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Learning under uncertainty is a common task that people face in their daily life. This
process relies on the cognitive ability to adjust behavior to environmental demands.
Although the biological underpinnings of those cognitive processes have been extensively
studied, there has been little work in formal models seeking to capture the fundamental
dynamic of learning under uncertainty. In the present work, we aimed to understand
the basic cognitive mechanisms of outcome processing involved in decisions under
uncertainty and to evaluate the relevance of previous experiences in enhancing learning
processes within such uncertain context. We propose a formal model that emulates
the behavior of people playing a well established paradigm (Iowa Gambling Task - IGT)
and compare its outcome with a behavioral experiment. We further explored whether it
was possible to emulate maladaptive behavior observed in clinical samples by modifying
the model parameter which controls the update of expected outcomes distributions.
Results showed that the performance of the model resembles the observed participant
performance as well as IGT performance by healthy subjects described in the literature.
Interestingly, the model converges faster than some subjects on the decks with higher
net expected outcome. Furthermore, the modified version of the model replicated the
trend observed in clinical samples performing the task. We argue that the basic cognitive
component underlying learning under uncertainty can be represented as a differential
equation that considers the outcomes of previous decisions for guiding the agent to an
adaptive strategy.

Keywords: Iowa gambling task, uncertainty, decision making, stochastic, learning, categorization, dynamic

landscape, conceptual network

1. INTRODUCTION
Uncertainty is related to the probabilities of receiving outcomes
and the evaluation of the obtained results (Hsu et al., 2005).
Whereas the probabilities of getting heads and tails when tossing a
coin are known, the actual result of a specific trial is highly uncer-
tain (Jaynes and Bretthorst, 2003). Furthermore, we are often
presented with different options for which we have no cues or
associations regarding their true probabilities. Within such con-
texts, learning by experience is a crucial process for adapting our
behavior and performing decisions successfully (Rangel et al.,
2008; Gluth et al., 2013).

A widely used experimental task for observing decision mak-
ing under uncertainty in both healthy and clinical populations is
the Iowa Gambling Task (IGT) (Bechara et al., 1994). The IGT is
an experimental paradigm that seeks to emulate real-life decision

making under uncertainty (Bechara et al., 1994). In this task, sub-
jects have to choose one card at a time from one of four decks
presented (decks A, B, C, and D), knowing only that they will
gain money with every selection, and that sometimes a loss could
follow the gain. They are instructed to maximize their winnings.
Participants have to learn the magnitudes of the winning as well
as the probabilities and magnitudes associated to the losses by
trial and error. Unknown to participants, two of the four decks
are more rewarding in the long term (C and D), presenting lower
magnitude of winnings but also lower losses, resulting in higher
net winnings.

Successful performance on the IGT is associated with func-
tional outcome–monitoring processes, error detection, executive
functions and the usage of previous information for future deci-
sions (Hooper et al., 2004; Turnbull et al., 2005; Weller et al.,
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2009). The learning mechanism of the IGT requires the activity
of a complex decision making circuitry, which includes the dor-
solateral prefrontal cortex (dlPFC), the insula, anterior and pos-
terior cingulate cortex (ACC and PCC respectively), orbitofrontal
(OFC) and ventromedial prefrontal cortex (vmPFC), striatum,
and amygdala (Li et al., 2010). The cognitive activity of this cir-
cuitry involves working memory processes, the representation of
emotional states about the outcomes (particularly in the case of
the punishments), and action planning derived from the moni-
toring processes (Martinez-Selva et al., 2006; Li et al., 2010). Thus,
people’s ability to adapt their behavior within uncertain contexts
is thought to rely on the normal functioning of the different
components of this network.

The Somatic Marker Hypothesis (SMH) provides a cognitive
framework for understanding how the aforementioned structures
and functions work in situations of high uncertainty, allow-
ing people to perform according to long-term goals (Bechara
et al., 1994, 1996; Martinez-Selva et al., 2006). The SMH pro-
poses that somatic states triggered by emotional responses are
crucial for understanding the underlying cognitive processes
involved in learning within uncertain environments (e.g., out-
come feedback). These somatic responses occurring after a given
outcome feedback will act as anticipatory responses in order
to avoid unwanted options based upon previous experiences
(Bechara et al., 1994, 1996; Martinez-Selva et al., 2006). Whereas
the amygdala is the responsible for these automatic emotional
responses triggered by feedback information, prefrontal struc-
tures play an important role in triggering somatic states evoked
by memories and knowledge in order to adapt behavior toward
beneficial strategies (e.g., remembering that a given strategy was
ineffective in the past) (Bechara, 2005). Thus, the basic pro-
cesses of decision making under uncertainty require emotional
responses triggered by feedback (amydgala activity) and high-
level cognitive processes such as working memory (prefrontal
activity) that bring online knowledge for the deliberation of
decisions.

Impaired behavior in the IGT has been related to a lack of
emotional anticipatory responses associated with risky decisions
and is congruent with subjects’ impaired adaptive behavior in
other contexts, likely due to damage to vmPFC/OFC areas. Unlike
healthy participants, subjects with damage in vmPFC/OFC areas
performing the IGT choose significantly more from the disad-
vantageous decks than the advantageous ones. This impairment
is believed to be specific to those areas because patients with
prefrontal lesions, which differ from vmPFC/OFC lesions, per-
form well in the task (Bechara et al., 1998; Anderson et al., 1999;
Bechara and Damasio, 2002; Bechara, 2003, 2004; Bechara and
Martin, 2004; Fellows, 2004). vmPFC/OFC patients may not dis-
play anticipatory somatic responses while performing the task
and therefore do not receive psycho-somatic feedback about their
risky decisions, making them more susceptible to being lured
by the higher reward magnitudes associated with the disadvan-
tageous decks (Bechara et al., 1996). In fact, such anticipatory
responses have been correlated with good performance in sim-
ilar gambling tasks (Carter and Smith Pasqualini, 2004; Crone
et al., 2004), supporting this interpretation. Therefore, the evi-
dence suggests that subjects with damage in the vmPFC/OFC

areas are insensitive to future consequences of their decisions
(Bechara et al., 2000a,b).

Within the context of decision making under uncertainty the
function of both vmPFC and OFC is also associated with con-
trolling impulsive and automatic behavior (Berlin et al., 2004;
Bechara, 2005; Boes et al., 2009). In the IGT, participants must
learn over time to inhibit the temptation of higher immediate
rewards (certain result) by learning to avoid higher punishments
(uncertain result). Thus, the impairment of cognitive functions
related to the integration of previous experiences may lead sub-
jects to prioritize immediate feedback rather than longer-term
profitability (Rescorla, 1997). Previous studies (Rescorla, 1997;
Berlin et al., 2004; Bechara, 2005; Martinez-Selva et al., 2006;
Boes et al., 2009) showed the importance of the integrating previ-
ous emotional experiences and controlling impulsive responses
in the learning process within uncertain environments. In line
with this previous work, psychiatric populations with symptoms
of impulsivity and anxiety exhibit impaired performance on the
IGT. For example, patients with substance use disorders have
shown significantly lower performances on the IGT compared
with healthy participants (for a review see Buelow and Suhr,
2009). Interestingly, these findings are converging with animal
studies using adapted versions of the IGT (Pais-Vieira et al., 2007;
de Visser et al., 2011). Rats with lesions in the OFC showed
persistence in choices associated with higher magnitude but low
probability rewards, which authors have interpreted as indicative
of disrupted risk assessment (Pais-Vieira et al., 2007).

In the present work, we aim to understand the basic cog-
nitive mechanisms of outcome processing involved in decisions
under uncertainty by evaluating the relevance of previous expe-
riences in enhancing learning processes. In order to do this, we
propose a dynamical model that emulates the features of learning-
by-experience processes that we compare with IGT performance
in a sample of healthy subjects. There are antecedents of mod-
els using different parameters in order to emulate normal and
biased behavior in the IGT. For instance, the Expectancy Valence
Model (EV) (Busemeyer and Stout, 2002) modulates IGT per-
formances through three parameters related to the weighting of
losses and rewards, the influence of past experiences and a con-
sistency parameter which determines the amount of exploration
vs. exploitation (Steingroever et al., 2013). A recent study of this
model modulating its parameters within a given range of vari-
ability showed that its main choice pattern is the selection of
convenient decks over the bad ones, but that in the second place
the choice pattern present in the model is the election of bad decks
over good ones (Steingroever et al., 2013). The Prospect Valence
Learning Model (PVL) (Ahn et al., 2008) is another model
that includes the prospect utility function from prospect theory
(Tversky and Kahneman, 1992) in two parameters. The parame-
ter A determines the shape of the utility function and parameter
w determines the loss aversion. Thus, if A is close to 0 the utility
function can approaches a step function which involves that given
a positive or negative net outcome all utilities become similar, but
if A approaches 1 then the subjective utility increases/decreases
in proportion to the net outcome (Steingroever et al., 2013).
Another difference between this model and the EV is that in this
model on every trial the utilities of every deck are updated. The
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modulation of this model’s parameters has shown that its main
choice patter is the election of good vs. bad decks in the IGT (the
same than model EV), and also the election of infrequent-losses
decks (B y D) over decks with frequent losses (A y C). There
is combination of these models (EV-PU model) which uses the
utility function of the PVL model, but maintains the rest of the
parameters of the EV model. The EV-PU shows a similar pattern
of choices than the PVL model (Steingroever et al., 2013).

The model that we propose is a discrete version of a stochastic
differential equation (Fuentes and Miguel, 2013), which considers
the probability of success given previous outcomes, the stochastic
nature of the task, and errors on information computation. This
model updates the weight of each deck as a function of the pos-
itive minus negative feedback (the deck net value), and then all
probabilities are normalized using the new values based on the
previous results (see Equation 2 below). Thus, the model weights
equally rewards and losses, in a simpler way than the EV and
PVL model do. However, given the normalization of each deck
probabilities based upon the new value of the chosen deck, then
all probabilities are updated as in the PLV model (see Equation
3, below). Our model includes also a parameter that determines
the rate of exploration (e), if it gets close to zero then there is
absence of exploration (and the first choices will determine the
entire decision process), and if gets close to 1 then the choice pat-
tern is random. For the simulations that we ran this parameter
value was 0.2, and similar results are found using similar values.

Additionally, we modulate the parameter responsible for out-
come processing to create a second condition where we contrast
whether this manipulation is sufficient to emulate a maladaptive
bias behavior that has been observed in clinical populations. This
modification is based upon the evidence that relates impairment
performances in the IGT to a lack of impulsive behavior control
and poor integration of negative past experiences (Bechara et al.,
1994; Turnbull et al., 2005; Li et al., 2010). By doing so, we can
observe, firstly, the basic computational mechanisms of learning
within uncertain environment, and secondly, the accuracy of the
model for simulating decision-making under uncertainty.

We hypothesize that the cognitive dynamics governing strategy
deployment in the IGT can be captured by a parsimonious model
including a parameter representing deck-choosing-probability
that is updated on a trial-by-trial basis with positive and nega-
tive outcome information. If this assumption stands, we predict
that the model will emulate the behavior deployed by samples of
healthy participants completing the IGT. Specifically, the model
will resemble the behavioral dataset of the IGT. Conversely, the
model version based on the equation that guides decisions using
just information of positive but not negative feedback will mis-
guide the agent toward an inconvenient strategy resembling the
behavior described in clinical populations.

2. STOCHASTIC MODEL
The formal model proposed here considers a discrete dynamics
inspired by a recently introduced stochastic dynamics (Fuentes
and Miguel, 2013).

In order to take into account the four different deck options,
or positions: k = A, B, C, D, of the subject completing the IGT,
we will propose a variation of the previous mentioned model,

suitable for the present case. The dynamics of the model can be
arranged in the following way: given the deck position at time t,
the chosen deck at time t + 1, say the deck k, will be the one that
satisfy the following equation

k / max[Pk(t) − Pi(t) + ξk(t)] ∀ i = A, B, C, D. (1)

meaning that the chosen deck at time t + 1 will be the one that
maximizes this stochastic gradient-type dynamic for the proba-
bility. Notice that the same gradient dynamic was present in the
previous mentioned continuous case (Fuentes and Miguel, 2013).
Here ξk(t) is a Gaussian white noise of zero mean and delta cor-
related, i.e., < ξk(t)ξk(t′) >= εδ(t − t′), ε is the intensity of the
noise, that models the agent’s uncertainty at each election (we
have used ε = 0.2 in all simulations). Pk(t) and Pi(t) are the prob-
abilities of being in the decks k or i (calculated from the visiting
frequency, i.e., the number of times each deck was chosen).

Because at each time only one of the four possibilities is
selected, the associated probability evolves using these occupan-
cies. If the agent receives at each time a positive feedback along
with a possible negative feedback, denoted by α(t), then the prob-
ability at that position will increase or diminish proportionally to
that information. In the case of a normal agent, α(t) will be equal
to the sum of the gain and the punishment, (g, l) in Table 1 below,
while in the case of maladaptive behavior only the gain will be
considered. In general, this is represented by

Pi(t + 1) = ci(t)
∑4

j = 1 cj(t)
, (2)

where ci is the aggregate of all the times the position i was visited

ci(t) =
∑

t = 1

α(t) if ci(t) ≥ 0 ; or ci(t) = 0 if
∑

t = 1

α(t) < 0 . (3)

Therefore, if at time t the deck i was chosen then ci(t) will be
the value solely associated with the gain or with the value associ-
ated with the gain minus the loss; obviously, if at time t the deck
i was not chosen ci(t) = 0. The condition (3) shows clearly, by
definition, that ci(t) ≥ 0.

Then, the probabilities will be updated as showed in Equations
(2) and (3). Note that α(t) accounts for the positive of negative
feedback obtained when certain deck is chosen and constitutes
the substantial factor for updating the probability assigned to that
deck after choosing it. So, we can manage that factor to adjust
different ways of changing the updating for different individu-
als. If α(t) takes into account both gains and losses (considering
equally gain and losses), the resulting update models the normal
expected behavior for an individual, and if takes into account only
the gains, or the gains weights more than the losses, we expect
the model will emulate a choice pattern observed in pathological
behavior (maladaptive condition). Therefore, α(t) is the input for
obtaining ci(t), the sum of all historical feedbacks gained for the
deck along the whole trial. Then, the way that α(t) contribute to
ci(t) makes de difference, being α(t) the parameter to be adjusted
for modeling different kind of behavior.
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Table 1 | Distribution of positive (gain, g) and negative (punishment, l) feedback in the IGT.

Deck (g1, l1) (g2, l2) (g3, l3) (g4, l4) (g5, l5) (g6, l6) (g7, l7) (g8, l8) (g9, l9) (g10, l10)

A (1, 0) (1, 0) (1, 0) (1, 0) (1, −12.5) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)

B (1, 0) (1, −2.5) (1, 0) (1, −2.5) (1, 0) (1, −2.5) (1, 0) (1, −2.5) (1, 0) (1, −2.5)

C (0.5, 0) (0.5, −0.5) (0.5, 0) (0.5, −0.5) (0.5, 0) (0.5, −0.5) (0.5, 0) (0.5, −0.5) (0.5, 0) (0.5, −0.5)

D (0.5, 0) (0.5, 0) (0.5, 0) (0.5, 0) (0.5, −2.5) (0.5, 0) (0.5, 0) (0.5, 0) (0.5, 0) (0.5, 0)

Note that distributions of reward and punishment are identical as in the original task, where net values per 10 cards in decks A and B is –2.5, whereas for deck C

and D is 2.5.

3. MATERIALS AND METHODS
This study consists in a behavioral experiment of the IGT in a
sample of normal subjects and a computational simulation con-
sisting of three conditions. First, we tested the stochastic model
on the IGT version used in the behavioral experiment (Lavin
et al., 2014). Secondly, we modified the model while keeping the
same IGT condition to simulate biased decision-making patterns
observed in clinical (Anderson et al., 1999; Bechara and Damasio,
2002; Bechara, 2003, 2004; Bechara and Martin, 2004; Fellows,
2004) and psychiatric samples (Buelow and Suhr, 2009). Third,
we ran a control simulation on a modified version of the IGT,
where the distribution of positive and negative feedback were
equal for the four decks.

3.1. EXPERIMENTAL TASK
We used a modified version of the IGT for both the simulation
and the behavioral experiments. The underlying distribution of
rewards and punishments was maintained from the original IGT
(Bechara et al., 1994), with small changes in the monetary quanti-
ties of the feedback. The task consists of an iterated card selection
from four virtual decks (named A, B, C, and D respectively) with
different distributions of winnings and losses. Decks A and B
always presented a reward of $100. In addition, deck A had a pun-
ishment of $250 with 0.5 probability, B had a punishment $1250
with 0.1 probability. Both decks had a net value (NV) of $250 per
10 card selections. The modification of the traditional version of
the IGT involved the standardization of deck A’s punishment to
$250, whereas in the original version it fluctuated between $150
and $350. This change did not affect the NV, which remained
the same. This was done in order to exclude possible effects pro-
duced by the novelty of having different feedback magnitudes in
each trial of the same deck. Decks C and D always presented a
reward of $50. Whereas deck C had cards with a punishment of
$50 with a 0.5 probability, the D deck cards punished with $250
with 0.1 probability. Both decks had a net value of $250, being
the advantageous options for participants. The values of punish-
ing cards in deck C were changed in the same way than the deck
A and for the same reasons. Again the NV was maintained as in
the original IGT.

3.2. SIMULATION
As described above, the simulation was run for three different
conditions. The first condition replicated the task used in the
normal group of subjects. We tested the model using the same
version of the IGT as in the behavioral experiment. Thus, the
model sought to emulate the scenario that our sample faced in

order to compare the learning-by-experience process observed
in healthy subjects. In the second condition we modified the
outcome processing of the model in order to bias its decision-
making. The modification consisted of the processing of each
desk’s payoffs to be based on a constant punishment value. This
modification was done in order to emulate the cognitive dam-
age observed in patients with absence of anticipatory somatic
responses. This damage, associated with the vmPFC, is thought
to represent the neural correlates for the inability of updating loss
probability in order to avoid risky decisions (Bechara et al., 1994;
Martinez-Selva et al., 2006). Given that the inconvenient decks
present higher winnings but also higher losses, these patients
are unable to use contextual information in order to adapt their
behavior. Thus, we sought to determine whether the simulation
replicates the behavior of patients who are unable to learn from
task contingencies.

The third condition measured the model’s performance in a
version of IGT with identical payoffs for all decks. This control
condition replicated the context of the IGT (a series of selections
over four decks), but included an equal distribution of positive
and negative feedback across the four decks. This modification
was made in order to observe the model’s distribution of choices
within a decision-making context where there were no incentives
to bias the decision toward any of the decks. In other words, there
was nothing to learn for the model. This control condition was
thought to verify that the final card selection pattern arose as an
interaction between the selection strategy of the system, in this
case, the model, and the underlying distribution of rewards and
punishments present in the four decks. This underlying distribu-
tion represents the environment where the system is exerting its
choices and represents the source of feedback for such choices.

All simulations were performed using Wolfram Mathematica
8.0 and its functions (e.g., random functions). Each deck of cards
was arranged in a series of ten cards. Each condition of the
model ran for 200 trials and 10 iterations, representing 10 subjects
playing an IGT version with 200 trials.

3.3. BEHAVIORAL EXPERIMENT
The experimental procedure is reported in Lavin et al. (2014).
10 healthy participants (5 women) performed an adaptation of
the IGT (Bechara et al., 1994). Similar to the original IGT, sub-
jects started with a virtual loan of $2000. They were told that the
game consisted in a long set of card selections, one card at a time.
Subjects were asked to pick one card from four virtual decks (A, B,
C, and D). They were instructed that cards from each deck always
involved a standard winning amount (following card selection
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and varying across decks) and that sometimes they may receive
a punishment (appearing after the positive feedback, and vary-
ing across decks) mixed in with the winning cards. Participants
had 5 s to select a card from one of the four decks. If they did
not choose any card then the trial was repeated. After selection of
the card, positive feedback was presented for 3 s and occasionally
followed by negative feedback presentation for 3 s.

Participants played two series of 100 trials each with a 5 min
break between them. The instructions were preserved from the
original IGT, where participants were told that the goal of the
game was to maximize their winnings, and they were free to
switch from one deck to another at any time. Subjects were not
told about the probability and magnitude distribution over the
decks or how many trials they had to play. They were told that
there was a base payment of e15 for their participation, followed
by a bonus based on their performance. However, all the subjects
were equally rewarded with e25 regardless of their performance
at the end of the experiment. Information about the payoffs was
provided to the subjects after the experiment.

4. RESULTS
4.1. BEHAVIORAL EXPERIMENT
Results of the behavioral experiment were reported in Lavin et al.
(2014). The temporal evolution of subjects’ choices were pooled
in 50 trials’ bins (which we call blocks) out of the total of 200
trails. Briefly, we submitted the data to a Two-Way ANOVA, with
time (blocks) and deck as factors. We found a main effect of
deck [F(3, 144) = 4.73, p < 0.05] as well as a significant interac-
tion between time and deck [F(9, 144) = 3.4, p < 0.001], which
was interpreted as a sign of learning because participants’ choices
depended on how long they were performing the task. The inter-
action between time (blocks) and deck selection shows that deck
C was progressively the most selected by subjects, whereas deck B
started as the most popular but selection from this deck decreased
toward the end of the task (see Figure 1). Since the IGT structure
comprises two advantageous decks (C and D) and two disad-
vantageous ones (A and B), task learning is expressed when
subjects increasingly select from the advantageous decks over
the disadvantageous ones as the task progresses (Bechara et al.,
1994). Subjects’ preference toward deck C suggests that partici-
pants indeed pursued a strategy to maximize their benefits from
the task. We confirmed this observation by performing post-hoc
paired t-test between the frequency of selections in the first and
last bins of the task for decks B and C. We found that deck B was
chosen significantly more by subjects in the first 50 trials than
in the last 50 selections (paired t-test (9) = 3.1540, p < 0.01).
In contrast, deck C was chosen significantly more often toward
the end of the task compared to the first bin (paired t-test (9) =
2.9198, p < 0.01; see Figure 1).

4.2. IN SILICO EXPERIMENTS
4.2.1. Emulating the IGT, adaptative bias.
We started by emulating the IGT administered to healthy par-
ticipants. The model was used to instantiate an experiment of
200 trials where the distributions of positive and negative feed-
back for the decks were identical as to the original version of IGT
(Bechara et al., 1994). The values for the gain gk and punishment

FIGURE 1 | Behavioral results of a version of IGT. Top, Choices
probabilities of the participants across the experiment, pooled in bins of 50
trials. Data as Mean ± S.E.M. ∗∗: significant differences in post-hoc t-test;
deck B was chosen significantly more by subjects in the first 50 trials than
in the last 50 selections (paired t-test (9) = 3.1540, p < 0.01). Whereas in
deck C an inverse relation was found, subjects chose it more frequently
toward the end of the task compared to the first bin (paired
t-test (9) = 2.9198, p < 0.01). Bottom, Evolution of choices through the
experiment in a typical subject, note the normal bias following general
trend observed in A. Adapted from Lavin et al. (2014).

lk per ten cards are summarized in Table 1. The resulting selection
pattern closely resembled our behavioral data (Lavin et al., 2014)
and the historical controls found in the literature (Bechara et al.,
1994; Fukui et al., 2005; Buelow and Suhr, 2009; Li et al., 2010).
We assessed the data with an Tow-Way ANOVA, with deck and
time (bin) as factors. A main effect of deck [F(3, 144) = 126.56,

p < 0.001] as well as a significant interaction [F(9, 144) = 3.32,

p < 0.001] were found (see Figures 2A, 3A,C).

4.2.2. Maladaptive bias, IGT in simulated clinical populations.
The IGT was originally administered to vmPFC/OFC patients
(Bechara et al., 1994), where researchers observed an inability
to update their cognitive representations regarding the under-
lying distributions of rewards and punishments in the presence
of new information. This results in a maladaptive bias toward
the inconvenient decks yielding poor performance. In biological
terms this impairment was attributed to a dysfunctional interac-
tion between brain areas underlying updating of representations
after new contextual information (OFC and Amygdala), differen-
tiation between wins and losses (ACC), and the appropiate use of
new information in order to pursue adaptive strategies (vmPFC)
(Fukui et al., 2005; Satterthwaite et al., 2007; Li et al., 2010).
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FIGURE 2 | Simulations of IGT, in adaptive and maladaptive bias. (A)

top, Choice’s probabilities of 10 instances (participants) across the
experiment resembling the adaptive bias deployed by normal subjects in
behavioral IGT, pooled in bins of 50 trials. Data as Mean ± S.E.M.
bottom, Evolution of choices through the experiment in a typical instance
of the simulation, note the normal bias following general trend observed

above. (B) top, Choice’s probabilities of 10 instances (participants) across
the experiment resembling the maladaptive bias deployed by prefrontal
patients in behavioral IGT, pooled in bins of 50 trials. Data as Mean ±
S.E.M. bottom, Evolution of choices through the experiment in a typical
instance of the simulation, note the abnormal bias following general
trend observed above.

In order to contrast this idea, we modified our model
to exclude the parameter responsible for updating the
reward/punishment probability assigned to each deck. Thus,
this modified version assigned deck probabilities in a plain
fashion throughout the task and therefore would not deploy
an adaptive strategy. We observed a pattern resembling the
results from vmPFC/OFC patients, with a greater occur-
rence of deck choices yielding lower net outcome (decks A
and B, see Figures 2B, 3B). We found a main effect of deck
[F(3, 144) = 52.29, p < 0.0001], with deck A concentrating the
majority of the choices. Interestingly, in this case we did not find
an interaction [F(9, 144) = 1.64, p = 0.1079], a fact that would
suggest that the model was not learning from the information
collected during the experiment.

Finally, we considered an hypothetical case where the model
was provided with four identical decks as inputs. In this a case,
the intuitive prediction was that the system could not decide on
any particular deck and would proceed in selecting the decks ran-
domly, as if it were the first trial. This pattern was indeed observed
(see Figure 3D).

5. DISCUSSION
In this work we tested a model that emulates people’s learning-by-
experience processes. We compared the model’s performance on
the IGT to the behavior of a normal sample of subjects completing
this task. We additionally ran two alternative simulations in which
we investigated a maladaptive-biased setting that aimed to simu-
late impaired performances on the IGT, similar to that reported

in the clinical literature, and a control condition to explore the
interaction between the formal model and its environment.

The behavioral results show that subjects learned from the
task because they progressively chose from more advantageous
decks as the task progressed. As seen in Figure 1, subjects started
choosing decks with higher winnings (mainly deck B), but with
experience (between trial 101 and 150) made better decisions by
selecting more often from deck C. A similar pattern of explo-
ration is reported in the original IGT research and its replications
(Bechara et al., 1994; Crone et al., 2004), finding that subjects
initially chose from the deck with higher winnings and progres-
sively switch to the decks that yielded lower rewards but also lower
punishments. The cognitive mechanisms underlying the adap-
tive strategy that subjects develop in the short time during this
complex task are associated with emotional responses that sig-
nal feedback for guiding future decisions (Bechara et al., 1994,
1996; Martinez-Selva et al., 2006). In this way, the basic cognitive
process behind learning under uncertainty is associated with the
ways in which past experiences are encoded and later determine
the future course of actions. We explored this basic computational
mechanism with a formal model based upon such process.

By simulating human interaction during the IGT using a
model that integrates this attention to the basic relationship
between past and future decisions into a novel equation, we
have discretized a stochastic differential equation that takes into
account the four possible discrete choices of the IGT at each
time step. The equation is based on a Langevin-type of dynam-
ics (Gardiner, 2010). The model allows for the calculation of a
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FIGURE 3 | Comparison of behavioral and simulation results.

Patterns of selection for the behavioral (A), and in-silico experiments
modeling adaptive (C), maladaptive (B) selection biases, and an
identical-deck control condition (D, see text). Notice the two darker

tones (A,B) had lower expected outcome, whereas the lighter ones
(C,D) had higher. Thus, altogether, the gray tones represent a
qualitative assessment of the outcome value observed in each
experiment.

new decision based upon the updated probability of each deck in
each subsequent trial. Notice how the model takes into account
the basic process present in the experiment, without adding any
free or dynamic parameter. At the beginning of the interaction the
model visits each option in an exploratory way. But as the model
interacts with the task, the feedback becomes critical for updating
the probabilistic weights of each deck for the next selection.

In order to observe the relevance of feedback information in
the model’s choices, we ran a control simulation using a modified
version of the IGT in which the decks had identical distribu-
tion of outcomes. In this condition, the four decks offered the
same payoffs and, therefore, no learning occurred during the task.
The results showed that the model’s choices were symmetrically
distributed over the four decks, supporting the importance of
feedback for the future choices. The simulation using the stan-
dard IGT was expected to replicate the learning trend observed in
normal subjects, showing an adaptive bias. The results did show
that the choices made by the model were highly concentrated
toward the advantageous decks, replicating the trend observed in
our behavioral experiment and past studies of healthy subjects
playing the IGT (Bechara et al., 1994, 1996; Fukui et al., 2005;

Buelow and Suhr, 2009). The simulation results provide support
for the function of a cognitive system involved in learning under
uncertainty linked to the representation of outcomes and action
planning derived from such information (Martinez-Selva et al.,
2006; Li et al., 2010).

Varied decision-making paradigms have shown the involve-
ment of brain structures that differentiate between wins and
losses (ACC), are responsible for differential emotional reaction
toward convenient and inconvenient results (Amygdala), update
option values (OFC) and use such information in order to adopt
adaptive strategies (vmPFC) (Fukui et al., 2005; Satterthwaite
et al., 2007; Li et al., 2010). The SMH provides a framework
in which both the amygdala and the vmPFC have a criti-
cal role in the interaction of learning processes present during
decision making under uncertainty and the related emotional
responses. This is relevant because the nature of the expla-
nation rests on the physiological responses associated to the
amygdala that differentiate between positive and negative results
based on feedback information, and on the cognitive func-
tion of the vmPFC for using this information as an anticipa-
tory physiological marker for avoiding disadvantageous choices
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(Martinez-Selva et al., 2006). These two structures are the basis of
the model.

Interestingly, however, there are differences about the timing
and the exploratory behavior between the subjects and the results
of the adaptive bias simulation. The simulations showed that the
trend of choices was already present in the first bin and had less
exploration than the behavioral experiment. The model learned
to differentiate between convenient and inconvenient decks ear-
lier in the game and, unlike the subjects, was never tempted
by the decks having higher magnitudes of winnings. A possible
explanation for this is that the model processed winnings and
losses equally. Kahneman and Tversky provided evidence for the
differential impact of winnings and losses in the cognitive sys-
tem (Kahneman and Tversky, 1984), which has been replicate in
several experimental contexts (Edwards, 1996) and also in simu-
lation models such as the PVL and EV-PU descripted previously.
Furthermore, there is evidence showing specialized brain areas for
outcome processing, including striatal activation after winnings
and ACC activity after losses, supporting the idea of cognitive dif-
ferences in the processing of monetary rewards and punishments
(Sanfey, 2007; Lavin et al., 2013). The comparison between the
model and the behavioral experiment shows that when economic
rewards and punishments are processed equally, there is consider-
able improvement in IGT performance. In the case of our model
we could in the future modify this basic feedback processing with
a parameter for the weight of winning and losses and for the shape
of the utility function (as in the PVL model), and also modify
the parameter that determines the rate of exploration in order to
simulate a more accurate exploratory behavior of human deci-
sion making under uncertainty. The IGT is a learning task where
subjects must encode option values during their interaction with
the task. Given that the magnitudes of the winnings (and pun-
ishments) are greater in disadvantageous decks, the temptation to
earn winnings has a strong influence in the first deck selections
that subjects perform. In fact, impaired performances in the IGT
are associated with the undifferentiated anticipatory physiological
responses between convenient and inconvenient decks (Bechara
et al., 1994, 1996). Crone and colleagues showed that normal sub-
jects switched responses more often following punishments than
following rewards (Crone et al., 2004). Our results are consis-
tent with these findings because subjects started choosing deck B,
which has larger reward magnitude and lower punishment prob-
ability, and then progressively switched to deck C. This pattern
of choices is similar to the one observed in the PVL model sim-
ulation (Steingroever et al., 2013), which supports the idea that
the faster learning by the model is related to the way in which
the model evaluates outcomes, which is rather simpler to the way
humans encode winnings and losses.

The maladaptive-bias simulation aimed to determine whether
the model could replicate the behavior observed in clinical pop-
ulations by modifying the processing of punishments in the IGT.
In this condition, the model was programed to learn based upon
the positive but not negative feedback, thus it had an inaccurate
processing of the feedback given by the choices. Results given
by this simulation model revealed persistent choices of disad-
vantageous decks, similar to behavior by vmPFC/OFC patients
(Bechara et al., 1994; Anderson et al., 1999; Bechara and Damasio,

2002; Bechara, 2004). The explanation for the impaired IGT per-
formance in these patients is related to the diminished use of
emotional responses that differentiate between positive and nega-
tive feedback for conducting future behavior (Bechara et al., 1994,
1996; Crone et al., 2004). Control subjects completing the IGT
and good performers of similar gambling tasks show electroder-
mal response prior to selecting a card from a disadvantageous
deck in the IGT (Carter and Smith Pasqualini, 2004; Crone et al.,
2004). However, vmPFC/OFC patients do not display this somatic
feedback, and instead guide their decisions based solely upon the
positive feedback information (Bechara et al., 1994; Bechara and
Damasio, 2002). The simple modification of the model biases the
decisions in the same way as in such clinical population. Since
negative feedback is processed as constant, the model is tempted
by the winnings, which are higher in the inconvenient decks.

Supporting this interpretation, the persistent behavior of
choosing the disadvantageous decks in vmPFC/OFC patients may
also indicate impairment in inhibitory control of behavior and
response inhibition (Rescorla, 1997). Commonly, a given behav-
ior is repeated when it is rewarded and can change once it
is punished. In the IGT, participants must learn over time to
inhibit the temptation of choosing decks with higher rewards
given the higher punishments of such options. In patients with
vmPFC/OFC damage this inhibition may be impaired, and their
responses are influenced by immediate feedback rather than
longer-term benefits (Rescorla, 1997). Considering our model, if
an agent updates the options values without considering losses,
then it will persist in a behavior driven by attending to immediate
rewards. Since vmPFC has been associated with the integration
of emotional and cognitive information during decision-making
(Bechara et al., 1994) as well as in controlling impulsive and auto-
matic behavior (Bechara and Van Der Linden, 2005; Buelow and
Suhr, 2009), the emotional and cognitive evaluation of future out-
comes can affect impulse control. This is consistent with evidence
showing poor performances in psychiatric populations having
symptoms of impulsivity and anxiety, such as individuals with
substance use disorders, pathological gambling, and psychopa-
thy (Buelow and Suhr, 2009). Moreover, damage to the vmPFC
could cause working memory problems that may affect IGT per-
formances (Brand et al., 2007), due to learning problems that
facilitate persistent maladaptive behavior (Fellows and Farah,
2003; Fellows, 2004).

This study aimed to test whether the cognitive basis of
decision-making under uncertainty could be expressed through
the stochastic dynamics presented in our model. Results show
that the basic equation accounts for part of the computational
process involved in such decision-making scenarios, and that sim-
ple modification of the feedback processing could provide more
realistic emulation of human learning under uncertainty. The
research also provided indirect support for the basis of impaired
decision making in the IGT, emulating pathological behavior in
this task through a simple modification of the equation. Future
modeling might explore whether a simple equation that attends
to the differential processing of winnings and losses could add
more ecological validity to the simulation.

Our findings contribute to a better understanding of the com-
plex constellation of cognitive processes involved in adaptive
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decision making, implemented by an equally complex circuitry
of cortical and subcortical brain areas. We highlighted a core
component of such a network, specifically the vmPFC-Amigdala
axis, which, as supported by the proposed model, can govern
decision making dynamics and critically contribute to behavioral
adaptation within unknown environments.
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