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Short-term plasticity (STP) is a phenomenon that widely occurs in the neocortex with
implications for learning and memory. Based on a widely used STP model, we develop
an analytical characterization of the STP parameter space to determine the nature
of each synapse (facilitating, depressing, or both) in a spiking neural network based
on presynaptic firing rate and the corresponding STP parameters. We demonstrate
consistency with previous work by leveraging the power of our characterization to replicate
the functional volumes that are integral for the previous network stabilization results.
We then use our characterization to predict the precise transitional point from the
facilitating regime to the depressing regime in a simulated synapse, suggesting in vitro
experiments to verify the underlying STP model. We conclude the work by integrating our
characterization into a framework for finding suitable STP parameters for self-sustaining
random, asynchronous activity in a prescribed recurrent spiking neural network. The
systematic process resulting from our analytical characterization improves the success
rate of finding the requisite parameters for such networks by three orders of magnitude
over a random search.
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1. INTRODUCTION
Short-term synaptic plasticity (STP) is a ubiquitous phenomenon
occurring throughout the brain. A consequence of synapse phys-
iology, STP produces temporary changes in synaptic efficacy.
These facilitating or depressing modulations are driven by the
recent synaptic activity—providing a history dependent trans-
mission that may be important for short-term and working
memory, as well as cognition. The nonlinear filtering dynam-
ics of STP also appear to play a functional role in cortical gain
control (Abbott et al., 1997), burst detection (Lisman, 1997) and
temporal integration of information (Maass and Markram, 2002;
Haeusler and Maass, 2007; Klampfl and Maass, 2013). Because
STP plays a wide reaching role in cortical computation, it is
important to understand its precise nature.

Recently, Sussillo et al. (2007) demonstrated that the inclusion
of STP to cortical circuits improved network stability. In addi-
tion, the authors developed a predictive characterization of that
stable regime through control theoretic and computational anal-
ysis of the mean field model. In this work, we review the work of
Sussillo et al. (2007) and further develop the analysis by providing
an additional solution to the STP characterization problem, pro-
viding further insights into the dynamics induced by STP. Our
mathematical derivation is based solely on the underlying com-
monly used STP model (Markram et al., 1998; Tsodyks et al.,
1998; Maass and Markram, 2002), without additional assump-
tions, and results in an in vitro experimentally testable hypothesis.
Our characterization illuminates a method for selecting STP
parameters to produced specific network properties—something
that is useful for recreating empirical results.

We then demonstrate this mathematical characterization in
a framework for selecting STP parameters that maintain stable
low firing rates in self-sustaining recurrent asynchronous irreg-
ular nonlinear (RAIN) activity networks. This topic has been
studied before in a variety of settings (Vogels and Abbott, 2005;
Kumar et al., 2008; Jayet Bray et al., 2010). However, the bio-
logical significance of such activity is open for debate as intact
brains are immersed in sensory and functional inputs, but iso-
lated brain tissues have demonstrated such self-sustaining activ-
ity in the absence of external inputs (Burns and Webb, 1979;
Plenz and Aertsen, 1996; Timofeev et al., 2000). This activ-
ity can be explained by endogenously active neurons (Latham
et al., 2000a,b), however it is not known if such neurons are
required for in vivo self-sustaining activity. Despite the uncer-
tainty behind the mechanisms driving RAIN activity, these net-
works are a useful framework for neural computational systems.
For instance, RAIN activity networks are stable to stimulus
injections as they do not succumb to network synchroniza-
tion problems (Vogels and Abbott, 2005), providing an insu-
lating environment for signal transmission. These are also used
as the foundation of a RAIN-Entorhinal-Hippocampal model
that emulates place cells in rodent navigation (Jayet Bray et al.,
2010).

2. METHODS
All systems used in this work are integrated with a 0.1 ms resolu-
tion using the HRLSimTM environment (Minkovich et al., 2014).
The models used in this work are described below. The values for
the model parameters are given in Table 1.
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Table 1 | Network parameters used.

All networks

Cm = 200 pF gleak = 10 nS

Einh = −80 mV Eexc = 0 mV

Vthresh = −54 mV Vreset = −60 mV

Vrest = −74 mV R = 150 M�

τexc = 5 ms τinh = 15 ms

gexc
max = 100 nS ginh

max = 100 nS

2.1. LEAKY INTEGRATE-AND-FIRE NEURON MODEL
A leaky integrate-and-fire (LIF) (Abbott, 1999) neuronal model
is used in this work, with excitatory and inhibitory neuron pop-
ulations. In the LIF model, each neuron, i, has spiking behavior
governed by the voltage equation

Cm
dVi

dt
= gleak(Vrest − Vi) + gexc

i (t)(Eexc − Vi)

+ ginh
i (t)(Einh − Vi) + Iext(t).

(1)

where V is the membrane potential; Cm is the membrane capac-
itance, with input resistance R; Iext is the externally applied
current; Vrest is the membrane resting potential, Eexc and Einh are
the respective excitatory and inhibitory reversal potentials; gleak

is the leak conductance; and gexc and ginh are the respective exci-
tatory and inhibitory conductance contributions from neuron i’s
inputs. A neuronal action potential at time tAP

i is modeled by the
reset criteria:

lim
t→tAP−

i

Vi(t) = Vthresh and lim
t→tAP+

i

Vi(t) = Vreset, (2)

where Vthresh is the membrane spike threshold and Vreset is the
reset value for the membrane potential following an action poten-
tial. After an action potential, the voltage is clamped for a 2 ms
refractory period.

The dynamics of the input conductances are modeled as:

τ�

dg�
i

dt
=−g�

i + g�
max

∑
j

Wijδ(t − tAP
j )), for � ∈ {exc, inh}. (3)

Here, τexc and τinh are the conductance decay constants, δ is the
Dirac delta function, tAP

j is the time of neuron j’s last action
potential or spike. The values Wij indicate the synaptic weight
from neuron j to neuron i at time t and are scaled by gexc

max or
ginh

max (depending on the type of presynaptic neuron), which are
the maximum synaptic conductances. Note that the Wij are thus
dimensionless, and bound to the interval (0, 1).

2.2. SHORT TERM PLASTICITY
Short term plasticity (STP) temporarily modifies the synaptic
weights used in the neural dynamics based on the presynaptic
firing rate (Markram et al., 1998; Tsodyks et al., 1998; Maass
and Markram, 2002). When invoking STP, the voltage integra-
tion assumes an effective synaptic weight, μij, rather than the

static synaptic weights Wij. These effective synaptic weights are
short-term modifications of the static weights, dependent on the
presynaptic firing rate. This is done by replacing table 1 with

τ�

dg�
i

dt
=−g�

i + g�
max

∑
j

μij(t)δ(t − tAP
j ) for � ∈ {exc, inh}, (4)

where μij is modeled as in Tsodyks et al. (1998):

μij(t) = Aij xij(t)u1
ij(t) (5)

duij

dt
= −uij(t)

τFij

+ Uij(1 − uij(t))rj(t) (6)

dxij

dt
= 1 − xij(t)

τDij

− u1
ij(t)xij(t)rj(t) (7)

u1
ij(t) = uij(t)(1 − Uij) + Uij. (8)

In the above formulation, Aij is a scaling constant, τDij and τFij

are the respective depression and facilitation time constants, uij

tracks synaptic utilization, xij tracks synaptic availability, rj is the
instantaneous firing rate of the presynaptic neuron, Uij is a con-
stant determining the initial release probability of the first spike.
u1

ij is a term associated with the fraction of opened calcium chan-
nels but also serves to simplify the mathematical presentation of
the model. For brevity, in our analysis we will use the notation
{A, U, D, F} in place of {Aij, Uij, τDij , τFij}.
2.3. RAIN NETWORKS
Because of the stabilizing effects of STP (Sussillo et al., 2007),
we concern ourselves with generating self-sustaining RAIN (SS-
RAIN) networks in Section 3.2.3. The architecture and simulation
of such networks is described in Sections 2.3.1 and 2.3.2. In
Section 2.3.3, we find static weight parameters for SS-RAIN that
yield an average network spike rate of 12 Hz, which will be used
for the basis of the rest of the work presented.

2.3.1. Architecture
To build an SS-RAIN network, we construct a sparsely con-
nected 80/20, network using 8000 excitatory neurons and 2000
inhibitory neurons with a connectivity of 1.5%, meaning that for
any two neurons j and i, the probability that there is a connecting
synapse from j to i is 1.5%. Figure 1A is the resulting network dia-
gram. The synaptic strengths from the excitatory population are
uniform and denoted by Wexc while the uniform synaptic weights
from the inhibitory pool are Winh.

2.3.2. RAIN Simulation
The RAIN network simulation is conducted as follow: 200 ran-
dom neurons (allowing both excitatory and inhibitory) are stim-
ulated with Poisson distributed spikes for 50 ms, resulting in an
initial activity burst within the network. After the initial 50 ms
of spike injection, all external inputs are turned off and the net-
work’s activity is recorded for 2 s. The final 100 ms of activity is
analyzed for average firing rate and inter-spike-interval coefficient
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A

B C

FIGURE 1 | (A) RAIN network configuration. The red arrows indicate
inhibitory connections and the blue arrows are excitatory connections. (B)

The firing rate and (C) inter-spike-interval coefficient of variation for the

networks tested in the synaptic weight parameter sweep. The red
diamond in (B,C) indicates the parameters used throughout the rest of
this work.

of variation for each neuron (this avoids a transient period from
the initialization stage). These values are then averaged across
the network, and recorded. The goal is to find sustainable asyn-
chronous network activity between firing rates rmin and rmax with
a coefficient of variation above 1.

2.3.3. Static weight search
With the network parameters in Table 1, we seek to find static
weights that produce SS-RAIN. We proceed by performing a
parameter sweep across the values (Wexc, Winh) ∈ (0, .1) × (0, 1)
with a discretization of 0.001 and 0.01 in each dimension respec-
tively, resulting in roughly 10,000 combinations. For each param-
eter set, we simulate the network as in Section 2.3.2, with rmin =
10 Hz and rmax = 20 Hz. With this approach, we were able to find
parameters with a low firing rate and asynchronous activity, all
sustained for at least 2 s. The results of the parameter search are

shown in Figures 1B,C. Throughout the rest of this work, we used
the static weights (Wexc, Winh) = (0.04, 0.12). This procedure is
similar to that used in Vogels and Abbott (2005) for finding a
RAIN network.

2.4. SEARCHING THE STP PARAMETER SPACE
In Section 3.1.3 we derive an STP characterization which yields a
transitional point in synaptic dynamics which we call the critical
firing rate, or rcrit. In Section 3.2.3 we guide an STP parame-
ter search through leveraging our characterization to partition
the space. For this, we restrict the STP parameters such that
U ∈ (0, 1) as it represents a probability, and τD, τF ∈ (0, 1), as
in Sussillo et al. (2007). We label the synaptic connection types
as EE, EI, IE, and II for excitatory-to-excitatory, excitatory-to-
inhibitory, inhibitory-to-excitatory and inhibitory-to-inhibitory,
respectively.
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Table 2 | The STP parameter space was partitioned with respect to

the resulting value of rcrit, where the boundaries were chosen to be

the common brain rhythm boundaries (Buzsáki, 2006).

Key Rhythm Range (Hz)

N Null rcrit ≤ 0

D δ 0 < rcrit ≤ 4

T θ 4 < rcrit ≤ 8

A α 8 < rcrit ≤ 12

B β 12 < rcrit ≤ 30

G γ 30 < rcrit

Note that N corresponds to the null regime, as negative presynaptic firing rates

do not exist. However, it makes sense to consider rcrit in this regime since this

implies a synapse characterized by depressing for all presynaptic firing rates. For

each of these parameter types, the synapse is facilitating when the steady-state

presynaptic firing rate r is less than rcrit , and depressing whenever r > rcrit . In

particular, synapses of type N are always depressing.

We proceed by defining different dynamic synapse regimes,
characterized by rcrit, and explore each regime. For each connec-
tion type (EE, EI, IE, and II), we independently consider an STP
parameter class of N, D, T, A, B, or G, defined by rcrit in Table 2
(Section 3.2.3), giving us 64 = 1296 different network types
defined by the STP parameter combinations for the four differ-
ent connection types. Specifically, we define a network signature
to be WXYZ, for (W, X, Y, Z) ∈ {N, D, T, A, B, G}4, which corre-
sponds to a network where the EE, EI, IE, and II connections are
governed by the W, X, Y, and Z class of STP parameters, respec-
tively. For example, if WXYZ = DTNB, then the STP parameters
for the EE connections have 0 Hz < rcrit ≤ 4 Hz, the EI connec-
tions have 4 Hz < rcrit ≤ 8 Hz, and so on. For each of the 1296
network types, WXYZ, the STP parameters for the respective
synapse types are selected from the corresponding STP parameter
regime uniformly at random (with the caveat discussed in the fol-
lowing paragraph). For each network configuration type WXYZ,
we chose 106 sets of parameters to test, uniformly at random from
the subspace defined by WXYZ.

As discussed above, we selected the parameters uniformly
at random over the WXYZ-type restricted space. However, we
imposed an additional small dμ constraint on the parameters
allowed. That is, we required the dynamical synapses to be slow
moving. Specifically, |dμ| < .01 is the constraint on the derivative
of the dynamic synapse we used. We found that this additional
requirement yields moderate increases to our experiment suc-
cess rates in preliminary tests. We note that dμ was assumed to
be small in the analysis conducted in Section 3.1.2, which sug-
gested the constraint. We discarded approximately 18.8% of the
108 randomly picked STP parameter sets because they violated
this constraint.

3. RESULTS
3.1. AN ANALYTICAL CHARACTERIZATION OF STP
The introduction of STP into the neural dynamics of a net-
work can, to name a few benefits, influence the stability of
the RAIN activity via self-tuning control (Sussillo et al., 2007),
improve reinforcement learning (O’Brien and Srinivasa, 2013)

and improve a network’s ability to propagate signals (O’Brien,
2013). In this work, we will expand upon Sussillo et al. (2007)
where it is demonstrated that synaptic STP dynamics can sup-
port a fixed average network firing rate through self-tuning.
Based on Sussillo et al. (2007), we present the fixed-point heuris-
tics in Section 3.1.1, leading to the in-depth analysis conducted
in Section 3.1.2. In Section 3.1.2 the linear approximation to
the change in firing rate with respect to the change in network
inputs is presented with the mathematical derivation using mean
field theory fully developed in Appendix A. In Section 3.1.3
we derive a novel characterization of of the STP parame-
ter space, distinguishing between facilitating and depressing
synapses.

3.1.1. Steady State STP
To begin, we consider the steady state for Equations (5) to
(8), given a steady firing rate r∗, where steady state values
are indicated by asterisks. As noted in Section 2.2, we use
{A, U, D, F}:

μ∗
ij = Aijx

∗
ijU

1∗
ij (9)

u∗
ij =

FijUijr∗
j

1 + FijUijr∗
j

(10)

x∗
ij = 1

1 + DijU1∗
ij r∗

j

(11)

U1∗
ij = u∗

ij(1 − Uij) + Uij. (12)

Assuming that the static weights Wij were selected to give an aver-
age network firing rate at r∗, the dynamical synapses can produce
a fixed point at firing rate r∗ if the multiplicative constants Aij are
selected in the following way. For a given set of STP parameters
and desired firing rate r∗, pick

Aij(Uij, Dij, Fij,r
∗)= Wij

x∗
ij(Uij, Dij, Fij, r∗)U1∗

ij (Uij, Dij, Fij, r∗)
.(13)

We can now compute the effective weight μij at r∗
j = r∗:

μij = Aijx∗
ijU

1∗
ij = Wij

x∗
ijU

1∗
ij

x∗
ijU

1∗
ij = Wij, (14)

which yields fixed firing dynamics, by assumption. Thus, with
Aij picked in this way, we attain a fixed-point firing rate for the
system.

We now consider a heuristic for the stability of r∗. In order to
make r∗ a stable fixed point, Sussillo et al. (2007) proposed that
for a given firing rate r, the effective synaptic weights μij should
behave as follows.

1. When r < r∗:

a. Increase synaptic strength efficacy for E → E and I → I
synapses,

b. Decrease synaptic strength efficacy for E → I and I → E
synapses.

Frontiers in Computational Neuroscience www.frontiersin.org November 2014 | Volume 8 | Article 148 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


O’Brien et al. A novel short-term plasticity characterization

2. When r > r∗:

a. Decrease synaptic strength efficacy for E → E and I → I
synapses,

b. Increase synaptic strength efficacy for E → I and I → E
synapses.

This heuristic is visualized in Figure 2. In the left figure, for
instance, the normalized excitatory to excitatory and inhibitory to
excitatory dynamic synapses (μee/Wee and μei/Wei respectively)
are shown as a function of the presynaptic firing rate. The cor-
responding effects on a postsynaptic excitatory neuron can be
deduced from this. When a postsynaptic excitatory neuron is fir-
ing greater than 10 Hz, then the assumption is that the entire
network, including the presynaptic neurons, is also firing at a rate
greater than 10 Hz. In this case, then μee < Wee and μei > Wei,
providing less excitation, as well as more inhibition, than the
static synapses would, resulting in a slowing of the network firing.
In contrast, if an excitatory postsynaptic neuron is firing slower
than 10 Hz, then μee > Wee and μei < Wei, providing more exci-
tation and less inhibition to speed up the postsynaptic neuron,
and in turn, the network. A similar argument can be made for the
II and IE curves on the right.

3.1.2. Linear first order dynamics
Using linear perturbation theory, Sussillo et al. (2007) demon-
strated an expression for the first order change in the excitatory
firing rate δre with respect to a small perturbation in the exci-
tatory and inhibitory input currents δve and δvi respectively. A
detailed exposition of the derivation is given in Appendix A. A
network of an excitatory population and an inhibitory popula-
tion is assumed, in agreement with the neural networks used in
this manuscript. The resulting expressions are

δre

δve
≈ βe(1 + βiniWii)

α

[
1 + dee

βener∗
e (1 + βiniWii)

α

− die
βeβininer∗

e Wei

α

− dei
βiβenenir∗

i Wie

α

+ dii
β2

i βen2
i ner∗

i WeiWie

α(1 + βiniWii)

]
,

(15)

and

δre

δvi
≈ −βiβeniWei

α

[
1 + dee

βener∗
e (1 + βiniWii)

α

− dii
βinir∗

i (1 − βeneWee)

α

− die
βeβininer∗

e Wei

α

+ dei
r∗

i (1 + βiniWii)(1 − βeneWee)

αWei

]
,

(16)

where dmn := dμmn
dr∗n

for {m, n} ∈ {e = exc, i = inh} are derivatives

of the mean dynamic synaptic weight from neuron n to neuron m
with respect to a change in the steady state firing rate r∗ of neuron
n. The rest of the values in Equations (15) and (16) are positive
constants as defined in Table 3.

As all the constants are positive, Equations (15) and (16) yield
net changes dependent on the signs of the derivatives dmn. For
example, consider a situation in which it is desirable to minimize

FIGURE 2 | The normalized dynamic synapses plotted as a function of

the presynaptic firing rate. The STP parameters can be chosen to produce a
fixed point firing rate. The parameters used here are the R1 parameters

presented in Sussillo et al. (2007), with fixed point r∗ = 10 Hz. Note that at
10 Hz we have μmn = Wmn, where Wmn was chosen to produce stable RAIN
activity, for m, n ∈ {e, i}.
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the increase in excitatory firing rate despite an increase in excita-
tory input. In this case, it is desirable to make δre

δve
small, which can

be done by restricting dee and dii to be negative, and dei and die to
be positive per Equation (15).

Note that the implications of Equation (16) are less clear as the
signs of the terms also depend on the parity of 1 − βeneWee. The
correct parity choice can be determined for specific situations, as
done in Sussillo et al. (2007). Since the sign parity of dμ is so
fundamental to the dynamics, we will further examine it in the
next section.

3.1.3. Critical firing rate
Given that the dynamics of the network depends on the rates of
change of the dynamic synapses, we will proceed to characterize
the parameters that give the desired characteristics. As before, let
m, n ∈ {exc, inh}. As dmn = dμ∗

mn/dr∗, we begin by computing
dμ
dr from Equations (9) to (12), where, as noted in Section 2.2, we

use {U, D, F}. We get:

dμ

dr
= U(F − DF2Ur2 − 2DFUr − FU − DU)

(DFUr2 + DUr + FUr + 1)2
. (17)

As U is a probability, and thus positive, the sign of the derivative
is completely determined by the expression

F − DF2Ur2 − 2DFUr − FU − DU, (18)

which is quadratic in r. To find the transition point in Equation
(17), we equate Equation (18), to zero and solve for r. Recalling
that U is bound to (0, 1), we arrive at

rcrit = − 1

F
+
√

1 − U

UDF
, (19)

where we have taken the (potentially) positive branch of the
solution since negative firing rates do not make sense. We note
that Equation (18) is dominated by a negative quadratic coeffi-
cient, so as the steady-state firing rate r grows large, the synapse
governed by Equation (17) is depressive. Thus, for any set of
parameters, {U, D, F}, commonly referred to as UDF, one of
two cases can happen. First, if rcrit, as computed by Equation
(19), is negative, the synapse governed by the UDF parame-
ters will always be depressive. On the other hand, for a positive
rcrit, then for a steady-state firing rate r < rcrit, the synapses gov-
erned by UDF will be facilitating, whereas for r > rcrit, the UDF
synapses will be depressive. In Section 3.2.3, it is with this synaptic

Table 3 | STP linear perturbation constants for neural populations

{m, n} ∈ {e = exc, i = inh}.

βm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .derivative of the rate transfer function

W mn . . . . . . . . . . . . . . . mean static synaptic weights from population n to m

nm . . . . . . . . . . . . . . . . . . . . number of presynaptic neurons from population m

r∗
m . . . . . . . . . . . . . . . . . . . . . . . . . mean steady state firing rate for population m

α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . positive constant

See Appendix A. for more details.

characterization that we search the UDF parameter space for STP
parameters to give SS-RAIN networks.

3.2. SIMULATION EXPERIMENTS
3.2.1. Partitioning the STP parameter space
In Sussillo et al. (2007), the authors generate simple volumes
within the STP parameter space, which they denote the P vol-
ume and the N volume. The authors define P and N volumes as
the regions in which the STP parameters produce facilitating and
depressing synapses, respectively, for all steady state firing rates
between 10 and 100 Hz. The P and N volumes are used for gener-
ating the required synapse types used in Sussillo et al. (2007) for
producing steady state attractor dynamics in the SNN. In order
to generate these volumes, the parameter space was discretized
and sampled as (U, D, F) ∈ (0, 1)3 (where D and F are in sec-
onds) with a discretization of 0.014 in each dimension. For each
point, the STP dynamics were checked to determine if the param-
eters produced facilitating synapses or depressing synapses. This
discretization implies the checking of at least 357,911 parameter
combinations, each of which was checked for producing strictly
facilitating or depressing dynamics for some discretization of the
entire range of firing from 10–100 Hz. However, rcrit, derived
above, directly yield the boundary of these volumes by setting rcrit

to 10 or 100 Hz and solving. The volumes are shown in Figure 3,
produced with minimal effort.

3.2.2. A dual purpose synapse
We also find that many synapses have two functional regimes,
based on the presynaptic firing rate and the value of rcrit. In
particular, any synapse that has strictly positive rcrit can in the-
ory be both facilitating and depressing. This is demonstrated in
Figure 4, where the presynaptic firing rate is varied and the result-
ing synaptic efficacies are plotted. The STP parameters are chosen
so that rcrit ≈ 15.7. Thus, for presynaptic firing rates r < rcrit,
the synapse is facilitating, whereas for r > rcrit the synapse is
depressing.

This simple demonstration suggests an experimental paradigm
to verify the underlying model. It was demonstrated in
Wang et al. (2006) that a synapse can be both facilitating and

FIGURE 3 | The N and P volumes from Sussillo et al. (2007) as

generated using the rcrit characterization. Red is the P volume and blue
is the N volume.
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FIGURE 4 | A synapse that exhibits both facilitation and depression.

The STP parameters are U = 0.1, τD = 120 ms, τF = 150 ms, yielding
rcrit = 15.7 Hz. The top series are the STP variables u and x, and the
bottom series is the resulting synaptic efficacy μ at the corresponding
presynaptic firing rates r . The left column corresponds to a presynaptic

firing rate that increases from 1 to 11 Hz (incremented by 2 Hz), which is
below rcrit, manifesting in a facilitating synapse (0 < dμ). The right
column corresponds a presynaptic firing rate that increases from 18 to
28 Hz (incremented by 2 Hz), above rcrit, manifesting in a depressing
synapse (dμ < 0).

depressing. Furthermore, the authors observed that depression
becomes more apparent as the presynaptic firing rate increases.
These results are in agreement with our analysis, however a fur-
ther exploration could be conducted to verify the agreement of
the transition point with Equation (19). After estimating the
parameters U , D and F, one could compute rcrit and demonstrate
that for presynaptic firing rates below rcrit, facilitation is dom-
inant and that as the presynaptic firing rate increases past rcrit,
depression begins to dominate.

3.2.3. Finding STP parameters for SS-RAIN
In Section 3.1.1 it was conjectured that the derivative of μ

(referred to in this section as dμ) is important to the dynamics
induced by STP, and Sections 3.1.2 and 3.1.3 provide analytical
arguments in support of this conjecture. In addition, in Sussillo
et al. (2007), the authors propose which derivative signs are
important for a fixed point firing rate with respect to their mean
field current injection model. Despite the accomplishments of
Sussillo et al. (2007), the general case would have experimental
goals and assumptions which vary from those in Sussillo et al.
(2007), requiring more general techniques for generating good
parameter sets that lead to the desired dynamics. For instance,
the analysis done in Section 3.1.2 assumes small changes in net-
work inputs, which will not always be true. Furthermore, the
analysis is a first order approximation to the network dynam-
ics, ignoring the nonlinear dynamical interactions. The higher
order dynamics are of course very difficult to predict, and it is
currently unclear if any concrete conclusions can be drawn. The

first order conclusions, however, do indicate that the sign par-
ity of dμ is an important parameter, and the general analytical
result derived in Section 3.1.3 is a powerful tool that character-
izes the sign parity regions. We leverage the tool as described
below.

We have established that different types of STP parameters
can generate different desirable network dynamics. For instance,
with the proper STP dynamics in place, RAIN networks would
be much less sensitive to network fluctuations, due to the emer-
gent stabilization effects demonstrated in Sussillo et al. (2007). As
a simple application of our STP characterization, in this section
we attempt to classify regions of the STP parameter domain with
respect to their likelihood of producing the dynamics requisite for
the specific SS-RAIN networks described in Section 2.3. For our
purposes we only require sustained activity at a reasonable rate,
for a few seconds, as defined below. We use r∗ = 12 Hz, which is at
the boundary of the α and β rhythms (see Table 2), as our desired
firing rate for setting the value of Aij in Equation (13) because
this is the steady state firing rate that naturally arises from our
selected static weights in the RAIN experiment of Section 2.3.3.
Note that because STP has three parameters, and each network
has four connection types, if we choose the STP parameters at
random and independently for the different connection types, we
are choosing parameters from a 12 dimensional space, making
a brute force search intractable with typical laboratory comput-
ing resources. Furthermore, as it turns out, a random search is
unlikely to yield acceptable parameters, as demonstrated by the
first entry in Table 4.
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Table 4 | The success rate for finding STP parameters generating

SS-RAIN networks for various regions of the STP parameter domain.

Type # Successes (S) % Success ×RAND (S/Sr)

RAND Sr := 9 0.0009 1

GGGT 24,461 2.4461 2718

GGGA 23,234 2.3234 2582

GBGT 21,505 2.1505 2389

GGGB 20,949 2.0949 2328

GGGG 19,521 1.9521 2169

GBGA 15,830 1.583 1759

GBGD 15,586 1.5586 1732

GGDN 15,141 1.5141 1682

GGNN 13,413 1.3413 1490

BBGG 12,664 1.2664 1407

GGDD 12,147 1.2147 1350

GBGB 10,794 1.0794 1199

BBGB 10,514 1.0514 1168

BBGT 10,445 1.0445 1161

GBGN 9819 0.9819 1091

BBGA 9595 0.9595 1066

GGBT 8975 0.8975 997

BGGG 8957 0.8957 995

GGBA 8251 0.8251 917

GGGD 8048 0.8048 894

BAGT 7570 0.757 841

BAGA 7327 0.7327 814

GAGT 7200 0.72 800

BAGB 7048 0.7048 783

GAGD 6825 0.6825 758

BAGG 6404 0.6404 712

GBGG 5782 0.5782 642

GAGN 5612 0.5612 624

GGND 5391 0.5391 599

GGAT 5375 0.5375 597

GGBB 5315 0.5315 591

BTGT 4959 0.4959 551

BTGA 4950 0.495 550

BBGD 4904 0.4904 545

BTGB 4674 0.4674 519

ABGG 4641 0.4641 516

GAGA 4568 0.4568 508

Uniformly at random is the first entry, with the number of successes Sr = 9, and

the most prolific regions defined in Section 3.2.3 follow. The third column gives

the success ratio greater than RAND.

To improve on searching at random, we used the results
derived in Section 3.1.3 to partition the STP parameter space.
Specifically, we consider the STP parameter regimes defined in
Table 2, conditioned on rcrit. Using the partition in Table 2,
we define the network types to be explored as discussed in
Section 2.4, resulting in network signatures WXYZ. For each net-
work signature, we construct 106 instances of the network type, as
in Section 2.3.1, with the STP parameters drawn independently
and uniformly at random from the restricted parameter space
(see Section 2.4 for details), and simulate the resulting network,

as in Section 2.3.2, with target firing rates of rmin = 1 Hz and
rmax = 50 Hz. A success was recorded if at the end of 2 s, the net-
work was firing at a rate within the target zone, as described in
Section 2.3.2. Note that though the success range was defined
to be 1–50 Hz, almost all of the successes were from the inter-
val 10–30 Hz. We present the highest percentages of success in
Table 4. We also present, as the first entry of the table, the exper-
iment with the RAND signature, which consists of the results for
networks with parameters chosen uniformly at random without
domain restriction. In the RAND case, 16 separate trials of 106

simulations were done while varying the random number gen-
erator seed and changing the set of STP parameters used just to
ensure reliability of results. The best number is reported, though
from the 16 trials, the average number of successes was 4.69, with
a minimum of 1 success.

Though the success rate for the most successful region in
Table 4 is only around 2.4%, it is three orders of magnitude
larger than the success rate for searching at random. This pro-
vides a preliminary boundary for which regions of the STP
parameter domain can be explored for SS-RAIN spiking activity
networks. From this analysis, it is clear that the ideal parameter
region requires that the excitatory synapses (EE and EI) have an
rcrit value (and therefore the facilitation-depression transitional
point) above 30 Hz in many of the best configurations, and above
12 Hz in the best 20 configurations. Both values are at or above
the target firing rate of 12 Hz. Conclusions from the other two
types of synapses are not as clear.

4. DISCUSSION
4.1. STP CHARACTERIZATION
Though this work is guided by the analysis of Sussillo et al.
(2007), our mathematical derivation of rcrit is independent of the
assumptions that are important in the linear perturbation tech-
niques. The result should be generally applicable despite varying
conditions of the underlying networks, which may or may not
fall in line with the assumptions used in the perturbation analy-
sis. The generality of the result is because the analytical derivation
does not depend on the underlying neural model, connectivity
or scale. The only assumption made in the derivation is that of
the underlying STP model used, which is the commonly refer-
enced model of Tsodyks et al. (1998). The analytical conclusions
that we draw here should therefore be applicable to different neu-
ron models such as the more robust Izhikevich neuron model
(Izhikevich, 2003, 2004) as well as rate based models.

Furthermore, the value of rcrit provides a deeper understand-
ing of the synaptic dynamics involved, yielding heuristics for
picking synaptic parameters that manifest in particular behav-
iors. For instance, the propagation of signal across a subcircuit
of neurons could be boosted by using synapses that have facili-
tation properties within a certain firing regime. Simultaneously,
reverberations can be minimized if the same synapses manifest in
depressing dynamics at prescribed firing rates deemed too high.
These network traits can be realized by picking rcrit properly,
which can be done as demonstrated in Section 3.2.2.

In using rcrit to partition the STP parameter space, we found
that requiring particular ranges of rcrit for the different synapse
types greatly increases the chance of finding STP parameters that
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result in SS-RAIN networks. The particular results we found
in Section 3.2.3 will vary with different network types, just as
the specifications given in Sussillo et al. (2007) are not gener-
ally applicable, but the prescribed method of exploring the space
with respect to rcrit is generally applicable and yields interest-
ing information about the underlying networks. If knowledge
is known a priori about regimes that should likely be facilitat-
ing or depressing, requirements can be placed on rcrit to greatly
prune the search space, despite other assumptions. Experiments
of greatly differing assumptions and requirements can exploit the
STP characterization to find networks with the proper dynamics.

The search for SS-RAIN networks is a simple demonstration
of the usefulness of the developed STP characterization. However,
this does not experimentally demonstrate the general applicabil-
ity of the STP characterization. We have reason to believe that
the characterization is widely useful in practice because of the few
assumptions required for the analytical derivation and based on
our other studies. Specifically, STP was used in previous work to
stabilize RAIN dynamics in networks of various scales (O’Brien
and Srinivasa, 2013). In that work, STP was shown to increase
the stability of RAIN dynamics in networks of between the sizes
100 and 10,000 neurons, though the focus of the study was differ-
ent and the networks were not required to be self-sustaining. This
suggests the usefulness in applying properly tuned STP dynamics
in networks of scale. Furthermore, we are preparing a manuscript
based on the work in O’Brien (2013) that specifically uses the STP
characterization derived here to pick STP parameters that regulate
signal propagation.

Our results and the results of Sussillo et al. (2007) are insight-
ful, but further work in this area is necessary to develop a
complete understanding of the role STP plays in neural dynamics.
However, analysis and simulations are often conducted in a vac-
uum, without strong links to the experimental world. Through
our mathematical analysis, we have provided an experimentally
verifiable prediction to ground our work, with hopes that our
prediction will lead to further refinements of the underlying STP
model, if necessary.

4.2. BOOTSTRAPPING SUCCESS
In the simple application of the STP characterization, we found
that for the specific SNN described in Section 2.3 selecting the
rcrit values from the γ -rhythm regime for E→E, E→I, and I→E
connections, and rcrit from the θ-rhythm regime for the I→I
connections greatly improves (over random selection) the suc-
cess rate of finding STP parameters that yield SS-RAIN activity
in our networks, the success rate remains low at 2.4%. This is
a result of the severe manner in which the network was initial-
ized, with an abrupt jump-start. This initialization method was
chosen in order to make the property of self-sustaining extremely
difficult to achieve. As a result, the parameters that were found
achieving success were very robust to network fluctuations. In
contrast, Kumar et al. (2008) provides external current to the
network until the neurons are all firing at a pre-determined fir-
ing fixed point, after which the inputs were slowly removed.
They found that abruptly removing the network inputs produces
strong network transients that compromise stability. Our method
of jump-starting the network by bombarding it with inputs for

50 ms, and then abruptly removing the inputs without checking
if the network has stabilized at some acceptable firing rate is far
from the gentle jump-start Kumar et al. (2008) uses, yet we are
able to find networks that perform very well by exhibiting self-
sustaining behavior. The sustained spiking in our networks lasts
much longer than the networks reported in Kumar et al. (2008).
This can be expected because of the stabilizing effects rendered
by STP (Sussillo et al., 2007). However, it is likely that using a
gentle jump-start method, such as that proposed in Kumar et al.
(2008), would boost the success rates of our SS-RAIN network
experiments.

Another method for boosting the success rate would be to
bootstrap our STP methodologies with other synaptic plasticity
rules. Spike-timing dependent plasticity (STDP) (Markram et al.,
1997; Bi and Poo, 1998; Song et al., 2000; Song and Abbott, 2001)
could be used in temporally longer experiments to slowly evolve
the underlying static weights until the network can remain sta-
bly active. Homeostatic plasticity (Turrigiano and Nelson, 2004;
Yeung et al., 2004) could also be a candidate to stabilize network
dynamics in a similar nature to STP. Homeostatic plasticity mod-
ulates the synaptic efficacies based on the postsynaptic neuron’s
firing rate, playing a similar role that STP plays with respect to
presynaptic firing rates.

4.3. CONCLUSION
In this work, we have extended the work in Sussillo et al. (2007) by
mathematically deriving a characterization of the STP parameter
space that defines the transition between facilitating and depress-
ing synaptic dynamics. Our result is only dependent on the form
of the STP model used (Tsodyks et al., 1998), and is generally
applicable to both spiking networks and rate based networks.
For instance, our characterization implies the simple volumes
used in Sussillo et al. (2007), as described in Section 3.2.1 and
Figure 3, and simplifies the application of their techniques in a
general setting. Furthermore, the transition from facilitating to
depressing dynamics predicted by rcrit can be experimentally ver-
ified, potentially leading to refinements of the underlying STP
model.

Finally, through simulation, we studied the problem of esti-
mating STP parameters that can induce SS-RAIN network activ-
ity. We found that using an analytical framework characterized
by rcrit increases the likelihood of finding self-sustaining net-
works by three orders of magnitude over a random search of the
STP parameter space. This experiment was intended as a spe-
cific application of the analytical STP characterization derived in
Section 3.1 and not intended as a thorough study of SS-RAIN.
Though a thorough study of SS-RAIN coupled with STP in the
spirit of Kumar et al. (2008) would be interesting, it is beyond the
scope of this work. Future studies will be required to fully under-
stand how STP affects SS-RAIN, including variations of network
scale and connectivity.
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APPENDIX
LINEAR PERTURBATION ANALYSIS
Here we expand upon the arguments of Sussillo et al. (2007).
The following assumes a steady state, described in Equations (9),
(11) and (12). As noted in Section 2.2, we use {U, D, F} in the
following analysis.

We consider a network of two populations: excitatory and
inhibitory. Let Wmn be the mean synaptic weight from the n pop-
ulation to the m population, where m, n ∈ {exc, inh} are generic
subscript labels. When specificity is required, we reserve the labels
e = exc and i = inh. Let μmn be the mean dynamic synapse
between the populations. We assume that the dynamic synapses
are instantly equilibrating functions of the presynaptic firing
rates. We assume that the synaptic weights Wmn are chosen to
produce a stable network firing rate column vector r∗ = (r∗

e , r∗
i )T

for a constant current input column vector v = (ve, vi)T . Here, re

and ri are the average firing rates of the excitatory and inhibitory
populations and ve and vi are the external inputs to excitatory and
inhibitory populations. Recall that for r∗, we have μmn = Wmn,
from the choice of the constants Aij in Equation (13). Further, we
assume that for some decay constant τm,

τm
drm

dt
= −rm + fm[vm + neμme(re)re − niμmi(ri)ri], (A1)

where fm is some monotonic function, called the rate transfer
function for ne and ni presynaptic excitatory and inhibitory con-
nections, respectively. This is an approximation to the network
dynamics, commonly referred to as the mean field approxima-
tion (Van Vreeswijk and Sompolinsky, 1996, 1998; Tsodyks et al.,
1998). For a constant network firing rate r∗, Equation (A1) yields

r∗
m = fm[vm + neμ

∗
me(r∗

e )r∗
e − niμ

∗
mi(r∗

i )r∗
i ]. (A2)

We use perturbation theory to examine the change in firing rate
r∗ + δr = (r∗

e + δre, r∗
i + δri)T for a change in external input

v + δv = (ve + δve, vi + δvi)T . With this perturbation, and the
instant equilibration of the dynamic synapses, A2 becomes

r∗
m + δrm = fm

[
vm + δvm

+ neμ
∗
me(r∗

e + δre)(r∗
e + δre)

− niμ
∗
mi(r∗

i + δri)(r∗
i + δri)

]
.

(A3)

For z = F(x), we use the linearization δz ≈ F′(x) · δx. Up to first
order in δr, Equation (A3) becomes

δrm ≈ βm(δvm + Wmeδre + dmeδrer∗
e

−Wmiδri − dmiδrir
∗
i ), (A4)

where dmn = dμmn
dr∗n

, βm = f ′
m(vm + Wmer∗

e − Wmir∗
i ), and we

have used that μ∗
mn(r∗

n) = Wmn.

Define the following matrices:

W := B

(
Wee −Wei

Wie −Wii

)
N, D := B

(
dee −dei

die −dii

)(
r∗

e 0
0 r∗

i

)
N,

where B and N are defined as

B :=
(

βe 0
0 βi

)
, N :=

(
ne 0
0 ni

)
.

With this notation, Equation (A4) can be written as

δr ≈ Bδv + Wδr + Dδr. (A5)

The solution to this system is

δr ≈ (I − (W + D))−1 Bδv, (A6)

where I is the identity matrix. We proceed with the assumption
that the dynamic synapses are almost static with the derivative
matrix D ≈ 0. We approximate δr with respect to δv up toO(D2).

In the following, we refer to the components of a matrix M
with subscripts, as in M�k. We invert the matrix in Equation (A6),
while ignoring higher order terms from D, and we get

δr ≈ 1

α − c

(
1 − W22 − D22 W12 + D12

W21 + D21 1 − W11 − D11

)(
βe 0

0 βi

)
δv

= 1

α − c

(
βeδve (1 − W22 − D22) + βiδvi (W12 + D12)

βeδve (W21 + D21) + βiδvi (1 − W11 − D11)

)
, (A7)

where we have defined

α := (1 − W11)(1 − W22) − W12W21 (A8)

and
c := D11(1 − W22) + D22(1 − W11)

+W12D21 + W21D12. (A9)

Note that c = O(D). We now estimate 1
α−c with respect to

assumptions that D2 ≈ 0 and sup D�k � inf W�k, which implies
that c

α
< 1, since every term of c contains an element of D. We

get:

1

α − c
=

1
α

1 − c
α

= 1

α

∞∑
k = 0

( c

α

)k = 1

α

(
1 + c

α

)
+ O(D2). (A10)

Combining Equations (A7) and (A10), we can estimate the
change in excitatory firing rate with respect to the change in
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excitatory input:

δre

δve
≈ βe

α

(
1 + c

α

)
(1 − W22 − D22)

= βe

α

[
(1 − W22)

(
1 + c

α

)
− D22

(
1 + c

α

)]

≈ βe

α

[
(1 − W22)

(
1 + c

α

)
− D22

]

= βe(1 − W22)

α

(
1 + c

α
− D22

1 − W22

)

= βe(1 − W22)

α

(
1 + D11(1 − W22)

α
+ D22(1 − W11)

α

+W12D21

α
+ W21D12

α
− D22

1 − W22

)

= βe(1 − W22)

α

(
1 + D11(1 − W22)

α
+ W12D21

α
+ W21D12

α

+D22 [(1 − W11)(1 − W22) − α]

α(1 − W22)

)

= βe(1 − W22)

α

(
1 + D11(1 − W22)

α
+ W12D21

α
+ W21D12

α

+D22W12W21

α(1 − W22)

)
.

Substituting the values for the matrix components, we arrive at

δre

δve
≈ βe(1 + βiniWii)

α

[
1 + dee

βener∗
e (1 + βiniWii)

α

− die
βeβininer∗

e Wei

α

− dei
βiβenenir∗

i Wie

α

+ dii
β2

i βen2
i ner∗

i WeiWie

α(1 + βiniWii)

]
.

(A11)

Similarly, we get

δre

δvi
≈ −βiβeniWei

α

[
1 + dee

βener∗
e (1 + βiniWii)

α

− dii
βinir∗

i (1 − βeneWee)

α

− die
βeβininer∗

e Wei

α

+ dei
r∗

i (1 + βiniWii)(1 − βeneWee)

αWei

]
.

(A12)

We now prove that α is positive. If the synapses are static (D =
0), then Equation(A6), reduces to

δr ≈ (I − W)−1 Bδv, . (A13)

Observe that α = det (I − W), and we have

δr ≈ 1

α

(
1 − Wii Wei

Wie 1 − Wee

)
Bδv. (A14)

Substituting in the appropriate values, and solving for the change
in δre with respect to δve, we have

δre

δve
= βe

α
(1 + βiniWii). (A15)

This can also be derived from Equation (A11) when all elements
from D are set to zero. Because of the monotonicity of the rate
transfer function, f , an increase to the excitatory inputs ve must
result in an increase in re, thus α > 0.

Observe also that B is positive-semidefinite by the monotonic-
ity of f . With both α > 0 and B positive semi-definite, and all of
the weights Wmn ∈ (0, 1) are positive, the amount of change in
Equation (A11) are determined by the signs of the derivatives dmn

as discussed in Section 3.1.2.
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