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A neural circuit that relies on the electrical properties of NMDA synaptic receptors is
shown by numerical and theoretical analysis to be capable of realizing the winner-takes-all
function, a powerful computational primitive that is often attributed to biological nervous
systems. This biophysically-plausible model employs global lateral inhibition in a simple
feedback arrangement. As its inputs increase, high-gain and then bi- or multi-stable
equilibrium states may be assumed in which there is significant depolarization of a
single neuron and hyperpolarization or very weak depolarization of other neurons in the
network. The state of the winning neuron conveys analog information about its input. The
winner-takes-all characteristic depends on the nonmonotonic current-voltage relation of
NMDA receptor ion channels, as well as neural thresholding, and the gain and nature of
the inhibitory feedback. Dynamical regimes vary with input strength. Fixed points may
become unstable as the network enters a winner-takes-all regime, which can lead to
entrained oscillations. Under some conditions, oscillatory behavior can be interpreted as
winner-takes-all in nature. Stable winner-takes-all behavior is typically recovered as inputs
increase further, but with still larger inputs, the winner-takes-all characteristic is ultimately
lost. Network stability may be enhanced by biologically plausible mechanisms.
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INTRODUCTION
The winner-takes-all (WTA) function is an operation that is
often assumed to take place in biological nervous systems,
and it has been demonstrated to be a powerful computa-
tional primitive (Maass, 2000). Over the years, winner-takes-all
networks have been modeled widely in the fields of compu-
tational brain science and artificial neural networks (Amari,
1972; Grossberg, 1973; Koch and Ullman, 1985; Rumelhart and
Zipser, 1987; Yuille and Grzywacz, 1989; Coultrip et al., 1992;
Ermentrout, 1992; Winder, 1999; Yuille and Geiger, 2003; Mao
and Massaquoi, 2007; Handrich et al., 2009; Chen et al., 2013),
and have also been implemented in various analog electronic
circuits (Lazzaro et al., 1989; Andreou et al., 1991; Deweerth
and Morris, 1995; Lau and Lee, 1998; Fish and Yadid-Pecht,
2001; Indiveri, 2001; Baishnab et al., 2010). These mathemat-
ical and silicon models for the most part achieve the WTA
characteristic using some sort of common inhibitory feedback
in conjunction with high gain and a strong nonlinearity, often
in the form of a neural thresholding operation. In its strictest
forms, the winner-takes-all amounts simply to selection of the
largest from among a set of input signals; in “soft” imple-
mentations, it involves strong amplification of the difference
between the largest and other such signals, with significant sup-
pression of weaker signals within the set. Depending on the
model, it may retain some analog information about the winning
signal.

In this paper, I demonstrate a mechanism by which a
neuronal network with global lateral inhibition, arranged in

perhaps the simplest possible topology, is capable of realizing
winner-takes-all. Although nonlinearities such as neural thresh-
olding contribute to this capacity, it depends most critically on
the unique electrical properties of NMDA receptor (NMDAR)
ion channels, which are assumed to mediate excitatory input to
the network. The NMDAR is a class of glutamatergic receptor
for which N-methyl-D-aspartate (NMDA) is an agonist, and is
found in many phyla and frequently associated with synapses.
The current-voltage relationship of NMDAR ion channels is non-
monotonic under physiological conditions (Nowak et al., 1984;
Jahr and Stevens, 1990), with a negative slope conductance regime
due to (kinetically fast) magnesium blockade. This characteristic
renders the NMDAR capable of supporting neural amplifica-
tion (Shoemaker, 2011) and bistability (Lazarewicz et al., 2006;
Shoemaker, 2011; Sanders et al., 2013) in conjunction with other
membrane conductances. The primary finding here is that a WTA
characteristic can be induced by high-gain regimes that result
from such interactions, rather than requiring a high intrinsic or
parametric gain in the feedback loops. In this respect, the model
contrasts with other biologically-inspired WTA network models
that in some way incorporate NMDARs (Winder, 1999; Handrich
et al., 2009; Chen et al., 2013). It is significant because it repre-
sents a mechanism for WTA that is both simple and at the same
time entirely plausible biophysically, relying on known charac-
teristics of ubiquitous classes of synaptic receptors. It is also of
interest due to the widespread distribution of neurons with glu-
tamatergic synapses and lateral inhibition in many areas of the
brain.
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Shoemaker Neural winner-takes-all

FIGURE 1 | Members of a set of competitive neurons N1, N2, N3, . . .

each receives a respective excitatory input IN1, IN2, IN3, . . . , via an

NMDA synapse (closed triangle). These neurons form excitatory
synapses (open triangles) onto a common interneuron NFB, which projects
feedback to all neurons in the set via inhibitory synapses (small open
circles). Although not depicted, the outputs of neurons N1, N2, N3, . . . are
assumed to also project to other parts of the nervous system.

RESULTS
THE WTA NETWORK MODEL
The WTA microcircuit described herein assumes a classical lateral
inhibitory topology, with a set of competitive neurons that receive
excitatory inputs via NMDA synapses, and global feedback inhi-
bition via a common interneuron, as illustrated schematically in
Figure 1.

The WTA characteristic in this model is conceived as resulting
from strong amplification and nonlinear effects that can emerge
from interactions between NMDARs and the other ion channels
in the membrane (in this case, the parallel resting and inhibitory
synaptic conductances). These can result in an electrically bistable
membrane, in which the dependence of the transmembrane cur-
rent on the membrane potential shows the classical N-shape
that is associated with destabilizing first order and stabilizing
higher odd-order terms in a canonical bistable system (illus-
trated in Figure 8 in the Methods Section). Such behavior is
enhanced when the total non-NMDAR conductance has a rever-
sal potential below typical neural resting potentials, and also when
its current-voltage dependence is sub-linear or inward-rectifying
(Shoemaker, 2011; Sanders et al., 2013). With this in mind, con-
sideration is given to inhibitory feedback with several different
characteristics: either mildly hyperpolarizing (e.g., as might be
the case if chloride channels were associated with the inhibitory
synapses) or more strongly hyperpolarizing (which might be
expected with potassium channels), and having either ohmic or
inward-rectifying channels. Gamma-aminobutyric acid (GABA)-
mediated synapses, which are prime candidates to implement
the inhibition, occur in two major classes that reflect different
combinations of these characteristics: the GABAB class involves
Kir channels, which conduct potassium and are inward-rectifying
(Mott and Lewis, 1994; Sodickson and Bean, 1996; Kaupmann
et al., 1998; Fowler et al., 2007) (and thus might be expected to
promote high-gain behavior), whereas GABAA receptor channels

conduct chloride and are non-rectifying (Johnston, 1996; Olsen
and DeLorey, 1999).

Development of a mathematical model (described in the
Methods section) and numerical analysis are useful tools for ana-
lyzing the range of behaviors than can be expected from such
a network. The model used herein is based on simple isopo-
tential neurons. Neural signals are represented as continuous
in time, with any spiking behavior assumed representable by
mean spike rates that are in turn related to neural depolarization.
Several different inhibitory characteristics are considered, includ-
ing ohmic and inward rectifying channels with either weakly
or strongly hyperpolarizing reversal potentials, in order to illus-
trate a range of behaviors associated with plausible inhibitory
mechanisms. Magnitudes of synaptic conductances are specified
in the text relative to resting membrane conductance. In addi-
tion to the inhibitory reversal potential, free parameters in the
model include the magnitudes of the inputs to the network,
and a loop gain parameter (defined in Methods) that applies
to the inhibitory feedback. The instantaneous loop gain (i.e.,
the incremental gain around a feedback loop) of any particu-
lar circuit is state-dependent and can greatly exceed this loop
gain constant in magnitude, but as a parameter it accounts for
the strengths of the input and output synapses of the inhibitory
interneuron and thus is useful to quantify the effectiveness of the
feedback.

ANALYSIS OF STATIONARY EQUATIONS
Although in a biological system such a network would be expected
to operate under dynamic conditions, a stationary analysis—
i.e., determination of the fixed points of the model’s governing
equations—can give significant insight into its functional char-
acteristics. I undertake such an analysis in this section to char-
acterize the range of stationary behaviors that can be expected,
and in particular to determine the existence of multiple fixed
point solutions for given levels of synaptic input. In the absence of
time-dependence in the feedback loops, such solutions are indica-
tive of bi- or multi-stable regimes, and I use these terms to refer
to them throughout this section. However, whether such fixed
points are in fact stable depends on the dynamical characteristics
of the feedback pathway, which will be considered in the following
section.

Figure 2 depicts some of these dc characteristics, and illus-
trates the emergence of WTA behavior. For reference purposes,
Figure 2A shows the dc input (expressed as relative NMDAR con-
ductance Γ1) vs. output (membrane potential) relationship for
a single competitive neuron N1 when that neuron is the only
one in the network receiving excitatory input. The loop gain
constant is the parameter. Membrane potential varies smoothly
with input activation, and as might be expected, the slope of this
relationship decreases as the strength of inhibitory feedback is
increased. Figures 2B–F show the behavior of different configu-
rations of the model when two of the competitive neurons receive
excitatory input, and the network transitions from one “win-
ner” to another as the first input exceeds the other. (It should
be noted that this transitional behavior applies not just to the
two-input case, but to any situation in which the two neurons
with the largest inputs are the only ones that are able to reach a
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FIGURE 2 | (A) A dc input-output characteristic for the network when only a
single competitive neuron N1 is activated. The inhibitory feedback synapses
are ohmic with reversal potential −90 mV. The abscissa is the normalized
conductance Γ1 of the input (NMDA) synapse onto the neuron, the ordinate is
its membrane potential, and the parameter is the loop gain constant AL, which
is varied from 0 to -5 in decrements of −1. (B-F) dc transition characteristics for
several configurations of the network when two neurons receive excitatory
input. The loop gain constant AL = −4 in each case. Input Γ1 is swept in
individual trials, and the parameter is the input Γ2 to the second neuron N2,
which is fixed during each sweep of Γ1 but varied from trial to trial. Membrane
potential Vm 1 of N1 is shown in black and Vm 2 of N2 in gray. In (B-D), the

inhibitory channels are ohmic and Γ2 is stepped from 0 to 35 in increments of
5. In (B) the inhibitory reversal potential is −70 mV; in (C,D) it is −90 mV.
(C) shows results for upward sweeps of Γ1 while (D) shows Vm 1 for sweeps in
both directions, which trigger transitions at juxtaposed limit points and
illustrate the presence of hysteresis. Directions of transitions are indicated by
thin arrows. The heavy arrow at lower right points to a small secondary
hysteresis loop (not fully visible at this resolution). In (E,F) the inhibitory
channels are inward-rectifying, and Γ1 is swept upward in both cases. In
(E) the reversal potential is −70 mV and Γ2 is stepped from 0 to 35 in
increments of 5; in (F) the reversal potential is −90 mV and Γ2 is stepped from
0 to 17.5 in increments of 2.5. Resting potential in all cases is −60 mV.

state of depolarization). When the inhibition is ohmic and mildly
hyperpolarizing (Figure 2B), the transitions are gentle and the
network cannot reasonably be characterized as winner-takes-all.
In the remaining cases, however, there are input ranges for which
the transitions are not only sharp but discontinuous. These dis-
continuities and the hysteretic effects that accompany them are
associated with bistable regimes. Such a regime prevails over the
range of Γ1 values bounded by each hysteresis loop in Figure 2D.
In these regions, fixed-point solutions exist in which either neu-
ron may be significantly depolarized (i.e., in a “high” state), while
the other is either hyperpolarized or depolarized to a lesser extent
(in a “low” state). Which of the two solutions might be assumed
under quasistatic conditions depends on the history of excitation
of the system. The discontinuous jumps depicted in Figures 2C–F
represent limit point transitions, which occur at fold bifurcations
that correspond to the boundaries of bistable regimes. Outside
of transitions between winners, the state of the winning neuron

depends on its input level, and thus carries analog information
about that input.

The fixed-point solutions in the model as formulated are
shaped by a rich array of nonlinearities, including the NMDAR
current-voltage relationship and the neural thresholding func-
tion, but also the rectifying characteristics of Kir channels (if
present) and saturation of the membrane potential in a “win-
ning” neuron. Numerical analysis shows their structure can be
quite complex. Bistability is not observed at all when the inhi-
bition is ohmic and mildly hyperpolarizing, as in Figure 2B.
When bistability is possible, it requires a minimum value of
the loop gain constant, and when the constant exceeds this
minimum, it also requires some minimum level of input acti-
vation. This is because bistability is not supported by NMDAR
conductance acting in parallel with the resting membrane con-
ductance alone, and there must be sufficient activation of inhi-
bition with characteristics that do allow bistability in order to
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overcome the effects of the resting membrane in a competitive
neuron.

Bistable behavior is not observed when only a single neuron
received excitatory input. This is due to the dependence of the
inhibitory current in such a neuron on its own activation, which is
approximately second-order due to feedback. Such a supra-linear
characteristic suppresses bistable behavior. However, in the other
neurons in the network, this dependence is more nearly linear,
because they are inhibited below their activation thresholds and
do not participate in the feedback. For this reason, when the exci-
tatory input to one of these “losing” neurons is sufficient to bring
it to the point of depolarization, bistability may be induced and a
limit point crossed, as seen in Figures 2C–F.

Another feature of significance seen in Figure 2 is the fact that
the bistable regime with the WTA characteristic—i.e., in which
the neurons are in opposing high and low states—ultimately col-
lapses and vanishes when the inputs become sufficiently large.
This is associated with the fact that at high input levels, saturation
of the membrane potential in the winning neuron begins to limit
the recruitment of inhibition, ultimately allowing the losing neu-
ron to depolarize and start participating in the feedback process
even when its input is no larger than that of the winner. The result
is seen in Figures 2C,D, wherein the curves for the largest value
of Γ1 reflect monostability, and in addition are so gentle in tran-
sition that the winner-takes-all characteristic must be regarded as
having vanished there as well.

The monostable and WTA bistable regimes described above
do not exhaust the dynamical regimes possible in this model.
Detailed examination shows the presence in the parameter space
of secondary bistable and multistable regimes, which tend to
appear as the loop gain and input amplitude are increased. By way

of example, Figure 3 shows a portrait of the dynamical structure
of the network with instantaneous feedback, for the case of ohmic
inhibitory channels and inhibitory reversal potential −90 mV,
in the parameter space spanned by the mean or common-mode
NMDAR activation ΓC = (Γ1 + Γ2)/2, the differential activation
ΓD = (Γ1 − Γ2)/2, and AL.

The lenticular regions in Figure 3 show that increasing the
loop gain promotes the range of inputs for which bistability is
present, as well as the magnitude of hysteresis. The presence of
regimes in which two distinct stable “low” states are present (the
falciform regions in Figure 3) is related to the neural thresholding
function; it may be of academic interest but is of little relevance
for the WTA function. (Although not visible at the resolution of
the graph, a small hysteresis loop associated with such a regime
is present in one of the traces in Figure 2D, and is indicated by a
heavy arrow).

When inhibitory conductance is modeled as inward-rectifying,
the dc behavior of the two-neuron network is qualitatively sim-
ilar to the ohmic case in that there is a critical value of the
loop gain parameter necessary to support bi- and multi-stable
behavior, and above that value a bistable WTA regime appears
and then disappears with increasing common-mode NMDAR
activation. This bistable behavior is more pronounced: it is sup-
ported at higher inhibitory reversal potentials (c.f. Figures 2B,F)
and at lower values of the loop gain parameter than when the
inhibition is ohmic, and hysteresis is more extensive as well.
The co-dimension three cusp bifurcation that marks its begin-
ning occurs at [AL = 1.09, ΓC = 3.81, ΓD = 0], which may be
compared to the values cited in Figure 3. In addition, the sec-
ondary bistable regimes described for the ohmic case—the green
falciform regions in Figure 3—are also present.

FIGURE 3 | Characterization of the stationary dynamical regimes of

the two-neuron system, for ohmic inhibition with reversal potential

−90 mV, in the space spanned by AL , ΓC = (Γ1 + Γ2)/2, and

ΓD = (Γ1 − Γ2)/2. These regimes are symmetric about ΓD = 0 due to the
physical symmetry of the network. Cross-sections of multistable regimes
in ΓC − ΓD planes are depicted, from an oblique view at left, and in a
projection onto the ΓC − ΓD plane at right. A cusp bifurcation of
co-dimension three at [AL = 1.43, ΓC = 9.55, ΓD = 0] marks the beginning
of multistability and is indicated by a star. Associated with the region
that has blue lenticular cross-sections are two sets of stable equilibria, in
which one neuron resides in a “low” state (either hyperpolarized or
slightly depolarized) and the second in a “high” state (significantly

depolarized), or vice-versa. This defines a WTA bistable regime. As ΓD

increases, this region begins and then terminates at co-dimension two
cusp bifurcations. Associated with the narrow regions that have green
falciform cross-sections are two sets of stable equilibria, in which one
neuron resides in one of two low states (one slightly hyperpolarized and
the other slightly depolarized) and the second in one of two respective
high states. Where a lenticular region intersects a single falciform region,
the network is tristable with one neuron residing in one of two low
states or a single high state, while the other resides respectively in one
of two high states or a single low state. Where all three intersect, the
network has four stable states, two high and two low for each neuron.
Outside the depicted regions, the network is monostable.
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However, further complexity is introduced by the saturation of
inhibitory synaptic current at depolarized membrane potentials.
Significantly, as common-mode NMDAR activation increases,
mono- and multi-stable regimes emerge in which both neurons
can simultaneously assume significantly depolarized equilibrium
states (a characteristic that precludes a single “winner”). Figure 4
illustrates the various possible dynamical regimes, for one partic-
ular choice of the loop gain parameter.

Characterization of the dc behavior of this network has been
given for the case in which only a pair of competitive neurons
receive non-zero input signals. Simulations show that as the num-
ber of active inputs increases, dynamical regimes of increasing
complexity become possible. In particular, with inward-rectifying
inhibition, multistable states are possible in which three or more
competitive neurons are depolarized if their inputs are large
enough and similar in magnitude. Nevertheless, with the appro-
priate loop gain, there are input ranges for which WTA behav-
ior—significant depolarization of a single neuron with complete
or substantial suppression of activation in all other neurons—
prevails in networks with more than two inputs, and these ranges
subsume multistable regimes in which any one neuron among
a set with similar input levels may be a winner. As in the two-
neuron case, hysteretic behavior is associated with these regimes
and changes in winning states occur at limit points corresponding
to regime boundaries.

Finally, it is worth mentioning that evidence such as
observations of biphasic inhibitory post-synaptic potentials in

FIGURE 4 | Characterization of the stationary dynamical regimes of the

two-neuron system, for inward-rectifying inhibition with reversal

potential −90 mV and AL = −4, in the space spanned by

ΓC = (Γ1 + Γ2)/2 and ΓD = (Γ1 − Γ2)/2. The characteristics of the
equilibria associated with the blue lenticular region and the green falciform
regions are similar to those in the regions with the same color codes in
Figure 3. Associated with the chevron-shaped red region are two stable
equilibria in which one neuron is in one of two possible high states, and the
second respectively in a high or low state. In the yellow region the system
is monostable with both neurons in high states (in Figure 2F, the right-hand
portion of the traces for largest Γ2 are associated with this regime). Where
the chevron and the lenticular region alone intersect, the network is
tristable with one neuron residing in a high or one of two low states and
the other neuron respectively in a low or one of two high states. Where the
red, lenticular, and one falciform region intersect, the network has four
stable states, and where they all intersect, six stable states.

various CNS neurons (e.g., Alger and Nicoll, 1979; Davies
et al., 1990) suggests that GABA-ergic pathways can acti-
vate both GABAA and GABAB receptors in target neurons.
If this were to occur in the context of feedback inhibi-
tion in this model, it would lead to a mixture of inward-
rectifying and non-rectifying inhibitory currents in the com-
petitive neurons. Simulations show that such mixed inhibition
results in dc behavior intermediate between the purely rectify-
ing and non-rectifying cases, as might be expected. Interestingly,
with a mixture of weakly-hyperpolarizing/ohmic and strongly-
hyperpolarizing/inward-rectifying inhibition, a proportion of
ohmic conductance as small as 25% of the total can eliminate
the multistable solutions with multiple “high” states that are seen
with inward-rectifying inhibition alone (e.g., the red regions in
Figure 4).

DYNAMIC BEHAVIOR
Under non-stationary operating conditions, time-varying synap-
tic input signals play the role of driving or forcing functions in
the dynamics of the network. Analysis of time-dependent behav-
ior is complicated by the fact that not just neural state, but
dynamical regimes themselves depend on synaptic inputs, and
these regimes can change on a time scale comparable to changes
in membrane potential. This can lead to complex time-domain
behavior. Nevertheless, a number of conclusions can be reached
by time-domain and ac simulations and analysis.

The kinetics of NMDARs associated with the input synapses,
which do not play a direct role in the feedback loops, do affect
network dynamics in the sense that they have a lowpass filter-
ing effect on the input signals. Conventionally, NMDAR kinetics
are regarded as exceptionally slow for an ionotropic receptor
(Destexhe et al., 1994; Jahr, 1994; McBain and Mayer, 1994),
although they may vary with subtype and with neuromodulatory
state (with receptors incorporating the NR2A subunit, for exam-
ple, having appreciably faster response times (Monyer et al., 1994;
Flint et al., 1997; Cull-Candy et al., 2001) than other oligomeric
combinations). The response of prototypical slow NMDARs to
impulsive inputs (e.g., arrival of a presynaptic action potential
or short burst thereof) has a time-to-peak of tens of millisec-
onds, and decay times on the order of 100 ms or more (Destexhe
et al., 1994). Simulation of the ac response of a linearized NMDAR
kinetic model (Destexhe et al., 1995) yields a lowpass −3 dB cor-
ner frequency at around 1 Hz. One result is that if the presynaptic
signaling is spiking in nature, then relative variation in the state of
a population of synaptic receptors due to each individual spike is
insignificant when the firing frequency is more than a few tens of
Herz. The implications of these slow kinetics for network function
are that changes in network state may significantly lag the presy-
naptic input signals that drive them, and also that high-frequency
changes in winning states would tend to be suppressed when the
network is in a winner-takes-all regime.

An important question with respect to network dynamics is
whether the fixed points identified by the stationary analysis are
stable or unstable in nature. The answer is determined by the
dynamical characteristics of the inhibitory feedback in conjunc-
tion with input state and other network parameters. The main
focus of this study is on stable WTA behavior and the conditions
that support or promote stable regimes in the network, and so
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loss of stability is considered mainly in this context. However,
brief attention is given to operating characteristics in unstable
regimes, particularly as pertains to WTA function, although a
detailed treatment of unstable dynamics is beyond the scope of
the paper.

To examine the issue of fixed-point stability of the feedback cir-
cuits, I include dynamic elements in the model network and apply
a standard technique of linearization of the governing equations
about the fixed points, as detailed in Methods. These elements
include membrane capacitance in the competitive neuron, and
selectively in the feedback path, a pole to model the effects
of membrane conductance and capacitance in the inhibitory
interneuron, and cascaded synaptic receptor models.

Consider first the simplest input scenario in which a single
competitive neuron is activated. When membrane capacitance is
added to the model neuron but the feedback remains instanta-
neous, a single pole residing in the left half of the complex plane
is introduced in the dynamics and the fixed points of the cir-
cuit are stable. However, when independent rate equations are
also present for one or more states in the feedback path, it is
possible for the single-neuron system to lose stability on some
subset of its fixed points. With this loss of stability, large-scale
limit cycles—i.e., oscillations—occur. Unstable regimes coincide
with small, or even negative, incremental membrane conductance
in the competitive neuron—a condition that also prevails when
a network with multiple active inputs enters a WTA mode of
operation. (When the conductance is negative at a fixed point,
instantaneous feedback stabilizes the network, but this effect is
compromised with the introduction of sufficient feedback lag.)
Conversely, when the system is not in a state that would support
WTA behavior, it tends to be robustly stable. (This is the case
for weakly hyperpolarizing ohmic inhibition, for which consistent
fixed-point stability is seen for all feedback dynamics and input
conditions considered in the study).

Destabilization of the single-neuron model system can be
induced by the addition of even a single feedback pole, if the
time constant and the loop gain are large enough. Such insta-
bility is enhanced by the introduction of multi-state dynamics to
represent synaptic delays. As might be expected, when very slow
(metabotropic) GABAB receptors are present, unstable behav-
ior is more pronounced than with the much faster (ionotropic)
GABAA receptors, in the sense that it occurs for smaller loop gains
and a wider range of inputs. Oscillations in unstable regimes tend
to be quite slow for GABAB inhibition (around 4 Hz for the mod-
els/parameters used herein), but considerably faster (20–30 Hz)
for GABAA.

Analysis shows that when the single-neuron network enters an
unstable regime, it does so via a Hopf bifurcation (Hopf, 1942;
Andronov et al., 1966; Marsden and McCracken, 1976), i.e., the
transition of a complex pole-pair between left- and right-half-
planes with variation of a parameter—in this case, the input
strength. Furthermore, stability is typically lost and then regained
via such bifurcations as the input increases in magnitude. This
characteristic behavior is illustrated in Figure 5, in which stable
and unstable regimes are illustrated for a particular network con-
figuration (weakly hyperpolarizing, inward-rectifying inhibition)
and choice of feedback dynamics. Qualitatively similar results

are obtained for other network configurations that support WTA
behavior. Figure 6A shows results of a time-domain simulation in
which stability is lost and regained.

Analysis also shows that when stability is lost, it occurs via a
supercritical Hopf bifurcation (in which a small limit cycle appears
around the fixed point and increases in amplitude with increasing
input). Stability is also regained via a supercritical Hopf bifur-
cation in the case of ohmic inhibition, but when the current is
inward rectifying it occurs via a subcritical Hopf bifurcation (in
which the fixed point becomes stable but a large-signal limit cycle
remains outside a finite-sized basin of attraction about the fixed
point). Thus, sustained oscillatory behavior can persist even after
a fixed point has regained stability. The basin of attraction of the
fixed point, however, grows rapidly with increasing input levels
and eventually subsumes the entire state space.

What are the implications of this analysis for network opera-
tion when other inputs are activated? When an unstable regime
is present in the single-neuron system, it defines a minimal range
of input strengths over which the network will be unstable: even
if the outputs of other competitive neurons were completely sup-
pressed, sustained oscillations would take place if the largest input
were in this range. However, simulations demonstrate that with
multiple inputs, entrained, phase-locked oscillations can occur
when input values are beyond this range, but within a regime that
supports WTA behavior (e.g., within portions of the green region
in Figure 5 that are not overlapped by the red). What would
be damped oscillatory behavior in a single neuron can become
unstable when additional inputs are activated, even though the
fixed point solutions in this regime are themselves stable and WTA
in character. With sufficient loop gain, this behavior can be seen
in any of the model configurations supporting a WTA character-
istic. It is associated with the summation of competitive outputs
onto the inhibitory interneuron: the effect of phase-locked oscil-
lations from the standpoint of an individual neuron is the same
as an increase in its inhibitory loop gain, which is naturally desta-
bilizing. This combination of large-signal limit cycles coexisting
with fixed point stability is again characteristic of a system that
undergoes a subcritical Hopf bifurcation.

The regime in which the network resides depends on the his-
tory of activation of the inputs: for example, entrained oscillations
may grow when the onset of inputs to two or more competitive
neurons is simultaneous, but if the same inputs were staggered
in time, the initially-active neuron may settle to a degree that
the entire network remains stable after all inputs have become
active. Examples of such behavior are shown in the time domain
in Figures 6B,C.

What are the implications of oscillatory behavior for the WTA
function?—in particular, do peak membrane potentials in unsta-
ble regimes show any sort of WTA characteristic, when the corre-
sponding fixed points for those inputs are WTA in nature? This
question is germane due to the consistency of the present model
with so-called PING models for gamma oscillations in vertebrate
cortex (Whittington et al., 2000), along with the finding that such
networks can implement an “E%-max winners take all” function
(De Almeida et al., 2009)—which has led to the hypothesis that a
multiple winners-take-all computation may in fact be a function
of gamma oscillations (De Almeida et al., 2009). In the present
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FIGURE 5 | Graphs illustrating the fixed-point stability characteristics of

one configuration of the WTA network when a single input is active.

Inhibitory synaptic conductance is inward-rectifying with reversal potential
−70 mV. The resting membrane time constant τR in the competitive
neuron is set to 20 ms; membrane charging in the inhibitory interneuron is
modeled with a pole with time constant 5 ms, and is cascaded with a
four-state model for GABAB receptor dynamics (Destexhe et al., 1995) that
introduces three additional poles in the feedback path. At left are depicted
the real parts of the poles of the closed-loop system at its fixed points as
functions of the input strength Γ , in this case for AL = −4. Each is coded
by a different color. Where two curves overlie, the corresponding poles are
complex conjugates. The arrows indicate the points at which a complex

pole-pair transitions between left- and right-half-planes and bracket an input
range over which the fixed points are unstable. In the middle part of this
region, the poles are real and distinct, implying exponential divergence of
trajectories away from the fixed point—but large-signal limit cycles (i.e.,
oscillations) are ultimately assumed by such trajectories. At right, the
region over which the network is unstable in the space spanned by Γ and
AL is shown in red (for purposes of comparison, the pink curve shows the
boundary of this region when GABAA kinetics are substituted for GABAB).
In the blue area the membrane conductance in the competitive neuron is
negative for the input and inhibitory states at the fixed point, and in the
green, WTA bistability would be possible if the input to a second neuron
were active (and feedback instantaneous).

case, the answer is yes: simulations show that WTA behavior can
be imputed to oscillatory regimes—but not invariably or strictly.
At left in Figure 7 is shown an example of steady-state oscillations
in a network of a particular configuration, in which the outputs
of the neuron with the largest input exceeds the resting potential
throughout its cycle, while the outputs of four other neurons with
smaller inputs are uniformly suppressed below the resting poten-
tial. Conversely, Figure 7 also shows at right a result for another
configuration in which the WTA characteristic is weakened by
instability, in the sense that membrane potentials in non-winning
neurons are not as strongly suppressed as they would be at the cor-
responding fixed points. However, although all of the neurons in
this second case exceed the resting potential during their cycles,
the dynamic gain during oscillation is still relatively high, since
the smallest of the five inputs is only 20% smaller than the largest.
Qualitatively, the behavior in these sorts of oscillatory regimes is
seen to depend largely on the difference between the largest and
second-largest inputs to the network. More generally, simulations
show that unstable behavior can be relatively complex, for exam-
ple showing evidence of long time-scale modes that mediate a
switch between strict WTA behavior and lower-gain excursions as
the system evolves in time for particular choices of configuration
and input levels. Examination of such complexities are beyond
the scope of this study.

Interestingly, unstable behavior in this model may be sup-
pressed by several mechanisms that might plausibly be found
in biological neural circuits. One is saturation in the inhibitory
interneuron, e.g., the limiting of its membrane potential by the
finite reversal potential associated with its input synapses—a fea-
ture that is perhaps more realistic than the linear model used
in the prior analyses. This sort of saturation was investigated
in a limited number of simulations, and an example in which

it suppresses entrained oscillations is depicted in Figure 6D. A
second is a mixture of GABAA and GABAB-type inhibition in
the competitive neurons, with the faster and more nearly ohmic
GABAA channels exerting a stabilizing influence when inward-
rectifying channels alone might result in unstable equilibria and
limit cycle behavior. In qualitative terms, the fast activation of
GABAA channels can allow the network dynamics to remain
damped while slower changes in the states of the GABAB channels
are ramping up or down—and even though the GABAA channels
might not by themselves permit strong WTA behavior, their pres-
ence can allow the network to settle into stable WTA states. An
example of such behavior is shown in Figure 6E.

Finally, simulations with more general time-varying inputs
demonstrate that when the network is in a stable WTA mode
(i.e., in the basin of attraction of a stable fixed point), it will sub-
sequently remain stable for any limit-point transitions between
winning neurons so long as the largest input remains outside the
unconditionally unstable range.

Figure 6 also serves to emphasize graphically the temporal
sluggishness of the network response when both slow NMDAR
kinetics and GABAB receptor dynamics are present in the model.
In order for a network with these dynamics to act as a WTA
in a biological context, the time scales on which the input sig-
nals operate (i.e., their persistence and the times between changes
in their rank ordering) must be on the order of at least sev-
eral 100 ms. This restriction would seem to preclude the network
from functioning as a sequential WTA if its inputs were modu-
lated at frequencies comparable, say, to that of the theta rhythm
in mammals. Faster resolution of stable winning and losing
states would naturally be the result, however, if faster NMDAR
kinetics, and/or mixed GABAA and GABAB inhibition, were
present.
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FIGURE 6 | Oscillatory and stable responses of competitive neurons to

step inputs. (A–D) Inhibitory feedback is inward-rectifying with reversal
potential −70 mV and AL = −2; the feedback dynamics include a pole with
time constant 5 ms cascaded with a model for GABAB dynamics; and the
resting time constant τR = 20 ms in the competitive neuron. The step inputs
are convolved with a model for NMDAR kinetics to determine NMDAR
conductance values. (A) Stability lost and regained with increasing input
amplitude, when a single competitive neuron is the only one activated.
Membrane potential of the neuron in response to input steps with three
different magnitudes of NMDAR conductance Γ is shown. Each step is
applied at time t = 100 ms. For Γ = 4 the network is in a relatively low-gain
stable state; for Γ = 8 it is in an unconditionally unstable state; and for
Γ = 12 it is in a stable regime that would support WTA behavior.
(B,C) Responses when a first neuron N1 receives a step input with Γ1 = 12

at t = 100 ms, and a second neuron N2 a step input whose amplitude is 90%
that of the first (Γ2 = 10.8). Membrane potential of N1 is shown in black and
that of N2 in gray. In (B) the two steps are simultaneous, and the network
breaks into entrained oscillations, even though it would be stable without the
second input. In (C) the input to N2 is delayed an additional 100 ms, and the
network settles to a stable fixed point with a WTA characteristic. In (D) the
network has the same configuration as in (A–C), except a saturating
input-output characteristic has been attributed to the inhibitory interneuron
NFB. The input steps are synchronous; but although there is a large transient
depolarization in N2, the entrained oscillations that are present in (B) are
squelched here. In (E) the inhibitory feedback is split between
ohmic/weakly-hyperpolarizing and inward-rectifying/strongly-hyperpolarizing,
with the former accounting for 25% of the total conductance. The inputs are
stepped simultaneously to Γ1 = 15, Γ2 = 13.5 at t = 100 ms.

DISCUSSION
The results presented here demonstrate how a neuronal net-
work with NMDA input synapses and lateral inhibition can act
as a winner-takes-all circuit, and illuminate some of its signifi-
cant operating characteristics. The possibility of WTA behavior
is conditioned on the characteristics of the inhibitory feedback
in the network—in particular, on the amount of loop gain and
the electrical characteristics of synaptic ion channels associated
with the inhibitory feedback. When WTA behavior is supported,
it emerges as the magnitude of inputs to the network increase,
with transitions between “winners” taking place with increas-
ing gain, and then becoming abrupt as they are associated with
limit points of multistable regimes (stable, that is, if feedback is
instantaneous). The output of the winner—quantified herein as
its level of membrane depolarization—carries analog information
about the magnitude of its input when the network is in a WTA
regime. As input strengths increase further, however, such regimes
ultimately collapse, giving way again to finite-gain behavior, or
to multistable regimes that do not have a WTA characteristic.

Thus, if the neuronal network is to operate as a WTA, the max-
imum NMDAR conductance must be bounded from above by
some value that is determined by the strength and the charac-
teristics of the inhibitory feedback. Biophysically, such a bound is
a natural constraint that could be imposed by finite numbers of
post-synaptic NMDA receptors available, and/or limits on presy-
naptic neurotransmitter release, at the inputs to the competitive
neurons.

In a multistable regime in which transitions between winners
are abrupt, if one neuron is established as a winner then the input
to another neuron must exceed that of the first by some finite
amount in order for such a transition to occur. This means that at
any instant in time the “winning” neuron may not actually be the
one with the largest input. Such hysteretic behavior, however, can
serve the purpose of preventing transitions due to noise or to rela-
tively small differences between the input levels of two contending
neurons—in other words, it can prevent “jitter” between winners
and could be interpreted as requiring some level of confidence in
the result before a transition can occur.
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FIGURE 7 | Winner-takes-all and high gain responses of competitive

neurons in unstable regimes. Five competitive neurons receive step inputs at
the start of the simulation; the largest is set to a value leading to instability and
the smaller inputs differ by multiples of 5% of the maximum value. Subsequent
steady-state oscillations in membrane potentials are depicted. Membrane
potentials of the neurons are coded by traces with distinct shades of gray.
Feedback dynamics include a pole with time constant 5 ms cascaded with

models for GABAA receptor dynamics and the resting time constant
τR = 20 ms in the competitive neuron. At left, inhibitory feedback is
inward-rectifying with reversal potential -90 mV and AL = −8, and Γ1 = 10 for
the maximum input; a strong WTA characteristic is seen. At right, inhibition is
ohmic with reversal potential -90 mV and AL = −5, and Γ1 = 15 for the
maximum input; the response is not strictly WTA in nature but does reflect a
high gain. Resting potential in all cases is −60 mV.

Analysis of time-domain behavior of the network with plau-
sible dynamics in the inhibitory feedback loops show that it is
possible for it to destabilize. With sufficient loop gain, as one
or more inputs increase in magnitude, the network can enter a
regime in which its fixed-point states (including some that would
be multistable with instantaneous feedback) are unstable. When
it receives sustained inputs in this regime, the network evolves
into large-signal oscillations (entrained oscillations when there
is more than one input). The peak membrane potentials dur-
ing such oscillations may in some circumstances be regarded as
WTA in character, and generally they reflect a high dynamic gain
although the WTA function may be compromised relative to the
corresponding fixed point solutions. As inputs increase further,
the system exits this regime and enters a second in which there
are stable fixed points with WTA characteristics—but these may
coexist with large-signal limit cycles.

Destabilization of the network is most pronounced (i.e., occurs
at lower loop gains and covers a larger range of input strengths)
when the slow dynamics of (second-messenger) GABAB receptors
are associated with the inhibitory synapses in the feedback loops.
Very small or negative membrane conductance values in the com-
petitive neurons, which are more prevalent when the inhibitory
current is modeled as inward-rectifying, also promote instability.
Thus, it might be expected that lateral inhibition implemented
with GABAB synapses would compromise the ability of such a
network to implement a stable WTA function. However, other
biologically-plausible characteristics can mitigate against unsta-
ble behavior. When the simplifying assumption of linearity in
the inhibitory interneuron is relaxed and saturating effects intro-
duced, it can squelch large-signal oscillations and establish a
stable WTA regime (although the network may pass through an
unconditionally unstable regime at lower input values to reach it).
In addition, the presence of GABAA as well as GABAB receptors in
the inhibitory feedback pathway can have a significant stabilizing
effect.

Although tangential to the main subject of the paper, it is of
interest to note that when this model is in unstable regimes, it
produces spontaneous oscillations whose frequencies are similar to
the theta rhythm when GABAB kinetics are present in the feedback,
and when GABAA kinetics are present, to the gamma rhythm
(although somewhat slower for the particular parameter values
used). It is well-known that the gamma as well as beta1 and beta2
bands are dependent on the time constants of GABAA receptor
kinetics (Whittington et al., 2000). The results herein confirm that
gamma-like oscillations can arise in a PING architecture with fixed
or slowly-varying inputs, and in addition that behavior in these
regimes is generally consistent with the hypothesis that a (single or
multiple) winners-take-all function might be an inherent feature
of gamma oscillations (De Almeida et al., 2009).

At this point, a word on the magnitudes of NMDAR conduc-
tance and the inhibitory loop gain constant in the model is in
order. As defined in Methods, the loop gain parameter is simply
the gain around any one of the feedback loops in the network
when it is at rest; conceptually, this means that if a feedback loop
in the quiescent network were broken at the level of a competi-
tive neuron, then an increment of presynaptic depolarization at
its output synapse would come back around the loop to effect a
hyperpolarization |AL| times as large in the cell itself. The synaptic
weightings implied by the single-digit values of AL considered in
the study would therefore seem to be quite plausible. Analysis also
suggests that the densities of active NMDARs required to achieve
the reported network behaviors are biologically plausible. The
numerical values assumed by the NMDAR conductance param-
eter may be misleading in this regard, because by convention
it refers to the slope conductance at the channel reversal poten-
tial, where magnesium blockade is minimal. Where the blockade
is more pronounced—as over most of the operating range of
the network—the slope conductance of the NMDAR channels
(relative to resting conductance) is typically much smaller than
the Γ parameter itself.
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FIGURE 8 | Functions fN (solid black) and fI (solid gray) that

respectively characterize the voltage-dependence of NMDAR ion

channels and Kir channels (as defined by the second line in 5). The
Kir channel reversal potential is set to −90 mV in this example. The
dashed curve depicts the current-voltage relation of a membrane (with
current normalized by a unit conductance to give a voltage) in which
channels of both types are active, with the NMDAR conductance twice
than of the Kir conductance, leading to electrical bistability. The middle
zero of this function represents an unstable equilibrium and the other
two, stable equilibria.

In summary, if such WTA microcircuits are in fact implemented
in biological neuronal networks, they would endow nervous sys-
tem with a building block of appreciable computation power
(Maass, 2000), and could support functions ranging from the
abstract (e.g., function approximation) to the psychophysically-
or ethologically-grounded (e.g., selective attention). But although
the functional implications at the level of the primitive circuit
are clear, any possible role in broader contexts (e.g., of the
cortical circuits documented in the extensive literature on recur-
rent/reverberating networks) requires further consideration. (For
example, observations of an “inverted U-shaped” dependence of
persistent activity on external drive in assemblies of cortical cells
(Williams and Goldman-Rakic, 1995; Brunel and Wang, 2001)
could be related to the behavior of this circuit as it is driven up
to, through, and then past a WTA regime by increasing input
strength.) Finally, although the subject of learning (e.g., by long-
term potentiation) is beyond the scope of this paper, it is clear that
the model represents a biophysically-plausible component of a
substrate for competitive learning. It would provide for Hebbian
modification exclusive to a single winning neuron during any cycle
of activation, and strengthening of excitatory synapses within the
network would predispose neurons so affected to future wins.

METHODS
MATHEMATICAL MODEL
In order to establish the fundamental behavior of the network, I
consider a model which is intended to be as simple as practical while
maintaining enough biological fidelity to characterize the possible
range of behaviors of the neuronal networks it represents. The
following specifications describe the framework for this model:

• All neurons in the network shown in Figure 1 are electrically
compact and representable as single electrical compartments;

• Each neuron has a passive membrane conductance that can
be approximated as ohmic, with an associated resting mem-
brane potential (set to −60 mV in simulations), and these
characteristics remain fixed in time;

• The competitive neurons are biophysically homogeneous, i.e.,
they have the same resting membrane properties, and the
synapses of each class are weighted identically from neuron to
neuron;

• Synapses onto the competitive neurons are represented as
variable membrane conductances in the postsynaptic cell with
values determined by presynaptic membrane potential. The
nonlinear voltage dependence of NMDAR channel current is
based on the model and parameters of Jahr and Stevens (1990).
The reversal potential for the inhibitory synapses is assigned a
value of either −70 mV or −90 mV in simulations, and inward-
rectifying channels are modeled with the ad hoc current-voltage
relationship used by Shoemaker (2011);

• Neuronal activation involves a thresholding operation cor-
responding to half-wave rectification: output synapses are
activated in proportion to depolarization but are inactive during
hyperpolarization;

• For the sake of simplicity, the inhibitory interneuron is approx-
imated with a linear model unless otherwise indicated. It
performs a simple summation of its inputs, and its behavior
under non-stationary conditions is represented with first-order
linear dynamics;

• Postsynaptic conductance under non-stationary conditions is
determined by convolution of the presynaptic activation with
an impulse response function representing a linearized model of
receptor kinetics (as given in Destexhe et al., 1995 for NMDARs,
GABAB, and GABAA receptors).

This simple model neglects the generation of action potentials,
and is thus applicable to cases in which the neurons either operate
with graded potentials, or for spiking cells, in which outputs can
be characterized by a spike rate that may in turn be related to
mean membrane depolarization. In addition, although spiking
input pathways could be represented with impulsive inputs in the
time domain, continuous-time inputs are used throughout. This
may be justified by the lowpass-filtering effects of slow NMDAR
kinetics at the input synapses, as discussed in Section Dynamic
Behavior. The model is not intended to represent networks in
which spike timing is in some way critical, or in which individual
spikes are otherwise significant computationally.

In any of the competitive neurons N1, N2, N3, . . . , the
membrane current balance equation may be written in the form

GN fN (Vm) + GIfI(Vm; VrI) + GRfR(Vm; VrR)

+Cm dVm/dt = 0, (1)

where Vm is membrane potential, and GN , GI , and GR are con-
ductance parameters and the functions fN (V), fI(V; Vr), and
fR(V; Vr) characterize the voltage dependence of channel cur-
rents for NMDARs, inhibitory receptors, and resting membrane
conductance, respectively. The parameter Vr in this notation indi-
cates reversal potential; VrI and VrR are reversal potentials for
inhibitory ion channels and resting conductance, respectively. The
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reversal potential for NMDAR channels is assumed to be 0V and is
not included as a parameter. After the convention in (Shoemaker,
2011), the functions fN , fI , and fR are defined with dimensions of
volts and are normalized to unity slope at their reversal potentials.
GN is assumed to be governed by the activation of the NMDA
synapse associated with the input to the neuron, and GI by the
activation of the inhibitory feedback synapse. Cm is membrane
capacitance. Assuming that all competitive units in the network
(i.e., neurons and synapses of each class that contact them) are
biophysically identical, I append a numerical index to quantities
that may vary between them, i.e., Vm i and GNi, i = 1... n, to
indicate that they apply to the ith neuron Ni among a set of
n. In addition, it is convenient to eliminate a free parameter by
multiplying (1) by RR = 1/GR, yielding the set of equations

Γi fN (Vm i) + ΓI fI(Vm i; VrI)

+fR(Vm i; VrR) + τR dVm i/dt = 0, i = 1 ... n, (2)

where Γi = RRGn i and ΓI = RRGI are dimensionless synap-
tic conductances expressed relative to the resting conductance,
and τR = RRCm is the resting membrane time constant. The
normalized dc transmembrane current Imi for the ith neuron is

Imi = Γi fN (Vm i) + ΓI fI(Vm i; VrI)

+fR(Vm i; VrR), i = 1 ... n, (3)

and collectively, the zeros of these currents define the fixed points
of the system.

The voltage dependence for NMDAR channel current is based
on the model and parameters of Jahr and Stevens (1990), and
the corresponding function fN may be written

fN (Vm) = (1 + b)Vm

1 + b exp ( − kVm)
, (4)

where b = 0.28 mM−1 · [Mg2+] = 0.336 under an assumed extra-
cellular magnesium concentration [Mg2+] = 1.2 mM, and where
k = 62V−1. The voltage dependence of inhibitory synaptic ion
channels takes one of the two forms

fI(Vm; VrI) = Vm − VrI (ohmic channels)

fI(Vm; VrI) = d {tanh[(Vm−VrI−c)/d]−e}
1−tanh2 (c/d)

(Kir channels)
, (5)

where the form for Kir channels is the ad hoc function used in
Shoemaker(2011), with d = 25 mV, e = 0.5, and c = −13.73 mV
(which places the zero-crossing of the function at VrI), and where
tanh denotes hyperbolic tangent. The voltage-dependent functions
for NDMAR and Kir channels are depicted in Figure 8.

Under the assumption that the resting conductance is ohmic,

fR(Vm; VrR) = Vm − VrR. (6)

The output of each competitive neuron is computed by apply-
ing a thresholding function h(Vm) ∼= max[(Vm − VrR), 0] to the
membrane potential to obtain the depolarization of the neuron

above the resting potential. In practice, the function on the right-
hand side of this expression is splined with a quadratic function
over the range VrR ± 1 mV to maintain continuity of both the
thresholding function and its derivative. The output is identically
zero for Vm < VrR − 1 mV.

I assume that the relationship between the NMDAR conduc-
tance Γi and the input INi to neuron Ni is linear, and thus
without loss of generality equate the two for purposes of station-
ary analysis. For dynamics, I assume that Γi = hN ∗ INi, where
∗ indicates temporal convolution, hN is a dimensionless unit
impulse function based on the linearized 4-state NMDAR kinetic
model of Destexhe et al. (1995), and INi assumes the dimensions
and scaling of the NMDAR conductance.

The inhibitory conductance ΓI that is driven by the interneuron
NFB takes on a common value for all competitive neurons, but in
general is variable and dependent on the states of those units via a
feedback equation. With the assumptions of electrical compactness
and approximate linearity in NFB, under stationary conditions it
may be written in the form

ΓI = K ·
n∑

j=1

h(Vm j − VrR), (7)

where K is a constant of proportionality that includes the effects
of the strength or weight of the input and output synapses of
NFB.

Now consider a single-neuron system with ohmic inhibitory
conductance and with no input activation. Conceptually, break
the feedback loop at the presynaptic side of the input to NFB.
For an ideal thresholding function (i.e., ignoring the spline used
in the numerical simulations), the right-handed derivative of ΓI

with respect to the presynaptic membrane potential Vm Pre is
simply dΓ +

I /dVm Pre = K for any Vm Pre ≥ VrR. The derivative of
the membrane potential of the competitive neuron with respect
to ΓI is found to be dVm/dΓI = (VrI − Vm)/(ΓI + 1) by implicit
differentiation, and evaluating this in the state that the closed-loop
system assumes when it is not excited, i.e., Vm = VrRand ΓI = 0,
gives dVm/dΓI = (VrI − VrR). Thus, the loop gain under these
conditions is

dVm

dVm Pre
= dΓ +

I

dVm Pre
· dVm

dΓI
= K(VrI − VrR). (8)

I take the rightmost expression in (8) as the loop gain parameter:

AL ≡ K(VrI − VrR). (9)

When the inhibitory channels are inward-rectifying, the quies-
cent loop gain is not precisely equal to this expression due to
the nonlinearity of their channel current-voltage relation, but I
maintain the same definition of AL so that it bears the same
relation to the synaptic weights in the feedback paths. This allows
straightforward comparison of the behavior of the two different
types of inhibitory channels considered.

With this definition, (7) becomes

ΓI = AL · ∑
j h(Vm j − VrR)

(VrI − VrL)
, j = 1... n. (10)
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When considering the dynamic behavior introduced into the
feedback loop by the kinetics of the inhibitory channels, the
expression in (10) is replaced by

ΓI = hI ∗ AL · ∑
j h(Vm j − VrR)

(VrI − VrL)
, j = 1... n, (11)

where hI is a dimensionless unit impulse function based on one
of the linearized four-state GABA kinetic models of (Destexhe
et al., 1995).

Finally, saturation of membrane potential in the inhibitory
interneuron, when present, is modeled via the trans-synaptic
response at its inputs. Identify (without loss of generality, since
any scaling may be absorbed in the loop gain constant) the
net input to NFB,

∑n
j=1 h(Vm j − VrR), with a current that is

expressed across a unit membrane resistance to determine the
depolarization ΔVmFB. When saturation is present, ΔVmFB is
determined implicitly by the equation ΔVmFB = ∑n

j=1 h(Vm j −
VrR) · (ΔVmFB + ksat · VrR)/(ksat · VrR), which gives a hyperbolic
input/output dependence as would be imposed by a limited
reversal potential associated with the input synapses to NFB.
The value ksat = 2 was used in simulations; with this value, full
depolarization of a single competitive neuron (i.e., to a membrane
potential of zero) drives the inhibitory interneuron halfway to
saturation.

Stability analysis is carried out via linearized first-order state
equations, written in terms of deviations of the states (indicated
below by the prefix Δ) from their fixed-point values. The mem-
brane potential Vm of the single active competitive neuron is
one state. The kinetics of the input synapses to the interneuron
NFB are neglected, and the first state VFB in the feedback loop is
assumed proportional to the membrane depolarization of NFB.
(In practice, the scaling of the entire feedback loop is absorbed
into this state.) The dynamics due to membrane resistance and
capacitance contribute a single pole with time constant τFB. When
included, the dynamics of the output synapses, as represented
by one or the other of the GABA receptor models of (Destexhe
et al., 1995), are cascaded with this pole. These models include
two “closed” states, C1 and C2, where C1 combines with a ligand
L and may then transition toC2, from which an inactive state
D and an open (conductive channel) state O are accessible. I
associate C1 + L with VFB, leaving three independent states that
generate three additional poles. The state O is associated with
the inhibitory feedback conductance ΓI in the target competitive
neuron (the weight of the inhibitory synapse being, without loss
of generality, absorbed into the loop gain parameter).

With these conventions, the linearized dynamic equations for
the closed-loop system with feedback synapse dynamics can be
written in vector-matrix form:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

V̇m

V̇FB

Ċ2

Ḋ

Γ̇I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1
τR

dIm
dVm

0 0 0 −1
τR

dIm
dΓI

1
τFB

AL
(VrR−VrI )

−1
τFB

0 0 0

0 kFB −rΣ r5 r4

0 0 r6 −r5 0

0 0 r3 0 −r4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ΔVm

ΔVFB

ΔC2

ΔD

ΔΓI

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (12)

where Im is the normalized dc transmembrane current in the
competitive neuron as given in (3), kFB is a scaling constant
yielding a unit step response from the receptor dynamics, and
the partial derivatives are evaluated at the fixed point under
consideration. Rate constants r2 through r6 are as defined by
Destexhe et al. (1995) for the receptor type under consideration,
with rΣ ≡ r2 + r3 + r6. The eigenvalues of the matrix on the
right-hand side of (11) correspond to the poles of the system.

NUMERICAL ANALYSIS
Simulations were performed primarily with SPICE (Simulation
Program with Integrated Circuit Emphasis), a tool that is intended
for electronic circuit simulations and is optimized for solution
of stiff nonlinear equations. Discrete elements are described by
electrical constitutive relations involving their interconnection
points or nodes, and governing equations for interconnected cir-
cuits are automatically generated by application of Kirchhoff ’s
current law (conservation of charge). Built-in linear elements or
user-definable nonlinear voltage-controlled current sources were
used for the implementation of nonlinear membrane conduc-
tances. SPICE can solve static equations to obtain dc/equilibrium
states, and dc sweeps of inputs were performed to determine
input/output relations (with sweeps in both directions used to
identify limit point transitions). Membrane current-voltage rela-
tions could be tested by sweeping a virtual “voltage clamp” with
the input and inhibitory conductances held at fixed-point val-
ues. SPICE also allows time-domain or transient simulations of
dynamical systems, and was used to compute outputs in response
to various input scenarios (such as the step functions in Section
Dynamic Behavior). Analogical circuits were constructed to imple-
ment receptor dynamic models. The product T-SPICE (Tanner
Research, Monrovia, CA) was used for the study.

In addition, MATLAB (MathWorks, Natick, MA) was used to
compute the poles of the system in the stability analysis. MATLAB
and Excel (Microsoft, Redmond, WA) were used for supporting
analysis and plot generation.
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