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A spiking neural network model is described for learning to discriminate among spatial
patterns in an unsupervised manner. The network anatomy consists of source neurons
that are activated by external inputs, a reservoir that resembles a generic cortical layer
with an excitatory-inhibitory (EI) network and a sink layer of neurons for readout. Synaptic
plasticity in the form of STDP is imposed on all the excitatory and inhibitory synapses
at all times. While long-term excitatory STDP enables sparse and efficient learning of the
salient features in inputs, inhibitory STDP enables this learning to be stable by establishing
a balance between excitatory and inhibitory currents at each neuron in the network. The
synaptic weights between source and reservoir neurons form a basis set for the input
patterns. The neural trajectories generated in the reservoir due to input stimulation and
lateral connections between reservoir neurons can be readout by the sink layer neurons.
This activity is used for adaptation of synapses between reservoir and sink layer neurons.
A new measure called the discriminability index (DI) is introduced to compute if the
network can discriminate between old patterns already presented in an initial training
session. The DI is also used to compute if the network adapts to new patterns without
losing its ability to discriminate among old patterns. The final outcome is that the network
is able to correctly discriminate between all patterns—both old and new. This result holds
as long as inhibitory synapses employ STDP to continuously enable current balance in the
network. The results suggest a possible direction for future investigation into how spiking
neural networks could address the stability-plasticity question despite having continuous
synaptic plasticity.
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INTRODUCTION
A hallmark of biological systems is their ability to learn new
knowledge while also exhibiting stability in order to prevent
the forgetting of previous knowledge in a dynamically changing
world. The nervous system solves this challenging problem in an
unsupervised fashion and this problem has been referred to as the
stability-plasticity dilemma (Grossberg, 1980, 2012).

This problem is further compounded in its complexity by the
fact biological systems are open thermodynamic systems where
energy and matter constantly flow through them (Katchalsky and
Kedemo, 1962; Swenson and Turvey, 1991; Kello, 2013). This
flow produces variations within the nervous system where action
potentials are always generated by neurons such that synaptic
strengths are constantly being modulated (Freeman, 2001) to
adapt to a changing world, and network structures never stop
changing (Pascual-Leone et al., 2005) and all these changes can
happen at a variety of spatial and temporal scales.

In a well-known set of experiments by Freeman and Schneider
(1982), rabbits were surgically implanted with a rectangular array
of electrodes in the olfactory bulb. In one such experiment to test
serial conditioning, odor stimuli in the form of sawdust, acetyl
acetate, butyric acid and finally sawdust were presented serially

to the rabbits. The neural activity in the bulb electrodes changed
with each new odorant. On returning to the first odorant, the
sawdust, neural activity was very different from those recorded
on the first exposure. However, the rabbits exhibited repeatable
behaviors such as avoiding odors that were undesirable while
approaching toward other odors that were desirable. How is that
the neural activity (or internal representations) in the brain can be
so variable and yet the animal can produce stable and repeatable
behaviors?

Neural models based on the adaptive resonance theory
(Grossberg, 2012) attempt to answer these questions by using
firing rate code combined with Hebbian plasticity models. Rate
coding is based on the assumption that information is coded
coarsely in the number of spikes occurring in a given window
of time. The recently proposed reservoir-computing model (Maass
et al., 2002; Buonamano and Maass, 2009; Maass, 2010) predicts
that temporal integration of incoming information and generic
non-linear mixing of this information within a liquid or recur-
rent network of excitatory and inhibitory neurons are primary
computational functions of a cortical microcircuit. The state of
the network at any given time can be represented by a point
in high-dimensional space where each dimension corresponds
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to the activity level of a neuron. A temporal sequence of these
points forms a neural trajectory. The advantage of computing
with neural trajectories is that temporal information is implicitly
encoded in them and can be read out by downstream neurons.
This approach to computing has received experimental evidence
(Hahnloser et al., 2002; Nikolic et al., 2009; Crowe et al., 2010;
Long et al., 2010; Bernacchia et al., 2011; Klampfl et al., 2012).
These models are based on firing rates of neurons (Jaegar and
Haas, 2004; Sussillo and Abbott, 2009; Laje and Buonamano,
2013).

There is mounting evidence for temporal coding in the brain
(Rieke et al., 1996; Victor and Purpura, 1996; Van Rullen et al.,
2005; Dan and Poo, 2006; Tiesinga et al., 2008) where information
is coded in the precise timing of individual spikes from individ-
ual neurons. The adaptive resonance models also do not consider
spike frequency dependent short-term plasticity (Tsodyks and
Markram, 1997; Tsodyks et al., 1998) and spike timing depen-
dent long-term plasticity of excitatory and inhibitory synapses
(Markram et al., 1997, 2011; Bi and Poo, 1998; Woodin et al.,
2003; Vogels et al., 2011, 2013). Spiking versions of reservoir com-
puting models have shown learning of spatiotemporal patterns
(Maass et al., 2002; Maass, 2010) but the reservoir is not plastic in
these implementations.

A spiking neural network with spike-driven synaptic dynam-
ics compatible with STDP and short-term synaptic plasticity
and with supervisory signals was shown to learn and correctly
classify a large number of overlapping patterns (Brader et al.,
2007). This network did not consider inhibitory synaptic plas-
ticity dynamics and required plasticity to be turned off after
learning. In a previous model, the authors showed that a sim-
ilar supervisory signal driven spiking neural network learns
spatiomotor transformations (Srinivasa and Cho, 2012). It was
shown recently that incorporation of synaptic plasticity in the
excitatory synapse and network motifs within a spiking reser-
voir can result in the emergence of long-term memory in the
form of sequences of network states (Klampfl and Maass, 2013).
However, this model does not have synaptic plasticity in both
excitatory and inhibitory synapses. It also did not address the
relation of their network to the unsupervised discrimination of
patterns.

A spiking neural model with a reservoir type architecture
is presented that is composed of a source layer with neurons
that are activated by external inputs, a reservoir that resem-
bles a generic cortical layer with an excitatory-inhibitory (EI)
network and a sink layer of neurons for readouts. Synaptic plas-
ticity in the form of STDP is imposed on all the excitatory and
inhibitory synapses at all times. Using a novel discrimination
measure called pattern discriminability index (DI), the spiking
network is shown to be capable of discriminating between spatial
patterns of spiking inputs in an unsupervised manner (i.e., with-
out any explicit supervisory signals or labels) despite continuous
synaptic plasticity.

The DI can be viewed a generalization of the average Hamming
distance (Garcia-Sanchez and Huerta, 2004; Olypher et al., 2012)
between neuronal patterns based on relative firing rate distribu-
tions. It also has close links to information theoretic measures
(Borst and Theunissen, 1999) because it quantifies the amount

of information the output neurons carry about the input patterns
presented to the system during training.

MATERIALS AND METHODS
MODEL ARCHITECTURE
The spiking network model proposed in this paper consists of
three layers as shown in Figure 1A. The source layer contains
excitatory neurons that are stimulated by sources external to the
network and projected to reservoir neurons. These projections
were random and relatively sparse for the sake of simplicity. The
reservoir neurons were either excitatory or inhibitory, received
projections from source neurons and other reservoir neurons, and
projected to other reservoir neurons and neurons in the third
layer called the sink layer. The sink neurons received projections
from the reservoir neurons but did not project back to the net-
work. The sink neurons were composed of both excitatory and
inhibitory neurons.

In this paper, the source layer (layer 1 in Figure 1A) contains
K = 900 neurons (converted from a 30 × 30 2-D array into a lin-
ear array), the reservoir (layer 2 in Figure 1A) contains N = 200
excitatory and 50 inhibitory neurons (in a 4:1 ratio between exci-
tatory and inhibitory neurons) and M = 8 excitatory neurons
sink layer (layer 3 in Figure 1A) that are recurrently connected
to inhibitory neurons in the sink layer. There are four types of
synapses depending on the pre- and post-synaptic neuron type at
each synapse: E → E, E → I, I → E, and I → I. The first two types
of synapses are excitatory in nature and obey E-STDP rule while
the last two types of synapses are inhibitory in nature and obey
the I-STDP rule for plasticity. The connectivity between the lay-
ers in the network is set randomly with probability cAB

ij where the
superscripts A and B reflect excitatory (E) or inhibitory (I) type
of neuron while subscripts i and j correspond to the sender and
receiver layers (Figure 1A). All synapses are plastic throughout
all simulations and synaptic connections are set randomly. The
spiking model simulations were performed using the HRLSim
(Minkovich et al., 2014) that is a multiple graphical processing
unit (GPU) based spiking simulator in C++.

NEURON MODEL
The leaky integrate and fire neuron (Vogels et al., 2005) is
used to model neuronal dynamics with a single compart-
ment and no somatic, dendritic or axonal specialization. In
response to multiple input currents coming from excitatory and
inhibitory presynaptic neurons in the sets Preex and Preinh, respec-
tively, the membrane potential V for post-synaptic neuron i is
determined by:

τm
dVi

dt
= (Vrest − Vi) + (Eex − Vi)

∑
j ∈ Preex

gex, ij

+(Einh − Vi)
∑

j ∈ Preinh

ginh, ij (1)

When V reaches a threshold voltage VT , the neuron fires a spike
(Figure 1B), and V is reset to Vreset . The output information is
encoded into the timing of these spikes. This basic model provides
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FIGURE 1 | The complete model with (A) a three layered network

architecture with a source (layer 1), reservoir (layer 2), and sink (layer 3)

neurons. The source neurons receive inputs patterns in spike-encoded form.
These spikes are then projected to the excitatory neurons in the reservoir
layer that are recurrently connected to other neurons in the excitatory
population. The excitatory population of neurons is also connected to an
inhibitory population of neurons reciprocally. The inhibitory neurons are
recurrently connected to neurons within its population. The connectivity
between the various layers in the network are set as: cEE

12 = 20%,
cEE

22 = 40%, cEI
22 = 40%, cIE

22 = 50%, cII
22 = 50%, cEE

23 = 30%, cEI
33 = 100%,

and cIE
33 = 100% for all simulations. Here, cEI

22 = 40% means that the
connectivity between the E and I neurons in layer 2 is randomly connected at
40% of full connectivity between the two neuron populations. (B) The four
subplots summarizes the leaky integrate and fire process in a typical neuron
in our model. The first subplot shows input spikes from E (green) and I (red)
pre-synaptic neurons. The second subplot shows the conversion of these
spikes into currents that also includes the AMPA (green) and GABA (red)
kinetics. The third subplot shows the integration of membrane voltage trace
of the post-synaptic neuron based on the sum of the currents; and the last
subplot shows the spikes generated by the post-synaptic neuron when the
membrane voltage exceeds VT . (C) The E-STDP is an asymmetric function of
the timing difference (�t = tpre − tpost ) between the pre- and post-synaptic
spikes at neuron j and the corresponding change in synaptic conductance

�wj for E → E and E → I synapses. The four parameters (A+, A−, τ+, τ−)
control the shape of the function and thus the amount of potentiation and
depression. The I-STDP is a symmetric function of the timing difference �t
between the pre- and post-synaptic spikes at neuron j and the corresponding
change in synaptic conductance �zj for I → E and I → I synapses. The three
parameters (B+, B−, τ) control the shape of the function and thus the amount
of potentiation and depression. (D) Inhibitory STDP interacts with excitatory
STDP to favor balance among causal synaptic currents. Presynaptic and
post-synaptic spikes can be proximal causal or proximal anti-causal to varying
degrees. The dashed lines reflect an example of timing difference for which
proximal causality is assumed. (E) Presynaptic and post-synaptic spikes can
be distal causal or distal anti-causal to varying degrees. The dashed lines
reflect an example of timing difference for which distal causality is assumed.
The E-STDP and I-STDP combine to form four different interacting regimes:
Balance regime that occurs for the proximal causal case, where excitatory
and inhibitory conductance both increase; Accelerated Potentiation regime
that occurs for the distal causal case, where excitatory conductance
increases albeit by small amounts, while inhibitory conductance decreases
by small amounts; Decelerated Depression regime that occurs in distal
anti-causal case, where excitatory and inhibitory conductance both decrease
by small amounts; and Quiescent regime that occurs in proximal anti-causal
case, where excitatory conductance is strongly decreased and inhibitory
conductance is strongly increased.
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several control variables for the membrane voltage including con-
ductances gex (excitatory) and ginh (inhibitory), membrane time
constant τm, the constant reversal potential for excitatory (Eex),
and inhibitory (Einh) synaptic currents, and a fixed voltage thresh-
old for firing VT at which the neuron fires a spike. Synaptic inputs
to the neuron are modeled as conductance changes where a set
of excitatory or inhibitory presynaptic spike times, Sex or Sinh,
respectively, gives conductance dynamics:

dgex

dt
= − gex

τAMPA
+ w

∑
s ∈ Sex

δ(t − s) (2)

dginh

dt
= − ginh

τGABA
+ z

∑
s∈Sinh

δ(t − s) (3)

Here the time constants τAMPA and τGABA approximate the aver-
age decay of AMPA and GABA currents respectively (Figure 1B).
The value of the excitatory and inhibitory synaptic conductance
w and z is controlled by STDP (Figure 1C). In all simulations,
τm = 20 ms, VT = −54 mV, Vrest = −74 mV, Vreset = −60 mV,
Eex = 0 mV, Einh = −80 mV, τAMPA = 40 ms, and τGABA = 50 ms.
All simulations used Euler integration with a time step of 1 ms
(Srinivasa and Jiang, 2013).

EXCITATORY STDP
The E-STDP function modulates the excitatory synaptic weight
w based on the timing difference (tpre–tpost), or �t, between
the spike times of pre- and post-synaptic neuron (Figure 1C).
The control parameters τ+= 20 ms and τ− = 20 ms determine
the temporal window over which STDP is active. The change in
synaptic weight is computed using the additive STDP rule as:

w = wold + �w (4)

where �w =
⎧⎨
⎩A+exp

�t
τ+ , �t < 0

−A−exp
−�t
τ− , �t ≥ 0

(5)

If wnew > gE
max, then wnew = gE

max. On the other hand if wnew <

0, then wnew = 0. The factors (A+, A−) correspond to the max
synaptic change possible for potentiation and depression respec-
tively at any given time step. The E-STDP parameters are set as:
A+ = 0.005 nS and gE

max = 0.3 nS. The factor β = |A−τ−|/|A+τ+|
which controls the relative amounts of depression to potentiation
during learning is set 1.05 that represents a slight bias toward
depression (Song et al., 2000). The initial excitatory synaptic
weight w was set by picking values randomly in the interval (0,
0.1 nS) for synapses in layers 1 and 2 and was set between (0,
0.2 nS) for synapses between layers 2 and 3.

INHIBITORY STDP
The I-STDP function modulates the inhibitory synaptic weight z
(Vogels et al., 2011, 2013; Srinivasa and Jiang, 2013) based on the
timing difference �t between the spike times of corresponding

pre- and post-synaptic neurons (Figure 1C). The synaptic weight
is computed as:

z = zold + �z (6)

The change �z is governed by the following equations:

�z =
⎧⎨
⎩

B+ ∗ exp
(−|�t|

τ

)
, if |�t| ≤ τ

−B− ∗ exp
(−|�t|

τ

)
, if |�t| > τ

(7)

If znew < 0 then znew = 0. On the other hand, if znew > gI
max then

znew = gI
max. The I-STDP parameters are set as B+ = 0.0015 nS

and B− = 0.0003 nS, gI
max = 0.2 nS and τ = 10 ms. The initial

inhibitory synaptic weight set by picking values randomly in the
interval (0, 0.1 nS) for all synapses.

INTERPLAY BETWEEN E-STDP AND I-STDP FOR BALANCED CURRENTS
Excitatory and inhibitory long-term plasticity are both important,
as it is the interplay between these two effects that results in a net-
work with a balance between excitatory and inhibitory currents at
each neuron in the reservoir layer. The networks with such a cur-
rent balance are referred to as balanced networks (Vogels et al.,
2011; Srinivasa and Jiang, 2013). Networks without inhibitory
STDP fail to reach this state for any of a large set of possible
network parameters. Figure 1D shows a schematic description
of how these two STDP functions combine to create a balanced
network.

The inhibitory STDP function is symmetrical supporting an
increase in synaptic conductance, i.e., synaptic inhibition, for
closely timed pre- and post-synaptic spikes regardless of their
order. In contrast, the excitatory STDP function is anti-symmetric
and biased toward depressing action. Together, for each of these
two STDP functions along the �t = tpre − tpost timeline, there
are four qualitative regions: proximal causal and anti-causal
(Figure 1D), for those spikes that occur relatively close together,
and distal causal and anti-causal (Figure 1E), for those that occur
farther apart.

INPUT IMAGE ENCODING AND NOISE INJECTION
Each 2-D input image pattern is first converted into a 1-D vector
(Figure 2A). The 1-D input image vectors are then converted into
spike sequences by an encoding process as follows. The neurons
in the input layer are modeled using a Poisson process and each
neuron receives an input from one pixel in the image. If a pixel
is black in the input image, the neuron is assigned a mean firing
rate of f = 90 Hz and if it is white, 10% of the source layer neu-
rons with white pixels are assigned a mean firing rate of f = 10 Hz
to simulate noise in the image. The spike encoding process is gen-
erated based on Poisson statistics. Assuming a sampling rate of dt
and for a mean firing rate of f Hz for a given pixel, f spikes are
generated every 1/dt samples. Thus, the probability of spiking at
each time step for a given pixel firing at f Hz is f ∗dt. Spike trains
are generated for each pixel based on its probability of spiking at
each source layer neuron. An example result of this encoding pro-
cess for input patterns (Figure 2A) is shown in Figure 2B. In all
simulations, dt = 1 ms as mentioned earlier.
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FIGURE 2 | Spike input encoding at the source layer of the network.

(A) An input pattern in the form of 2-D array of pixels is presented to the
source neurons of the network that are linearly arranged. See Materials and
Methods section for details of spike encoding. (B) The spikes generated
during the presentation of the example in (A) for 500 ms duration is shown
here. The firing rate at any given time (the bottom subplot) is approximately
the same showing no undue bias introduced in the spikes that are fed to the
source neurons. The linear arrangement of the source neurons results in the
spike frequency plot (shown on the right) for the given input pattern

computed for a duration of 500 ms. (C) Input patterns of the training set
consists of P = 15 “flag” patterns where each pattern is a binary image array
of 30 × 30 pixels. (D) An example sequence of input patterns after spike
encoding at the source neurons is shown here. The duration of the
presentation of each pattern varies and is chosen from an exponential
distribution with a mean of 30 ms. Red lines demarcate the shift from one
training pattern to another. The training patterns are selected from the set of
15 in a random order. The plot shows a total duration of 1800 ms with 10% of
the source neurons injected with noise throughput the sequence.

INPUT PATTERN PRESENTATION DURING TRAINING AND TESTING
The training process consists of presenting each input pattern in
the training set (Figure 2C) in a random order for a duration
drawn from an exponential distribution with a mean of 30 ms
(Figure 2D). The network is tested for discriminability at regu-
lar intervals (every 10 s) during which synaptic plasticity in the
network is turned off. Each input pattern is presented during the
testing process in a fixed sequence for d seconds each and the
discriminability index is then computed based on the generated
firing rate codes (as described below). The process of estimating
d is also provided below.

FIRING RATE CODE FOR READOUT NEURONS
The firing rate code for the readout neurons are evaluated only
during the testing phase during which each input pattern from
the training set is presented to the network for a duration of d
seconds for a total duration of d∗P seconds for P patterns. Each
pixel in the input image stimulates one neuron in the source layer
(Figure 3A). The source neurons are modeled as Poisson spike
sources as described above. For each test pattern p, the the firing

rates f
p
i of sink neuron i in layer 3 (Figure 3B) can be computed as

the total number of spikes emitted during a duration of d seconds.
The maximum firing rate f

p
max is then estimated from the firing

rates of all sink neurons for that test pattern p. The firing rate
vector Sp of length M for pattern p is composed of components
S

p
i for each sink layer neuron i can be computed as:

S
p
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2, if 0.9 ≤ f
p
i

f
p

aax
< 1.0

1, if 0.4 ≤ f
p
i

f
p
aax

< 0.9

0, if
f

p
i

f
p
aax

< 0.4

(8)

The vector Sp is referred to as the firing rate code and in this exam-
ple it is a tertiary firing rate code (i.e., C = 3) because each sink
neuron can have three possible states for a given input pattern p.
An example of this tertiary code for two different input patterns is
shown in Figure 3C. It is possible to use other coding levels such
as binary (C = 2) or quarternary (C = 4) codes. In this paper,
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FIGURE 3 | Spike output decoding at the output layer of the network.

(A) The output spike histogram is shown for neurons at the sink layer
(assumed to have 8 neurons in this example) for a given input pattern
presented at the source neurons and (B) this histogram is converted to
firing rate code Sp with three possible states for each neuron (black—0

gray—1 and white—2). The firing rate code for two different input patterns
results in two different codes as shown here. (C) The mean firing rate of
the output neurons during the experiment to determine the duration d
using the Fano Factor. (D) The variation of the Fano Factor as a function of
the duration d.

C = 3 is used as it offers the highest discriminability as explained
in the Results section.

ESTIMATING d FOR TESTING
The firing rate code S (above) and the estimation of discrim-
inability index (as explained below) depends upon the duration
d of each test pattern presentation. To estimate an appropriate
duration d, the Fano factor (Churchland et al., 2010; Eden and
Kramer, 2010) was computed from the spikes generated by the

readout neurons by assessing the relationship between variability
of the spike counts and duration d.

The Fano factor (FF) is defined as the ratio of sample variance
to sample mean of spike counts observed in a time window and
the quality of the estimator strongly depends on the length of the
window. The FF measures the noise-to-signal ratio and therefore
characterizes the neural variability over trials. For example, for a
Poisson process, the variance equals the mean spike count for any
length of the time window. If the FF has a minimum at some value
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of d, this can be an optimal value for d since the firing rate code
would be robust at that value (see e.g., Ratnam and Nelson, 2000;
Chacron et al., 2001).

The FF was computed for various durations d as follows. The
spikes for each test pattern presented for duration of a selected d
was first collected for each of the M readout neurons separately.
This was repeated for 100 trials to collect a set of M∗100 spike
count values. The mean and variance in the spike count was then
computed from these values. The ratio of the computed variance
to mean gives FF for the selected d and for the selected test pat-
tern. This process was repeated for all remaining P-1 test patterns
and the resulting average FF was used as the FF for a given dura-
tion d. Since the average firing rate of the sink layer neurons was
steady between 28 and 30 Hz (Figure 3C), the mean-matching
procedure for FF (Churchland et al., 2010) was not used. To esti-
mate the appropriate duration d, the FF was plotted as a function
of duration d (Figure 3D) for M = 8 and P = 15. The minimum
FF is ∼0.48 and occurs at d = 1.4 s. We set d = 1.4 s in all our
simulations.

DISCRIMINABILITY INDEX COMPUTATION
During the learning process, as input patterns are presented, a
firing rate code Sp can be computed at the sink layer for each
pattern p presented to the source layer as described above. The
ternary firing rate code changes as the network is presented with
more inputs. This implies that the ternary code cannot be directly
used for reliably separating one pattern from another. However,
after a few pattern presentations, the ability of the network to
discriminate between the patterns becomes stable and reliable.

To verify this, a discriminability index (DI) was computed as
follows. At regular intervals (once every 10 s) the network was
stopped to probe the state of the network. During this process,
the synaptic weights are frozen and each pattern is presented J
times for duration of d = 1.4 s each. For a given pattern p, the fir-
ing rate code Sp was computed for each of the J presentations of
p. A prototype firing rate code was selected for a given pattern p
as the code that is most repeating among the J codes generated.
If there are no repeats, one of the J codes as the prototype was
selected at random. This process is repeated for each pattern to
identify a prototype firing rate code for each input pattern. Using
the prototype firing rate codes, the inter-pattern distance (Dinter,)
was computed. Dinter is defined as the average pair-wise distance
between prototype readout codes computed from all possible
unique pairs of prototype readout codes generated by the network
for a given test set. To calculate Dinter , the distance d

pq
i between a

pair of S codes for two input patterns p and q and for each sink
neuron i was computed as:

d
pq
i =

{
0 if S

p
i = S

q
i

1 if S
p
i 	= S

q
i

(9)

The distance Dinter,i was then computed by using d
pq
i for every

pair of input patterns p and q for each sink neuron i across all test
patterns P as:

Dinter, i =
∑P − 1

k = 1

∑P
j = k + 1

∑M
i = 1 d

kj
i

P∗(P − 1)/2
(10)

The maximum value of Dinter,i for a readout code can be esti-
mated as follows. Assuming a ternary readout code at the sink
layer (i.e., C = 3 and that P is odd, the maximum pairwise dis-
tance between the readout code at each sink layer neuron i is
obtained when the readout is equiprobable with “0” for one third
of P input patterns, “1” for another third of inputs and with “2”
for the remaining third. The theoretical maximum value of the
numerator Equation (10) can be computed as P∗P/3 and thus
Dmax

inter can be computed as 2P/(3∗(P − 1)). If P is even, Dmax
inter can

be similarly computed as 2(P + 1)/3∗P. Similarly, for a binary
code (e.g., C = 2) Dmax

inter can be computed to be (P + 1)/(2∗P)
when P is odd and 2P/(3∗(P − 1)) when P is even. Thus, Dmax

inter,i
can be computed for the general case when C is even as:

Dmax
inter,i =

{
P(C−1)
C(P−1)

if P is even
(P+1)(C−1)

CP if P is odd
(11)

Similarly Dmax
inter,i for the general case when C is odd can be

expressed as:

Dmax
inter,i =

{
P(C−1)
C(P−1)

if P is odd
(P+1)(C−1)

CP if P is even
(12)

The expression for the inter-pattern distance Dinter can be written
in terms of Dinter,i as:

Dinter =
M∑

i=1

Dinter, i (13)

By substituting Dmax
inter,i from Equations (11) or (12) (depending

upon whether C are even or odd respectively) into Equation (13),
the theoretical maximum value of Dinter can be computed. For
example, if C is even, Dinter will be PM(C-1)/(C(P-1)) if P is odd
and (P+1)M(C-1)/CP is P is even. Thus, if M = 8, C = 2 and
P = 15, the theoretical maximum for Dinter will be 4.28. It should
also be noted that the theoretical maximum for Dinter grows lin-
early with M. The theoretical maximum for Dinter will serve as
the upper bound for a given set of parameters during learning.
This is because there is noise in the network that prevents an
equiprobable distribution of readout codes by the network.

An intra-pattern distance (Dintra,) was also computed by pre-
senting the same pattern J times for d seconds each. Dintra is
defined as the average pair-wise distance between readout codes
same as Equation (10) computed from all possible unique pairs of
readout codes generated by the network for the same input pat-
tern. This distance provides a measure of an average variation in
the response of readout neurons for the same input pattern. This
variation can be caused due to noise in the inputs. It should be
noted that J = 10 in all our simulations.

The discriminability index (DI) is then defined as a product
of two measures. The first is called separability, ε, that measures
the degree of separation of readout codes for a given test set. This
measure can be computed as:

ε = 1 − Dintra

Dinter
(14)
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This measure is akin to computing the Fischer metric
(McLachlan, 2004). A small Dintra relative to Dinter implies that the
network can separate the inputs well. Separability is independent
of M.

The second measure is called the uniqueness, γ , that is defined
as the number of unique readout codes produced by the network
relative to maximum possible number of unique readout code.
This can be expressed as:

γ = #S

P
(15)

where #S refers to the total number of unique readout codes for a
given test set of size P. Uniqueness is dependent on M since high
dimensional readout codes generate more unique codes (Kanerva,
1988). The discriminability index (DI) is then computed as:

DI = ε ∗ γ (16)

High values of DI correspond to readout codes that are have a low
Dintra combined with high Dinter or high separability as well as a
high uniqueness. The maximum value of DI is 1.0 and its mini-
mum value is typically zero unless Dintra > Dinter . DI is dependent
on M since uniqueness is dependent on M (see Appendix for an
example calculation of DI).

SYNAPTIC DISTANCE COMPUTATION
In order to analyze for stability of learned codes, the synaptic dis-
tance was computed to track the synaptic changes between layers
of the network for excitatory synapses. Since the E-STDP plas-
ticity rule used in this paper is of the additive type, the resulting
distribution of synapses after learning is bimodal in nature (Song
et al., 2000). This bimodal distribution is due to competition that
occurs among synapses at each neuron. The synapses that cause
the post-synaptic neuron to fire more frequently will potentiate
to the maximum synaptic weight while the other uncorrelated
synapses will depress to a zero. To calculate the synaptic distance,
the synaptic weights wij are converted into a binary weight Wij

where Wij = 1 if (i.e., wij > 0.7∗gE
max) and Wij = 0 otherwise.

The synaptic distance φkl(t1, t2) between excitatory synapses from
layer k to layer l at time t1 with the same synapses at time t2 can
be expressed as:

φkl(t1, t2) =
∑#l

j = 1

∑#k
i = 1

∣∣Wij (t2) − Wij(t1)
∣∣

#k ∗ #l
(17)

where #k and #l correspond to the number of neurons in layer k
and l respectively and binary Wij(t) corresponds to the ith synapse
in the kth layer that is connected to the jth synapse in layer l at
time t. For example, #k = K for layer 1 and #l = N for layer
2 in the network. The synaptic distance is the total Hamming
distance between the binary weights at two different time steps
(t1, t2) where t2 > t1.

In addition to computing the synaptic distance, a shuffled
synaptic distance was computed as a control to compare the
synaptic weight changes during learning to those that could

arise from chance. This distance φ
shuffled
kl (t1, t2) between excita-

tory synapses from layer k to layer l at time t1 with the same

synapses at time t2 can be expressed as:

φ
shuffled
kl (t1, t2) =

∑#shuffles
k = 1

∑#l
j = 1

∑#k
i = 1

∣∣∣∣∣ W
shuffled
ij (t2)

−Wij(t1)

∣∣∣∣∣
#shuffles ∗ #k ∗ #l

(18)

where #shuffles is the total number of shuffles that W
shuffled
ij (t2)

undergoes at time t2. In all simulations, #shuffles = 10. By
combining the above two measures, a relative synaptic distance
measure φrel

kl (t1, t2) can be expressed as:

φrel
kl (t1, t2) =

∣∣φ (t1, t2) − φshuffled(t1, t2)
∣∣

φshuffled(t1, t2)
(19)

If φrel
kl (t1, t2) is closer to 1.0, then φkl(t1, t2) 
 φ

shuffled
kl (t1, t2) and

that implies that the distance between the synaptic weights at time
t1 and t2 is very small compared to chance. This implies that the
learning has stabilized in the network.

RESULTS
An initial training set was constructed composed of P = 15 flag
patterns (Figure 2C). The patterns are presented in random order
for a duration selected from an exponential distribution with
a mean of 30 ms. Each pattern generates a Poisson spike train
(Figure 2D) at the source neurons (see Materials and Methods).
These spikes generated by each pattern in the input layer are
transmitted to the E reservoir neurons in the middle layer for
further processing.

BALANCE OF EXCITATION AND INHIBITION DURING LEARNING OF
RECEPTIVE FIELDS
As the patterns are presented, STDP in both excitatory (w)
and inhibitory (z) synapses helps to achieve a good balance of
excitation and inhibition currents in the network (Figure 4A).
The synaptic weights w strengthens and creates an imbalance in
synaptic currents due to inputs from the source neurons. At the
same time the synaptic weights z gets rapidly potentiated due
to I-STDP where inhibition increases irrespective of the order
of occurrence of pre- and post-synaptic spikes for small timing
differences between pre- and post-synaptic spikes. This results
in a rapid compensatory increase in inhibitory currents into the
neurons effectively preventing the neurons from exceeding VT

more often (Vogels et al., 2011; Srinivasa and Jiang, 2013). Thus,
the network is provided with very brief windows of opportu-
nity to learn. These small windows of opportunity correspond
to the transients in the balanced current (i.e., brief excursions of
net currents above zero as shown by the top plot of Figure 4A).
The excitation due to the input pattern is sufficient to overcome
inhibition momentarily before inhibition and its modulation
via inhibitory plasticity compensates for any discrepancy in the
current balance.

As the training patterns are presented under the balanced cur-
rent regime, synapses between the source layer neurons and each
E neurons of the reservoir in layer 2 collectively form recep-
tive fields (Song et al., 2000; Srinivasa and Jiang, 2013). This
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FIGURE 4 | Robust learning of receptive fields requires a balanced

current regime. (A) The sub-plot on top shows the total excitatory
(green), and inhibitory (red) currents in the reservoir with I-STDP turned on.
The net current (blue) is close to zero with several minor transients from
zero. The average firing rate of the network is 20 Hz. If the I-STDP is
turned off and with fixed inhibitory synaptic conductance, as shown in the
second sub-plot, the total excitatory current is much higher than the total
inhibitory current resulting in an unbalanced network with a very high
average firing rate of 120 Hz. It may be possible to find a suitable synaptic
conductance to achieve a balanced network but the use of I-STDP enables
a self-organized process for achieving the balance. (B) The synapses
between source neurons and the E neurons of the reservoir form a

bimodal distribution where most of the synapses are weak with a few
strong synapses. This process makes the connectivity between source and
reservoir sparse compared its initial connectivity of 40%. Each box shows
the synapses in a 30 × 30 image format from the source neurons to each
of the 200 E neurons in the reservoir. The red dots within each box
correspond to synapses that are greater than 0.7∗gmax while the rest are
shown as green dots. Each box is a receptive field of an E neuron in the
reservoir and the set of all boxes forms a basis set for the training set.
(C) The receptive fields with I-STDP turned off are not well-defined as with
I-STDP being on. Many receptive fields are not formed at all while many
others are have features that do not reflect any structure found in the
input patterns.

is achieved by adjusting the strength of these synapses via E-
STDP. The red dots within a box (in Figure 4B) represent strong
synapses between source neurons and an E neuron in the reser-
voir after 1 h of training. This process of synaptic strengthening is
incremental and occurs using aggregates of input samples.

When the excitatory synapses alone obeyed the STDP rule and
the inhibitory synapses were fixed (i.e., z = const) the excitatory
and inhibitory currents are not balanced anymore (Figure 4A).
There were also many E neurons that had no strong synapses. The
strong synapses that emerge within each box (Figure 4B) appear
to have a vertical or horizontal stripe (or both) and resemble the
features of the input patterns in the training set. The learning
of the receptive fields is also influenced by recurrent connections
(i.e., E → E, and I → I) as well as mutual connections between the
E and I populations (i.e., E → I, I → E) within the reservoir. All
excitatory and inhibitory synapses within the reservoir are mod-
ified by E-STDP and I-STDP respectively. In order to assess the
effect of turning off I-STDP, the receptive fields were analyzed
after 1 h of training. Here the inhibitory weights z were randomly
initialized between 0 and 1 but fixed throughout the simulations.
The receptive fields did not have large variations in connectivity
compared to the case where I-STDP was on Figure 4C.

The connection strengths for synapses in the reservoir after
the presentation of the training set for duration of 1 h shows

that the synapses between any inhibitory pre-synaptic neuron and
either E or I post-synaptic neuron are mostly strong (Figure 5A)
and the synaptic strengths are distributed in a unimodal fash-
ion (Figure 5C). However, the E → E synapses between layer
1 and layer 2 are sparse with few strong synapses (∼5% of
all synapses). This discrepancy is primarily because E-STDP is
anti-symmetrical while I-STDP is symmetrical. In other words,
E-STDP is order dependent while I-STDP is not. Thus, I-STDP
can potentiate synapses for both proximal causal and anti-causal
spikes (Figure 1D). However, E-STDP will only potentiate the
synapses if the pre-synaptic spike is causal to the post-synaptic
spike. This implies that probability of potentiation is much higher
for inhibition compared to excitation thus resulting in a bimodal
distribution of synaptic strengths with many strong inhibitory
synapses.

The synapses between the E neurons in the reservoir and the
E neurons in the sink layer are also modified due to E-STDP
(Figure 5B). The E neurons in the sink layer serve as readout
neurons (Buonamano and Maass, 2009; Buzsáki, 2010). The dis-
tribution of synaptic strengths is unimodal (Figure 5C) unlike
other E → E synapses described above. This is because of the
following reason. Initially the strength of the synapses between
the reservoir and the readout neurons is small (i.e., between
0 and 0.2). The connectivity between them is also sparse (i.e.,
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FIGURE 5 | Synaptic states for the network after 1 h of training are

shown here. (A) The synaptic weights within the reservoir are shown here.
(B) The synapses between layer 2 and layer 3 are shown here. (C) The
distribution of synapses between the E neurons in layer 1 and layer 2 as well
as between E neurons within layer 2 is bimodal in nature. The distribution of

synapses between E and I neurons with other I neurons within layer 2 is
unimodal. The distribution for synapses between E neurons in layer 2 and E
neurons in the layer 3 is also unimodal (see text for details). It should be
noted that the weights in these plots are normalized with respect to gE

max and
gI

max as appropriate.

cEE
23 = 40%). Any given input at the source neurons causes a

sequence of spiking activity in the reservoir neurons that is sig-
naled to the readout neurons. This sequence of spiking activity
among the reservoir neurons is hereinafter referred to as a neural
trajectory.

Since the readout neurons are driven to fire by the reservoir
neurons and by no other means, the temporal causality for their
spiking is always from the reservoir neuron to the readout neu-
ron. This results in the strengthening of synapses allocated to a
readout unit (due to E-STDP). As the readout neurons fire in
response to neural trajectories in the reservoir, all the synapses
from the reservoir neurons to the readout neurons strengthen to
its max value resulting in a unimodal distribution (Figure 5C).
This is unlike the interaction between the source and reservoir
neurons or within reservoir neurons where the spiking activity is
driven by both feed-forward and lateral connections.

LEARNING TO DISCRIMINATE PATTERNS
In order to assess the pattern discrimination capability, the train-
ing set was presented to the network for a total of 3600 s (see
Materials and Methods). The firing rate of the readout neurons
was monitored after every 10 s of training to test the network’s
ability to discriminate the input patterns. At these time intervals,
plasticity was turned off and each input pattern was presented in
a random order for 5 s and the DI metric Equation (16) was com-
puted based on the activity of the readout neurons. The ternary
code from the readout codes was plotted for each input pattern
at regular intervals during the course of training (Figure 6A).
The readout code initially looks alike for all patterns since the
network has not really been exposed to all the patterns. As the net-
work is exposed to more training data, the readout codes begin to
show more variations. However, when the readout codes for an
input pattern at two different times are compared, they appear to
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FIGURE 6 | Firing rate codes and DI computation. (A) The firing rate codes
were extracted from the spiking activity of the readout neurons (assuming 8
readout neurons). These codes were compared between input patterns at
regular intervals during the training process. The inter-pattern readout codes
are constantly changing (compare top row of readout code corresponding to
input pattern #1) suggesting that the discrimination is very poor if readout
codes are compared in an absolute fashion. (B) A plot of separability and
uniqueness generated during the first hour of training with 15 input patterns
is shown here for the case with I-STDP turned on. The two metrics are
consistently high implying that the readout codes are highly separable as well

as very unique. (C) A plot of DI for the case when I-STDP is turned on (green)
compared to when it is turned off (red). This DI is computed by multiplying
the separability with uniqueness (see text for details). (D) The DI is plotted
against various number of readout neurons in the sink layer to assess the
minimum number of readout neurons required to achieve high discriminability
for two different sizes of training sets. While it is possible to achieve a
DI ∼0.8 for the 15 pattern case with only 5 readout neurons, higher number
of patterns require more readout neurons. Since the total number of input
patterns to be tested is 26 in this paper, a total of 8 readout neurons (or
M = 8) was assumed for all simulations.

change constantly throughout the duration of the training period.
This implies that a static template based discrimination algorithm
would not be appropriate here.

The separability and uniqueness were tracked during the first
hour of training (Figure 6B). Since the receptive fields form early
due to E-STDP in the balanced regime created by the regulatory
actions of I-STDP, good separability Equation (14) and unique-
ness Equation (15) occur early during the training process. The
DI Equation (16) thus rapidly rises to ∼0.8 (Figure 6C) imply-
ing very good discriminability. The DI is however highly unstable
and averages to ∼0.2 when I-STDP is turned off. This is because
the average firing rate of the network reaches 120 Hz (Figure 4A).
This high firing rate results in poorly formed receptive fields
(Figure 5B). This in turn results in very unstable separability and
low uniqueness (not shown). Thus, the discriminability is poor
and unstable (Figure 6C) when I-STDP is turned off.

The network size is potentially large enough to learn to dis-
criminate many more patterns than used in the training set.
However, the number of readout neurons was limited to the min-
imum required for obtaining good discriminability. To determine
the minimum number of readout neurons for the chosen size of
training set, the DI was averaged across 10 trials (Figure 6D) for
two different sizes of training set: one with 15 patterns and the
other with 26 patterns. While for the 16 pattern case, the DI rises
to a value close to 0.8 with just four readout neurons, the network
requires eight readout neurons to produce an average DI of ∼0.8.

When DI is computed using codes other than the ternary code
(see Materials and Methods), it was worse (Figure 7A). This was
unexpected since the number of possible states for the readout
neuron should grow (i.e., 38 states for ternary code vs. 58 for
quinary code) with number of states in the code. The main reason
for this unexpected result is because Dintra also grew at a faster rate
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FIGURE 7 | The effect of various network parameters on DI is shown

here. (A) The coding level C for the readout code was varied to assess
its effects on DI assuming M = 8. A coding level C = 2 (red)
corresponds to just two states (On or Off) for the readout neurons while
tertiary (green), quaternary (blue), and quinary (purple) codes correspond
to 3–5 states respectively. C = 3 (green) produced the best average DI
score. (B) Increasing the number of readout neurons M affects the DI.
The worst average DI was for M = 4 while the best average DI was

close for M = 8, 16, and 32. M = 8 was chosen for reasons mentioned
in Figure 6. Here a ternary code (C = 3) is assumed. (C) The effect of
increasing the lateral connectivity within the reservoir neurons does
improve the DI metric but the degree of improvement starts to diminish
with connectivity beyond 40%. Here M = 8 and C = 3 is assumed.
(D) The effect of increasing the connectivity between E neurons from
layer 2 to layer 3 results in only a marginal improvement in DI values.
Here M = 8 and C = 3 is assumed.

with higher code values compared to Dinter that grew at a slower
rate with higher code. Thus, the separability reduces with higher
code thus reducing DI.

When the number of readout neurons M was increased, the
DI does change (Figure 7B). The effect of connectivity on DI
was studied by tracking E → E connections within the reser-
voir in layer 2 as well as between layer 2 and layer 3. Adding
more connections within the reservoir (i.e., cEE

22 ) improved DI
(Figure 7C). Similarly, on average, the DI improved when the
number of connections between layer 2 and layer 3 (i.e., cEE

23 )
is increased (Figure 7D). All simulations primarily used C = 3,
M = 8 and with cEE

22 = 40% and cEE
23 = 30%.

IMPORTANCE OF LEARNED CONNECTIVITY AND FIRING RATE CODE
FOR DISCRIMINATION
In order to assess the effect of learned connectivity due to STDP
on the discrimination ability of the network, a set of control
experiments were performed. During each testing step (at a sam-
pling interval of 10 s) the connectivity between three layers of
the network was shuffled in six different ways while maintain-
ing both the synaptic strengths and the total number of synaptic
connections intact compared to the network with learned con-
nectivity (or the original network). In the first case, shuffling was

performed between connections between the source layer and the
E neurons of the reservoir only. This was accomplished by ran-
domly assigning pre-synaptic neurons from the source layer to
post-synaptic E neurons in the reservoir that were different from
the learned connections. In the second case, the learned con-
nections between neurons within the reservoir (irrespective of
whether they were E or I neurons) were randomly shuffled. In
the third case, only the connections from I neurons in reservoir
to all other connections (irrespective of whether they were E or
I neurons) were randomly shuffled. In the fourth case, only the
connections from E neurons in reservoir to all other connections
(irrespective of whether they were E or I neurons) were randomly
shuffled. In the fifth case the connections between the E neurons
in the reservoir and the E neurons in the output layer were ran-
domly shuffled. In the final case, shuffling was performed between
all the layers—that is a mixture of shuffling performed for first
through fifth cases.

For each of these cases, the DI was computed (after every
10 s for a period of 1 h) by averaging the score after random
shuffling 10 times in each case. The DI was worse for the first
case compared to the original network (Figure 8A). In this case,
swapping the connections between the E neurons in the source
layer and the E neurons in the reservoir results in disturbing the
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FIGURE 8 | The DI was computed with shuffled network connectivity

to assess the importance of the learned connectivity for pattern

discrimination. (A) The results from the six control experiments (B: layer
1 → 2 synapses shuffled shown in red; C: layer 2 (E or I) to layer 2 (E or
I) shown in blue; D—layer 2 (I) to layer 2 (E or I) shown in cyan; E—layer
2 (E) to layer 2 (E or I) shown in brown; F—layer 2 (E) to layer 3 (E)
shown in magenta; G—all these connections shuffled simultaneously) are
compared against the original network with learned connectivity (A) shown
in green. The DI scores represent an average obtained after shuffling 10
times for each control experiment. The plot shows that altering the
connectivity by shuffling the connections between layer 1 to E neurons in
layer 2 affects discriminability severely while shuffling connections within
layer 2 does not (see text for more details). (B) A control experiment was
also performed to assess the importance of the specific locations of the

firing activity within the readout code. This was achieved by first randomly
shuffling the components of the readout code 10 different times. The DI
scores were then computed for each case and then averaged. The results
shows that the DI score is much lower (red trace) compared to the
original network (green trace) suggesting that the locations of the firing
activity within the readout code caused due to learning is also very
important. (C) The average firing rate of the network for the various
control experiments in (A) is shown here. (D) The average firing rate for
the control experiment in (B) is shown here. The two firing rates overlap
completely (red and green overlap completely). This is because there is no
change in the connections between layer 2 and layer 3 neurons after STDP
potentiates all of them over time early within the first hour. Furthermore,
all connections go to its max value (i.e., unimodal distribution). So,
swapping the outputs does not make a difference to the firing rates.

learned receptive fields. This implies that the learned receptive
fields between the source layer E neurons and the E neurons in
the reservoir are very important for pattern discrimination in this
network. However, interestingly, the learned connections between
the neurons in the reservoir (the second through fourth cases) or
the connections between E neurons in the reservoir and the E neu-
rons in layer 3 (the fifth case) did not have a major effect in the DI
scores.

For the second through fourth cases, the effect of shuffling
the connections within the reservoir did not affect the DI score
very much irrespective of whether the connections were from E
or I neurons. The lateral connectivity between I → I or between
I → E neurons only serves to regulate the balance of currents.
Furthermore, all the synapses from I neurons are fully potentiated
(i.e., unimodal distribution as shown in Figure 5C). Similarly,
the most of the connections from E → I neurons are also fully
potentiated (Figure 5C) while most of the E → E connections are
weak (bimodal distribution as shown in Figure 5C). So swapping

connections between strong I connections (for the third case) or
between weak E → E or between strong E → I connections (for
the fourth case) does not seem to change the network perfor-
mance much as well. Since the second case is a combination of the
third and fourth cases, the result is similar. For the fifth case, the
connections between E neurons in the reservoir and the E neurons
in layer 3 become fully potentiated (Figure 5C). So, swapping
connections between strong E connections does not affect the DI
score. Since the sixth case includes the first case as a subset, the DI
score is severely affected much like in the first case.

The average firing rate of the network was initially most
affected for the third and sixth control experiments while the
first control experiment reduced the average firing rate of the
network (Figure 8C) relative to the original network. For the
third case, initially swapping the connections between I → I or
between I → E affects the current balance as the synapses have
not had the time to fully potentiate to its peak values. This in turn
can affect the firing rates by causing them to be high. However,
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as learning proceeds, the balance is restored due to I-STDP
causing these inhibitory synapses to become fully potentiated
(Figure 5C) and the firing rates fall as expected (Figure 8C).
Since the sixth case contains the third as a subset, it follows the
same trend as the third. For the first case, the firing rates fall
below the original network because swapping the connections
between the E neurons in the source layer and the E neurons
in the reservoir results in disturbing the learned receptive fields.
Thus, on average, the E neurons in the reservoir do not have good
matches with the input patterns because of the shuffling resulting
in lower average firing rates.

In order to assess the importance of location of the active
nodes in the firing rate code on the discrimination ability of the
network, another control experiment was performed. The fir-
ing rate code was shuffled by shifting the location of the active
nodes in the sink layer and this was repeated 10 times. Once every
10 s, the DI was computed with the shuffled firing rate code and
then averaged to produce a DI that was compared against the
DI generated by the original network. The shuffling of the active
nodes results in much lower DI compared to the original net-
work (Figure 8B). The firing rate of the network is unaltered by
shuffling (Figure 8D) because the connectivity from E neurons in
layer 2 to the E neurons in layer 3 has a unimodal distribution
(Figure 5C) with all synapses being fully potentiated and thus
being immune to the shuffling.

STABILITY OF LEARNING
The network was analyzed for stability of learning by studying the
change in DI as more inputs were presented after 1 h of training.

To test this, the duration of presentation of the inputs was dou-
bled from 1 to 2 h. During this time, the inputs were once again
sampled at random from the training set and presented for a
duration that was selected from an exponential distribution of
30 ms.

The readout codes for all patterns in the training set after 1 h
and after 2 h were compared. The ternary codes for each pattern
were compared and the codes do no match at all. This change
is partially explained by subtle changes in the receptive fields
(Figure 9A) compared to after 1 h (Figure 4A). The DI is very
stable and hovers around 0.8 (Figure 9B) throughout the extra
hour of training. To measure the change in synapses more pre-
cisely, the relative synaptic distance Equation (19) between layer
1 and layer 2 synapses after 1 and 2 h of training. This relative
distance φrel

12 (3600, t) was tracked once every 10 s from 1 to 2 h
(Figure 9C). The plot shows that the distance slowly changes dur-
ing the first hour and stabilizes to ∼0.6. This implies that the
synaptic weight changes in a more meaningful fashion compared
to changes due to pure chance. Furthermore, the rate of change
of the relative synaptic distance during the hour is slow and thus
implies a stable regime of synaptic adaptation.

The selectivity of the readout neurons to a subset of the reser-
voir neurons emerges from E-STDP based on pattern of firing in
the reservoir. Once the selectivity is established for the readout
neurons, it does not change very much during the second hour
of training. This is evident from the observation that the synap-
tic distance between the two layers does not change (Figure 5C)
and that all the synapses to readout neurons become fully poten-
tiated with a unimodal distribution of synaptic strengths. The

FIGURE 9 | The basis vectors and basis set learning after 2 h of training

on initial training data set. (A) The synapses between the source neurons
and each E neuron in the reservoir form receptive fields (similar to the ones
shown in Figure 4B) but slightly modified after 2 h of training compared to
after 1 h of training. (B) The DI is steady throughout the extra 1 h of training
hovering around 0.8. This implies that the learning has stabilized causing the

discriminability to be stable as well. (C) The relative synaptic distance
between E→E synapses from source layer neurons to the reservoir neurons
was compared to randomly shuffled synapses or synapses formed due to
chance. The slope of the distance trace slowly decreases suggesting stability
in learning while the final value of 0.6 suggests that the learning stabilizes the
network to a state that is far from chance (see text for further details).
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synaptic strengths between the reservoir neurons and the read-
out neurons are unimodal by the end of 1 h of training due to
E-STDP and continue to remain stable during the extra hour of
training. This is reflected in φrel

23 (3600, t) that is not defined since

the φ23(3600, t) = φ
shuffled
23 (3600, t) for all t after 3600 s. This is

because the synapses between the E neurons in the reservoir and
the E neurons in the sink layer do not change (Figure 5C) for rea-
sons explained earlier. This means that φrel

23 (3600, t) is not defined
for all t.

The lateral connectivity in the reservoir causes a state depen-
dent firing regime (Buonamano and Maass, 2009). To under-
stand this better for the proposed network, used a back-trace
approach was adopted as follows. The readout neurons that fired
with a maximum firing rate for a given input pattern were first
selected. The neurons back-trace to the reservoir from these
readout neurons were then identified. For example, the read-
out neurons #1 and #8 fired with a ternary code of 2 were first
selected. The synaptic connections between the reservoir neurons

are represented in the graph (Figure 10A after 1 h and Figure 10B
after 2 h). It should be noted that the strong connections between
the reservoir neurons only depict the anatomical or structural
aspect of the network. The resulting set of reservoir neurons
and their connections between each other and the two readout
units is referred to as a structural network. The strong connec-
tion between the E reservoir neurons are not necessarily unique to
the selected readout neurons since other readout neurons that are
active for other inputs may also be connected to some of the same
reservoir neurons found in the structural network. Similarly, the
readout neurons are not unique to the input pattern since the
code in the sink layer is distributed. This means that the same
readout neuron could fire as part of another readout code that
represents a different input pattern.

When the structural network is tracked temporally for the
duration of input presentation (i.e., for d = 1.4 s), the network
dynamics shows that a select subset of reservoir neurons fire in
a complex spatiotemporal sequence. A state transition graph can

FIGURE 10 | State-dependent computing in the network can be

observed by tracking activity within the reservoir layer. (A) The graph
showing the strength of the E→E synaptic connections between the
reservoir neurons that are connected to readout units #1 and #8 after 1 h
of training. These readout units are maximally active during the
presentation of pattern #5 for d = 1.4 s at the source neurons. The
normalized synaptic (obtained by dividing g by gmax ) strengths are
between 0 and 1. This set of network connections between reservoir
neurons is referred to as a structural network. (B) The structural network
for the same input pattern after 2 h of training is shown here. Synaptic
plasticity does alter the structural network as the learning progresses. (C)

The state transitions between the neurons in the graph are tracked and
plotted after 1 h of training to show the functional network in action
during the processing of input pattern #5. The functional network is
sparse compared to the structural network. The relative strengths of
transitions between reservoir neurons during the presentation of pattern
#5 for d = 1.4 s period can be assessed using the firing rates of the
reservoir neurons. The neurons #6, #28, #63, #75, #155, #157, and #177
all have higher relative firing rates than other reservoir neurons in the
graph. (D) The functional network after 2 h of training shows a functional
network has changed compared to the one after 1 h. Neurons #25, #31,
#145, and #150 are now the most active.
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be plotted from this firing sequence (Figure 10C). This graph is
referred to as the functional network that is very sparse when
compared to the structural network. After further training for
an additional hour, the functional network for the same pattern
changes (Figure 10D). Here the transition frequencies between
some of the neurons are somewhat reduced compared to the func-
tional network after 1 h. This implies that the network is able to
sharpen the neural trajectory further with training.

The state-transitions at the reservoir combined with stable
connections between the reservoir and output neurons means
that the ternary code at the readout neurons will change based
on these transitions in the reservoir. These changes in the neu-
ral trajectory cause the ternary code in the readout units to
be different even for identical inputs. This implies that repeat-
able readout neuron activity (in response to input patterns)
is not achievable in this network. However, the relative codes
between a pattern and the rest as computed by the DI are stable
(Figure 9B).

PLASTICITY TO NEW INPUTS AFTER INITIAL LEARNING
In order to study the capacity of the network to learn new inputs,
a second training set with new input patterns was added to the ini-
tial training data set (Figure 11A). The network that was trained
with the initial training data for 1 h was presented with the both
old and new inputs for an additional hour. The receptive fields
show slow adaptation to the new features while retaining features

from the old patterns as well (Figure 11B). For example, the
learned receptive for reservoir neuron #4 (fourth box from the
left on top row in Figure 11B) at the end of 2 h shows a diago-
nal set of synaptic connections that was absent after training the
network with the initial training set (Figure 4B). On the other
hand, the neuron #18 (third box from the right on the top row
in Figure 11B) remains very similar to the receptive field learned
after 1 h (Figure 4B).

The network was also studied for their ability to learn new pat-
terns when they were presented with only new patterns during
the second hour of training. This test was more stringent than
the first experiment above and provides a more precise picture
of the network’s ability to retain past information while learn-
ing new information. The changes in the receptive fields reflect
rapid re-learning with adaptations to features found in the new
inputs (Figure 11C) after 2 h of training compared to receptive
fields after training for 1 h with the initial training set (Figure 4B).
For example many of the receptive fields show diagonal and cir-
cular features. It is noteworthy that very few receptive fields now
reflect the initial training set.

The DI was computed for the above two cases of training.
When the network is presented with both old and new patterns
during the second hour of training, the DI was very stable relative
at ∼0.8 when tested on all the 26 patterns after 2 h of training rel-
ative to the first hour of training (the green trace in Figure 11D).
This implies that the network is able to discriminate both the old

FIGURE 11 | New training set data set and resulting receptive fields

formed due to learning for two different training regimes. (A) The new
training data set is composed of 11 new patterns not in the original data set.
These patterns were added to the original data set and then used for training
the network to test the ability of the network to learn new information
without forgetting old information. (B) The new receptive fields formed by
training for an additional hour with both old and new data after initial training
on the original data set for an hour is shown here. The new receptive fields
show newly learned features that incorporate features such as a diagonal line
(for example, neuron #4 and #18). (C) The new receptive fields formed by
training for an additional hour with only new data after initial training on the

original data set for an hour is shown here. The new receptive fields change
dramatically from the original set (see Figure 4B) with mostly features that
reflect the new patterns and very little from the old patterns. (D) The DI was
compared for the two training regimes. The DI was retained at a high value of
0.8 (green trace) when the network was exposed to both old and new
patterns in the second hour of training. The network however was found to
have a lower DI value of 0.62 (red trace) on average suggesting forgetting of
old information. However, the interesting aspect is that DI decreases
gradually suggesting that the network does not loose the ability to
discriminate between old patterns or between old and new patterns abruptly
or “catastrophically” but in a more graceful manner.
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FIGURE 12 | The readout codes generated by the network for two

different training regimes shows the network is plastic to new inputs

while also being stable to old information. (A) The readout codes

generated for the network when trained on all the 26 patterns during the
second hour of training. The testing was performed with all the 26 patterns.

(Continued)
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FIGURE 12 | Continued

The readout code is washed out in the beginning for the new patterns
but slowly is assimilated by the network generating a rich readout code
for all the 26 patterns after 2 h. The resulting DI is stable (as shown in
Figure 11) suggesting robust discrimination. (B) The readout codes
generated for the network when trained on only on the 11 new patterns
during the second hour of training. The testing was performed with all
the 26 patterns. The readout code is washed out in the beginning for
the new patterns but the network rapidly learns the new features
suggesting the highly plastic nature of the network. The readout code
starts to wash out for the 15 old patterns after 2 h. The resulting DI is

still strong enough (as shown in Figure 11) suggesting slow forgetting
of old information. (C) The relative synaptic distance between E → E
synapses from source layer neurons to the reservoir neurons was
compared to randomly shuffled synapses or synapses formed due to
chance for the two training regimes are shown. The slope of the
relative distance trace slowly decreases (green trace) for the case where
the old and new patterns are presented suggesting stability in learning.
However, the slope changes more dramatically (red trace) for the case
when the network is trained only on the new patterns. The final value
of 0.5 (old + new) and 0.2 (for new only) suggests that the learning
stabilizes the network to a state that is different from pure chance.

and new patterns after 2 h of training. In comparison, when the
network was trained only with new patterns, the DI falls to a lower
value of ∼0.6 (the red trace in Figure 11D). This implies that the
network is not as discriminatory as in the first case implying that
the network forgets. However, the network does not exhibit catas-
trophic forgetting (French, 1994). Catastrophic forgetting occurs
when the network abruptly (i.e., in a few time steps) and com-
pletely (i.e., with very poor discrimination) forgets previously
learned patterns in exchange for learning new patterns. Since the
DI only degrades from ∼0.8 after 1 h to ∼0.6 after an additional
hour of training only with new patterns, the network does not
abruptly forget the old patterns. This graceful and slow degrada-
tion in DI shows that the network gradually forgets previously
learned information but not catastrophically.

The readout codes for the two cases provide some more insight
into the network performance. The network begins at the same
starting point (i.e., after training with 15 patterns for 1 h). The
readout codes are very different for the two cases after 2 h. When
the network is trained with both old and new patterns, the read-
out code for the 26 patterns appears with much more variations
(Figure 12A) compared to the case when trained only with new
patterns. In the latter case, the network appears to have more
washed out codes for the old patterns compared to the new pat-
terns (Figure 12B). This confirms that the network forgets the old
patterns in the second case compared to the first case. This is to
be expected to some extent because the network is plastic and is
expected to learn the new inputs as it experiences that more than
the old patterns. However, it is noteworthy that the network does
not exhibit catastrophic forgetting as discussed above. This shows
that the network is able to assimilate the old information along
with the new information to create a new readout codes such that
the resulting DI is sufficient for discrimination between all pat-
terns (old and new) at least for some time (in this case for about
an hour). Understanding how this could be extended is a subject
for future study.

The relative synaptic distance φrel
12 (3600, t) was tracked once

every 10 s from 1 to 2 h between the receptive fields for the two
cases of training. The distance changes slowly for the case when
the network is presented with old and new patterns (the green
trace in Figure 12C). In comparison, the weight changes are far
more drastic (the red trace in Figure 12C). Here the rate of change
is steep implying that the network undergoes sharp changes dur-
ing the early learning phase in the second hour but then stabilizes
to a non-zero value. This implies that the network undergoes
synaptic changes due to learning driven by STDP based on new

training data as opposed to changes due to pure chance. The
synapses between the E neurons in the reservoir and the E neurons
in the sink layer do not change (similar to Figure 5C) for reasons
explained earlier. This means that φrel

23 (3600, t) is not defined for
all t.

In order to understand how this occurs, the lateral connectiv-
ity of the graph was analyzed. A pattern from the new data set
was selected for analysis (Figure 13) and presented to the source
neurons for d = 1.4 s. Since the first hour of training is based on
the initial training set, the network was never exposed to this new
pattern before. The readout neurons (#4 and #8) that fired maxi-
mally for the new pattern was identified and its structural network
was identified at the 1 h mark (Figure 13A).

The structural network selected by these two neurons changes
between 1 and 2 h when the network is trained with both old
and new patterns (Figure 13B). When the functional network was
extracted after the first hour of training, the network dynamics
shows that many reservoir neurons are accessed in a complex spa-
tiotemporal sequence (Figure 13C). This is because the network
attempts to process the unknown input pattern using as many
receptive fields as possible. Once the network is trained for an
hour more with both old and new patterns, the network is able
to readout using a relatively sparse neural trajectory (compare
Figures 13C,D). This is because the basis set adapts to incorpo-
rate new features in the new input pattern data set during the
second hour of training. This modifies the functional network
due to changes in firing rates of some neurons in the graph (see
in Figures 12C,D) as well as changes in the functional network.
The functional network for the case when trained only on new
patterns in the second hour is similar to Figure 12D except that
the spatiotemporal trajectories in the network are biased toward
the new inputs as opposed to the network that is exposed to both
the old and new patterns.

DISCUSSION
The interaction between E-STDP and I-STDP enables spiking
neuronal networks to learn to discriminate patterns in a self-
organized fashion. A hallmark of self-organizing systems is a
composition of relatively “dumb” units connected together and
constrained by “interaction dominant dynamics” (Ihlen and
Vereijken, 2010). In the case of the simulated network presented
here, the connection strength between neurons is always altered
by synaptic plasticity, effectively changing the network topology.
The structure of the network is tuned so as to enable uncorre-
lated neurons that are randomly connected to become correlated
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FIGURE 13 | State-dependent computing in the reservoir layer is

affected by new training data. (A) The structural network connected to
readout units #4 and #8 after 1 h of training. These readout units that are
maximally active during the presentation of the new pattern #26 for
d = 1.4 s. (B) The structural network for the combined training data of old
and new input patterns after 2 h of training is shown here. Synaptic
plasticity alters the structural network as expected. (C) The transitions

between E → E neurons in the reservoir after 1 h of training This
functional network shows firing activity at many more neurons and this is
manifested by the novelty of the new pattern that the network has never
processed before. (D) This functional network after 2 h of training is
sparser compared to the one shown after 1 h since the network is able to
learn the new pattern by adapting its receptive fields and generating new
readout codes that are more discriminatory.

in a balanced way so as to produce meaningful network-level
behavior.

Balance in the network is at the level of excitatory and
inhibitory currents. These currents are observed to balance each
other, leaving the resultant current near zero. In the present
model, changing synaptic conductance via STDP for inhibitory
and excitatory synapses helps achieve this balance. There are
other models (Vogels et al., 2011; Srinivasa and Jiang, 2013)
that also have explored the effects of interaction between these
two types of STDP for memory formation and stability but
have not explored the question of unsupervised discrimination
of patterns.

In a recent model, the synaptic efficacy via shot-term plas-
ticity (Klampfl and Maass, 2013) was used to achieve stable and
balanced networks but that work also did not look into unsuper-
vised pattern learning. In other biologically plausible networks,
synaptic connections can be created or destroyed also known as
structural plasticity (Leuner and Gould, 2010). But without that
option, plasticity is left as the only possible mechanism for change
within the network.

Networks without I-STDP fail to reach a balanced state for any
of a large set of possible parameters. It is not only a practical

matter that inhibitory STDP is required, but there are deep
connections to self-organizing systems as well. Self-organization
is usually the result of two opposing effects. In the strong cases,
these opposing effects are some mutually-referring function of
each other (Nicolis and Prigogine, 1977; Witten and Sander,
1981). Here, excitatory and inhibitory STDP play these roles,
and together produce various forms of compensatory feedback
(Luz and Shamir, 2012). It should be noted that the obtained
results are based on one of many possible I-STDP functions
found in the brain (Vogels et al., 2013) and not all of them
will necessarily result in a current balance. A recent article
explored the distinct I-STDP window shapes in tuning neuronal
responses (Kleberg et al., 2014). The exact role of each shape of
I-STDP function on brain function remains to be explored in
the future.

This memory trace or neural trajectories in the reservoir evolve
both in space and time (Rabinovich et al., 2008; Buonamano
and Maass, 2009; Buzsáki, 2010). It is known that discriminat-
ing between several trajectories requires complex mechanisms
with many dedicated readers (Jortner et al., 2007; Masquelier
et al., 2009; Buzsáki, 2010). Our approach proposes an algo-
rithm for computing DI that can help discriminate between input
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patterns but this is still not a biologically plausible mechanism.
Using the DI metric to probe network dynamics shows that the
proposed network can discriminate between patterns that form
complex neural trajectories. Furthermore, this discrimination is
not susceptible to catastrophic forgetting.

It should be noted the order of presentation of the input pat-
terns to the network at the source neurons provides different
contexts and changes the state-dependent firing patterns in the
network. This causes the ternary code in the readout units for
identical inputs to be different. However, the relative firing rate
code as computed by the DI metric is invariant to the order of
input pattern presentation (not shown).

The DI measure derived in this work is related to information
theory. Information theory informs us about the amount of infor-
mation a neural response (by sink layer neurons) carries about
the stimulus (source layer neurons). In this theory, information is
quantified using entropy measures. The DI measure captures the
amount of information about the stimulus in the neural response
and is thus closely associated to mutual information (Borst and
Theunissen, 1999). In the DI measure, separability is closely
linked to entropy measures. For example, Dinter is associated to
noise entropy since it provides a measure of variability in neural
response to the same input stimulus while Dintra is associated to
response entropy as it measures variability in neural response to
all the stimulus types presented to the network. Uniqueness on
the other hand is directly linked to response entropy as it mea-
sures the variations in all possible neural responses to all possible
stimulus conditions. This could be a useful future direction for
further investigation.

The network design proposed in this paper for unsupervised
discrimination has two key features that enable fault-tolerant
properties in a manner similar to our previous work on self-
supervised learning of spatiomotor transformations (Srinivasa
and Cho, 2012). The first feature is the reduction of number of
spiking neurons from layer 1 to layer 2 (i.e., K > N). This allows

the network to compress the input features into an encoding con-
sisting of a smaller subset of neurons in layer 2. The absence
of spiking activity from some input neurons can still be toler-
ated due to inputs from neighboring input neurons within the
reservoir. The second is the recurrent STDP connections between
neurons within layer 2. With this feature, the spiking activity due
to neighboring neurons within layer 2 enables STDP to eventu-
ally strengthen synapses between the neurons that receive inputs
from layer 1 and weaken those that do not receive any inputs
from neurons in layer 1. This feature might provide robust-
ness against the complete loss of spiking activity within neurons
because recurrent connections within the reservoir might enable
neurons that do not receive any feed-forward input from layer 1
to still propagate spiking activity to layer 3. Thus, the network
could exhibit tolerance to complete loss of spiking activity in the
input neurons.

It may be possible to extend the proposed architecture for
unsupervised discrimination to learn using supervisory labels.
Two possible mechanisms are briefly explored here. In the first
case, each readout neuron in layer 3 can be stimulated by an
externally provided spike train that corresponds to a label for
the input pattern presented in layer 1 (Figure 14A). Here each
readout neuron uniquely codes for one label thus requiring
as many readout neurons as labels. This external input can be
considered as the top-down (TD) input while the spikes from the
reservoir neurons to the readout neurons can be considered as
bottom-up (BU) inputs.

When an external label is available, it can cause TD stimulation
of the appropriate readout neuron even if there are no BU inputs
since it is assumed that these TD inputs are provided via very
strong synapses (reflected by thick green arrows in Figure 14A).
The TD inputs increase the inhibition to the readout neurons thus
creating network dynamics in the readout akin to a winner take-
all network. It should be noted that the inhibitory neurons in layer
3 is constantly stimulated by weak external spiking inputs (think

FIGURE 14 | Two plausible neural mechanisms to enable supervised

learning by extending the network architecture presented here.

(A) The first possibility is to replace the sink layer architecture of the
original network with a new one as shown here. Here each label (thick
green arrow) corresponds to each pattern that is to be classified. Black

lines represent excitatory synapses while red ones correspond to
inhibitory inputs. Green arrows represent excitatory inputs from external
sources. (B) The second possibility assumes a readout code that is
more distributed (more than one thick green arrow—see text for more
details).
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arrow to the red circle in Figure 14A). When the readout neu-
rons are stimulated by both BU and TD inputs, the synapses from
the reservoir neurons to the readout neurons could be strength-
ened due to E-STDP. At a later time, if the label is removed, the
readout neurons can generate peak activity in the readout neu-
ron corresponding to the correct label. But as observed before,
the readout codes change slowly and constantly due to plasticity
in the reservoir. This can result in misclassification errors. These
errors can however be fixed by periodically providing the cor-
rect labels that can trigger STDP based learning to quickly correct
the mistakes by retuning the synapses from the reservoir to the
readout neurons.

In the second case, the readout neurons could represent a dis-
tributed code (Figure 14B). In this case, the joint spiking activity
of the entire population of readout neurons represents a label
for each input. This network can also be trained via labels at
the appropriate readout neurons as described above and the
learning process due to BU and TD stimulation of the read-
out neurons can cause the readout neurons to generate correct
answers even when the teaching labels are removed. This network
is however also susceptible to constant forgetting thus requir-
ing periodic stimulation by the external supervisory sources to
correct the mistakes made by the readout neurons in classifying
input patterns.

The functional network response of the network to inputs
via neural trajectories in the reservoir indicates the use of a dis-
tributed code with many reservoir neurons being activated during
the input presentation. Normally the relative firing rates between
reservoir neurons (i.e., the number of times a neurons fires rel-
ative to other neurons in the reservoir) is not high. However,
in some cases a single neuron in the reservoir may exhibit a
high relative firing rate. Thus, some neurons in the reservoir can
encode for the entire input in some cases while at the same time
require neural trajectories to encode other inputs. This flexibil-
ity is a hallmark of neural systems where single neurons (also
known as grandmother cells) are known to encode for objects
(Perrett et al., 1982; Rolls, 1984; Yamane et al., 1988; Quiroga
et al., 2005) while there are other concepts that require distributed
codes with complex neural trajectories (Rabinovich et al., 2008;
Buzsáki, 2010).

The most interesting aspect of our network is that it is able
to discriminate between old patterns already presented in an ini-
tial training session while also adapting to new patterns without
losing its ability to discriminate among old patterns. The learned
connectivity especially between the source layer neurons and the
E neurons in the reservoir appears to be critical for this capa-
bility as exemplified from the control experiments. The ternary
code appears to produce the highest DI metric compared to other
codes since the inter-pattern distance is the lowest for the ternary
code compared to the case with other codes. The network does
not exhibit catastrophic forgetting and is more robust if exposed
to old patterns occasionally during the learning of new patterns.
Incorporating the means to achieve a homeostatic balance due
to an interaction between inhibitory and excitatory STDP in all
these networks may well enable self-organized discrimination of
patterns while exhibiting the requisite dynamics to address the
stability vs. plasticity dilemma.
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APPENDIX
EXAMPLES FOR DI COMPUTATION
Let us assume that the coding level C = 3 for both the examples
below and further let us assume that there are two readout units
in the sink layer of the network. This allows us to visualize the
readout codes in 2-D for simplicity. This analysis however readily
extends to other coding levels.

Example 1: Assume that there two test patterns (P = 2) and
each of them is presented 10 times resulting in 10 readout codes
for each test pattern as follows: S1 = {(0, 1); (0, 1); (0, 1); (0, 1);
(1, 0); (1, 1); (1, 1); (0, 1); (0, 1); (0, 1); (0, 1)} and S2 = {(1,
0); (1, 0); (0, 0); (0, 0); (1, 0); (1, 0); (0, 0); (1, 0); (0, 0); (1, 0)}.
Since there are two patterns and C = 2, there are four possible
readout codes in general (Figure A1A). But based on S1 and S2,
the two readout codes cluster around (0, 1) for p = 1 and (1, 0)
for p = 2.

The various values for DI can be computed as follows.
Using Equation (10) and the readout code S1, Dientra,1 =
6∗4/(10∗9/2) = 24M/45 and Dintra,2 = 8∗2/(10∗9/2) =
16M/45; thus the average Dintra = 20M/45. Since the read-
out codes cluster around (0, 1) and (1, 0) for the two test
patterns, Dinter = 2M. Using these Dinter and Dintra, separabil-
ity can be computed as ε = 1 − 10/45 = 35/45. Since there
are two unique codes for the two test patterns, uniqueness
γ = 1. Thus, the discriminability index for this example will
be DI = 35/45 = 0.78.

Example 2: Assume that there are four test patterns (P = 4)
and each of them is presented 10 times resulting in 10 readout
codes for each test pattern as follows: S1 = {(2, 1); (2, 1); (2, 1);
(2, 1); (2, 1); (1, 1); (1, 1); (2, 1); (2, 1); (2, 1); (2, 1)}, S2 = {(2, 1);
(2, 1); (2, 0); (2, 0); (2, 1); (2, 0); (2, 1); (2, 1); (2, 1); (2, 1)}, S3 =
{(1, 0); (1, 0); (0, 0); (0, 0); (1, 0); (1, 0); (0, 0); (1, 0); (0, 0); (1, 0)},
S4 = {(1, 0); (1, 0); (1, 1); (1, 0); (1, 0); (1, 1); (1, 0); (1, 0); (1, 1);
(1, 0)}. This scenario can be visualized using four possible read-
out codes in general (Figure A1B). Based on four readout codes,
they cluster around (2, 1) for p = 1, 2 and (1, 0) for p = 3, 4.

The various values for DI can be computed as follows. Using
Equation (10) and the readout code S1, Dintra,1 = 16M/45,

Dintra,2 = 21M/45, Dintra,3 = 24M/45, Dintra,4 = 21M/45.

Thus, the average Dintra can be computed as 41M/90. Since the
readout codes cluster around (0, 1) and (1, 0) for the four test pat-
terns, the Dinter = 2∗2∗M/(4∗3/2) = 2M/3. Using these Dinter

and Dintra, separability can be calculated as ε = 1 − 41/60 =
19/60. Since there are only two unique codes for the four test
patterns, uniqueness γ = 1/2. Thus, DI for this example will be
DI = (19/60)∗(1/2) = 0.16. This is lower compared to Example
1 since the four patterns are less separable compared to the two
test pattern case and the readout codes are also not unique enough
compared to Example 1.

These examples illustrate the basics of how the DI is computed
and can be readily extended to deal with networks that have larger
M and are coded with different coding levels.

FIGURE A1 | The details of DI computation for two different

examples are shown here. (A) The readout code for the first
example uses M = 2 and C = 2 as visualized here. Each node
represents one of four possible states. There are a total of input

patterns (P = 2) for this example. (B) The readout code for the
second example uses M = 2 but C = 3 as visualized here. Each
node represents one of 9 possible states. There are a total of 4
input patterns (P = 4) for this example.
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