular ion concentrations can lead to
wide range of neuronal bursting behaviors (Cressman et al., 2009,
2011; Barreto and Cressman, 2011).

Finally, we note that our explorations in this work were lim-
ited to cases in which the driver population’s parameters were
either fixed or were varied only modestly. In the latter case,
we changed the driver’s median excitability parameter only to
the extent that its collective equilibrium state was displaced but
not altered. Significantly greater complexity in the response’s
dynamics would arise if the collective state of the driver were
pushed across its own bifurcations, possibly resulting in topo-
logical changes and hysteretic effects in the driver’s macroscopic
state. As discussed above, such complexity would be difficult
to understand if encountered in a “black box”-type investiga-
tion. Nevertheless, if it is known that the network of interest
has a driver-response structure, it may be possible to compre-
hend the origin of such complexity in the manner that we have
outlined here.

This study constitutes an initial attempt at building a mathe-
matically tractable model to understand the collective behavior of
a hierarchical “network-of-networks” arrangement of model neu-
rons. In future work we plan to consider networks of networks
that include feedback connections and additional populations in
an effort to understand the emergence of macroscopic dynamical
complexity in more realistic networks.
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