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The means by which cortical neural networks are able to efficiently solve inference
problems remains an open question in computational neuroscience. Recently, abstract
models of Bayesian computation in neural circuits have been proposed, but they lack a
mechanistic interpretation at the single-cell level. In this article, we describe a complete
theoretical framework for building networks of leaky integrate-and-fire neurons that can
sample from arbitrary probability distributions over binary random variables. We test
our framework for a model inference task based on a psychophysical phenomenon (the
Knill-Kersten optical illusion) and further assess its performance when applied to randomly
generated distributions. As the local computations performed by the network strongly
depend on the interaction between neurons, we compare several types of couplings
mediated by either single synapses or interneuron chains. Due to its robustness to
substrate imperfections such as parameter noise and background noise correlations, our
model is particularly interesting for implementation on novel, neuro-inspired computing
architectures, which can thereby serve as a fast, low-power substrate for solving real-world
inference problems.
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1. INTRODUCTION
The ability of the brain to generate predictive models of the envi-
ronment based on sometimes ambiguous, often noisy and always
incomplete sensory stimulus represents a hallmark of Bayesian
computation. Both experimental (Yang and Shadlen, 2007; Berkes
et al., 2011) and theoretical studies (Rao, 2004; Deneve, 2008;
Buesing et al., 2011) have explored this highly intriguing but
also hotly debated hypothesis. These approaches have, however,
remained rather abstract, employing highly idealized neuron and
synapse models.

In this study, we explore how recurrent networks of leaky
integrate-and-fire (LIF) neurons—a standard neuron model in
computational neuroscience—can calculate the posterior distri-
bution of arbitrary Bayesian networks over binary random vari-
ables through their spike response. Our work builds upon the
findings of three previous studies: In Buesing et al. (2011), it was
shown how the spike pattern of networks of abstract model neu-
rons can be understood as Markov Chain Monte Carlo (MCMC)
sampling from a well-definded class of target distributions. The
approach was extended in a follow up paper (Pecevski et al.,
2011) to Bayesian networks by identifying appropriate network
architectures. The theoretical foundation for taking the step from
abstract neurons to more realistic networks of LIF neurons was
developed recently in Petrovici et al. (2013). In this paper, we fol-
low and extend the approach from Petrovici et al. (2013) to the
network architectures proposed by Pecevski et al. (2011). In par-
ticular, we describe a blueprint for designing spiking networks

that can perform sample-based inference in arbitrary graphical
models.

We thereby provide the first fully functional implementa-
tion of Bayesian networks with realistic neuron models. This
enables studies in two complementary fields. On one hand, the
development of network implementations for Bayesian infer-
ence contributes to the open debate on its biological correlate
by exploring possible realizations in the brain. These can subse-
quently guide both targeted experimental research and compu-
tational modeling. Furthermore, additional physiological inves-
tigation is now made possible, e.g., of the influence of specific
neuron and synapse parameters and dynamics or the embed-
ding in surrounding networks. On the other hand, the finding
that networks of LIF neurons can implement parallelized infer-
ence algorithms provides an intriguing application field for novel
computing architectures. Much effort is currently invested into
the development of neuro-inspired, massively parallel comput-
ing platforms, called neuromorphic devices (Indiveri et al., 2006;
Schemmel et al., 2010; Furber et al., 2013). These devices typi-
cally implement models of LIF neurons which evolve in parallel
and without a central clock signal. This paper offers a concrete
concept for the application of neuromorphic hardware as power-
ful inference machines. Interestingly, questions similar to the ones
mentioned above in a biological context arise for artificial systems
as well: the effect of parameter noise or limited bandwidth on
functional network models is, for example, the subject of active
research (Petrovici et al., 2014).
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The document is structured as follows. In Section 2, we review
and adapt the theories from Buesing et al. (2011); Pecevski et al.
(2011) and Petrovici et al. (2013) to build a complete framework
for embedding sampling from probability distributions into the
structure and dynamics of networks of LIF neurons. In Section 3,
we provide the required translation rules and demonstrate the
feasibility of the approach in computer simulations. We further
compare the effect of different synaptic coupling dynamics and
present a mechanism based on interneuron chains which signifi-
cantly improves the sampling quality. Finally, we study robustness
to parameter distortions and to correlations in the background
noise, as these are likely to be present in any physical substrate, be
it biological or artificial. In Section 4, we discuss these results and
their implications for biological and neuro-inspired computing
architectures.

For the simulations with LIF neurons, we used PyNN (Davison
et al., 2008) with NEST (Diesmann and Gewaltig, 2001) or
NEURON (Hines and Carnevale, 2003) as back-end. The simu-
lations with networks of abstract model neurons were conducted
in Python.

2. MATERIALS AND METHODS
2.1. BAYESIAN NETWORKS AS BOLTZMANN MACHINES
The joint distribution defined by a Bayesian graph is the product
of conditional distributions, one for each random variable (RV),
with its value conditioned on the values of its parent variables. For
a graph with K binary RVs Zk, the joint probability distribution
is given by

p(Z = z) =: p(z) =
K∏

k = 1

1

Z
�k(zk) :=

K∏
k = 1

p(zk|pak), (1)

where zk represents the state vector of the variables Zk in �k,
which we henceforth call principal RVs, and pak represents the
state vector of the parents of Zk. Z is a normalizing constant;

w.l.o.g., we assume �k > 1. The factor p(zk|pak) is called an
nth-order factor if it depends on n RVs or rather |pak| = n − 1.

Such a Bayesian network can be transformed into a second-
order Markov random field (i.e., an MRF with a maximum
clique size of 2). Here, we follow the recipe described in
Pecevski et al. (2011). First and second-order factors are eas-
ily replaceable by potential functions �k(Zk) and �k(Zk1, Zk2),
respectively. For each nth-order factor �k with n > 2 princi-

pal RVs, we introduce 2n auxiliary binary RVs Xzk ∈ Zk
k , where

Zk is the set of all possible assignments of the binary vec-
tor Zk (Figure 1C). Each of these RVs “encode” the probabil-
ity of a possible state zk within the factor �k by introducing
the first-order potential functions �

zk
k (Xzk

k = 1) = �k(Zk = zk).
The factor �k(Zk) is then replaced by a product over potential
functions

�k(Zk) =
∏

zk

�
zk
k (Xzk

k )
n∏

i = 1

χ
zk
ki (Zki, Xzk

k ), (2)

where an auxiliary RV Xzk
k is active if and only if the principal

RVs Zk are active in the configuration zk. Formally, this corre-
sponds to the assignment: χ

zk
ki (Zki, Xzk

k ) = 1 − Xzk
k (1 − δZki,zki ).

In the graphical representation, this amounts to removing all
directed edges within the factors and replacing them by undi-
rected edges from the principal to the auxiliary RVs. It can then
be verified (Pecevski et al., 2011) that the target probability dis-
tribution can be represented as a marginal over the auxiliary
variables.

As the resulting graph is a second-order MRF, its underlying
distribution can be cast in Boltzmann form:

p(z, x) = 1

Z
exp

(
1

2
zT Wz + 1

2
zT Vx + zT b + xT a

)
, (3)

where the (symmetric) weight matrices W, V and bias vectors b, a
are defined as follows:

FIGURE 1 | Formulation of an example inference problem as a Bayesian

network and translation to a Boltzmann machine. (A) Knill-Kersten illusion
from Knill and Kersten (1991). Although the four objects are identically
shaded, the left cube is perceived as being darker than the right one. This
illusion depends on the perceived shape of the objects and does not occur
for, e.g., cylinders. (B) The setup can be translated to a Bayesian network
with four binary RVs. The (latent) variables Z1 and Z2 encode the (unknown)

reflectance profile and 3D shape of the objects, respectively. Conditioned on
these variables, the (observed) shading and 2D contour are encoded by Z3

and Z4, respectively. Figure modified from Pecevski et al. (2011). (C)

Representation of the Bayesian network from (B) as a Boltzmann machine.
Factors of order higher than 2 are replaced by auxiliary variables as described
in the main text. The individual connections with weights Mexc, Minh → ∞
between each principal and auxiliary variable have been omitted for clarity.
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WZki,Zkj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

log
�k

(
Zki = 0, Zkj = 0

)
�k

(
Zki = 1, Zkj = 1

)
�k

(
Zki = 0, Zkj = 1

)
�k

(
Zki = 1, Zkj = 0

)
within second-order factors �k

0 otherwise

(4)

VZki,X
zk
k

=
{

Mexcif zki = 1

Minhif zki = 0
(5)

bZki =

⎧⎪⎪⎨
⎪⎪⎩

log
�k (Zki = 1)

�k (Zki = 0)
within first-order factors

log
�k

(
Zki = 1, Zkj = 0

)
�k

(
Zki = 0, Zkj = 0

) within second-
order factors

(6)

aX
zk
k

= log (�k − 1) − L1(zk)Mexc, (7)

all other matrix and vector elements being zero. L1( · ) repre-
sents the L1 norm. In the theoretical model, Mexc = ∞ and
Minh = −∞, but they receive finite values in the concrete imple-
mentation (Section 2.4). From here, it is straightforward to create
a corresponding classical Boltzmann machine. We therefore use
a simplified notation from here on: we consider the vector Z to
include both principal and auxiliary RVs and the Boltzmann dis-
tributions over Z are henceforth defined by the block diagonal
weight matrix W and the bias vector b.

2.2. NEURAL SAMPLING: AN ABSTRACT MODEL
Gibbs sampling is typically used to update the states of the units
in a Boltzmann machine. However, in a spiking network, detailed
balance is not satisfied, since spiking neurons do not incorporate
reversible dynamics due to the existence of refractory mecha-
nisms. While a non-refractory neuron can always be brought
into the refractory state with sufficient stimulation, the reverse
transition is, in general, not possible. It is possible, however, to
understand the dynamics of a network of stochastic neurons as
MCMC sampling. In the following, we use the model proposed in
Buesing et al. (2011) for sampling from Boltzmann distributions
(Equation 3).

In this model, the spike response of a neuron is associated to
the state zk of an RV Zk and a spike is interpreted as a state switch
from 0 to 1. Each spike is followed by a refractory period of dura-
tion τ , during which the neuron remains in the state Zk = 1.
The so-called neural computability condition (NCC) provides
a sufficient condition for correct sampling, wherein a neuron’s
“knowledge” about the state of the rest of the network - and
therefore its probability to spike - is encoded in its membrane
potential:

vk(t) = log
p(Zk(t) = 1|Z\k(t))

p(Zk(t) = 0|Z\k(t))
, (8)

where Z\k(t) denotes the vector of all other variables Zi with i �=
k. By solving for Zk(t) = 1, one obtains a logistic neural activation
function (Figure 2D), which is reminiscent of the update rules in
Gibbs sampling:

p(Zk(t) = 1|z\k(t)) = σ (vk (t)) := 1

1 + exp (−vk(t))
, (9)

In order for a neuron to be able to track its progression through
the refractory period, a refractory variable ζk is introduced for
each neuron, which assumes the value τ following a spike at time t
and decreases linearly toward 0 at time t + τ . The transition prob-
ability to the state ζk only depends on the previous state ζ ′

k. The
resulting sequence of states ζk(t = 0), ζk(t = 1), ζk(t = 2), ... is
a Markov chain. Figure 2A illustrates the transition of the state
variable ζk. A neuron with ζk ∈ {0, 1} elicits a spike with proba-
bility σ (vk − log τ ). This defines the stochastic neuron model in
Buesing et al. (2011).

For the particular case of a Boltzmann distribution with weight
matrix W and bias vector b, the NCC (Equation 8) is satisfied by
neurons with the membrane potential represented by a sum of
rectangular postsynaptic potentials (PSPs):

vk(t) = bk +
K∑

i = 1

WkiZi(t). (10)

Figure 2B illustrates the time courses of the membrane poten-
tial vk, the state variable Zk and the refractory variable ζk of an
abstract model neuron.

2.3. NEURAL SAMPLING WITH LIF NEURONS
In contrast to the abstract model described above, biologi-
cal neurons exhibit markedly different dynamics. Most impor-
tantly, the firing times of individual neurons are not stochastic:
in-vitro single neuron experiments show how a fixed stimu-
lus sequence triggers a fixed spike train reliably over multi-
ple trials (Mainen and Sejnowski, 1995). Also, their interaction
is not mediated by rectangular PSPs. In-vivo, however, neu-
rons often receive diffuse synaptic stimulus that alters their
dynamics in several important ways (Destexhe et al., 2003). As
demonstrated in Petrovici et al. (2013) and described below,
under such conditions, deterministic neurons can attain the
required stochastic dynamics to sample from arbitrary Boltzmann
distributions.

A widely used neuron model that captures the abovemen-
tioned characteristics of biological neurons is the leaky integrate-
and-fire (LIF) model, which defines neuron membrane dynamics
as follows:

Cmu̇(t) = gl [El − u(t)] + Isyn(t) + Iext(t), (11)

where Cm, gl and El represent the membrane capacitance, the
membrane leakage conductance and the membrane leakage
potential, respectively, and Iext represents an external stimulus
current. Whenever u crosses a threshold θ , it is pulled down to a
reset value ρ, where it stays for refractory time τ ref. For a given τ ref

of the LIF neuron and a number τ of refractory time steps of the
abstract model from Section 2.2, the state interpretation between
the two domains can be aligned by interpreting an MCMC update
step as a time interval �t, such that τ ref = τ �t. The synaptic
interaction current Isyn denotes:

Isyn(t) =
∑
syn i

∑
spikes s

w
syn
i

[
Erev

i − u(t)
]

exp

(
t − ts

τ syn

)
, (12)
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FIGURE 2 | Neural sampling: abstract model vs. implementation with

LIF neurons. (A) Illustration of the Markov chain over the refractory variable
ζk in the abstract model. Figure taken from Buesing et al. (2011). (B) Example
dynamics of all the variables associated with an abstract model neuron. (C)

Example dynamics of the equivalent variables associated with an LIF neuron.
(D) Free membrane potential distribution and activation function of an LIF
neuron: theoretical prediction vs. experimental results. The blue crosses are

the mean values of 5 simulations of duration 200 s. The error bars are smaller
than the size of the symbols. Table 1 lists the used parameter values of the
LIF neuron. (E) Performance of sampling with LIF neurons from a randomly
chosen Boltzmann distribution over 5 binary RVs. Both weights and biases
are chosen from a normal distribution N (μ = 0 , σ = 0.5). The green bars are
the results of 10 simulations of duration 100 s. The error bars denote the
standard error.

where w
syn
i represents the weight of the ith afferent synapse,

Erev
i its reversal potential and τ syn the synaptic time constant.

Figure 2C illustrates exemplary time courses of the membrane
potential uk and of the corresponding state variable Zk of a LIF
neuron.

In the regime of diffuse synaptic background noise, it can be
shown that the temporal evolution of the membrane potential is
well approximated by an Ornstein-Uhlenbeck (OU) process with
a mean and variance that can be computed analytically (Petrovici
et al., 2013). This regime is achieved by intense synaptic bom-
bardment from independent Poissonian spike sources with high
firing rates νsyn and low synaptic weights. This allows calculating
the temporal evolution of the membrane potential distribution
p(u|u0), as well as the mean first-passage time T(u1, u2) of the
membrane potential from u1 to u2. With this, the activation
function of a single LIF neuron can be expressed as

p(Zk = 1) =
∑

n nPnτ
ref∑

n Pn(nτ ref + Tn)
, (13)

where Pn represents the probability of an n-spike burst and Tn

the average period of silence following such a burst. Both of these
terms be expressed with recursive integrals that can be evaluated
numerically (Petrovici et al., 2013).

Denoting by ueff the effective membrane potential (i.e., the
average membrane potential under constant external stimulus
other than the synaptic noise), this yields a sigmoidal activa-
tion function σ̃ (ueff) (see Figure 2D), which can be linearly
transformed to the logistic activation function σ (v) to match the
abtract model in Section 2.2:

v = ueff − 〈u〉0

α
, (14)

where 〈u〉0 represents the value of ueff for which p(Z = 1) = 1/2.
The factor α denotes a scaling factor between the two domains
and is equal to 4 [dσ̃ /dueff( 〈u〉0 )]−1. From here, a set of parame-
ter translation rules between the abstract and the LIF domain fol-
low, which are explained in more detail in Section 2.5. Figure 2E
shows the result of sampling with LIF neurons from an exam-
ple Boltzmann distribution together with the target probability
values.

2.4. CHARACTERIZATION OF THE AUXILIARY NEURONS
In the mathematical model in Section 2.1, the weights between
principal and auxiliary RVs are Mexc = ∞ and Minh = −∞, to
ensure a switching of the joint state whenever one of the auxil-
iary variables changes its assignment. In a concrete implementa-
tion, infinite weights are unfeasible. Here, we set the connection
strengths Mexc,k = −Minh,k = γ · max [�k (zk)], where γ is a
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fixed number between 5 and 10. Neurons with a bias of Mexc,k

(Minh,k) will effectively spike at maximum rate (remain silent),
unless driven by afferent neurons with similarly high synaptic
weights.

The individual values of the factor �k (zk) are introduced
through the bias of the auxiliary neurons:

aX
zk
k

= log

(
μ

�k (zk)

minzk [�k (zk)]
− 1

)
− L1(zk) · Mexc,k (15)

where the factor μ/ minzk [�k (zk)] ensures that the argument of
the logarithm stays larger than 0 for all possible assignments zk.

Observed variables are clamped to fixed values 0 or 1 by setting
the biases of the corresponding principal neurons to very large
values (±20), to ensure that they spike either at maximum rate or
not at all. This mimics the effect of strong excitatory or inhibitory
stimulation.

2.5. PARAMETER TRANSLATION BETWEEN DISTRIBUTIONS AND
NETWORKS

In the LIF domain, the bias b can be set by changing the leak
potential El such that the neuron is active with σ (b) for Z\k = 0:

El = ub
eff

gl〈
gtot

〉 = (αb + 〈u〉0)
gl〈

gtot
〉 , (16)

where gtot represents the total synaptic conductance and ub
eff is

the effective membrane potential that corresponds to the bias b:
σ̃ (ub

eff) = σ (b).
For the translation of synaptic weights, we use the approximate

PSP shape of an LIF neuron with conductance-based synapses in
the high-conductance state (HCS) (Petrovici et al., 2013):

uPSP(t) ≈ wki
(
Erev

k − 〈u〉)
Cm ·

(
1

τsyn
− 1

τeff

)
·
[

exp

(
− t − tspike

τeff

)
− exp

(
− t − tspike

τsyn

)]
, (17)

where, wki denotes the synaptic weight from neuron i to neuron
k and τeff = Cm/

〈
gtot

〉
the effective membrane time constant. For

both the LIF domain and the abstract domain, a presynaptic spike
is intended to have the same impact on the postsynaptic neuron,
which is approximately realized by matching the average value
of the LIF PSPs within a refractory period with the theoretically
optimal constant value:

1

α

∫ τref

0
uPSP(t) dt︸ ︷︷ ︸

LIF neuron

!= Wki · τref︸ ︷︷ ︸
abstract model

. (18)

Evaluating the integral in Equation (18) yields the weight trans-
lation factor between the abstract and the LIF domain: wki =

β · Wki, where

β =
αCmτref

(
1

τsyn
− 1

τeff

)
Erev

k − 〈u〉

·
[
τsyn

(
e
− τref

τsyn − 1

)
− τeff

(
e
− τref

τeff − 1

)]−1

. (19)

Figure 3A shows the shape of such an LIF PSP with parameter val-
ues taken from Table 1. The shape is practically exponential, due
to the extremely short effective membrane time constant in the
HCS. We will later compare the performance of the LIF imple-
mentation to two implementations of the abstract model from
Section 2.2: neurons with theoretically optimal rectangular PSPs
of duration τ ref, the temporal evolution of which is defined as

u(t) =
{

1 if 0 < t < τ ref ,

0 otherwise
(20)

and neurons with alpha-shaped PSPs with the temporal evolution

u(t) =

⎧⎪⎪⎨
⎪⎪⎩

q1 ·
[

e ·
(

t
τα

+ t1

)
· exp

(
− t

τα
− t1

)
− 0.5

] if 0 < t < (t2 − t1)τα ,

0 otherwise .

(21)
Here, t1 and t2 are the points in time where the alpha kernel is
e · t · exp ( − t) = 0.5. The value q1 = 2.3 is a scaling factor and

τα = 17 ms · τ ref

30 ms is the time constant of the kernel (Pecevski
et al., 2011).

In the abstract neural model, by definition, the rectangular
PSPs can not superpose, since their width is identical to the
refractory period of the neurons. In LIF neurons, PSPs do not
end abruptly, possibly leading to (additive) superpositions, and
thereby to deviations from the target distribution. To counteract
this effect, we have used the Tsodyks-Markram model of short-
term synaptic plasticity (Tsodyks and Markram, 1997). Setting
the facilitation constant τfacil = 0 leads to un + 1 = U0. With the
initial utilization parameter U0 = 1 and the recovery time con-
stant τrec = τ syn, the parameter R, which describes the recovery
of the synaptic strength after the arrival of an action potential,
yields

Rn + 1 = 1 − exp

(
− �t

τsyn

)
, (22)

where �t is the time interval between the nth and the (n + 1)th

afferent spike. The condition in Equation (22) is equivalent to a
renewing synaptic conductance, which, due to the fast membrane
in the HCS, is in turn equivalent to renewing PSPs.

2.6. PERFORMANCE IMPROVEMENT VIA A SUPERPOSITION OF LIF
PSP KERNELS

The difference in PSP shapes between the LIF domain and the
theoretically optimal abstract model is the main reason why
the direct translation to LIF networks causes slight deviations
from the target probability distribution. The sometimes strong
interaction involved in the expansion of Bayesian networks into
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FIGURE 3 | Comparison of the different implementations of the

Knill-Kersten graphical model (Figure 1). LIF (green), LIF with noised
parameters (yellow), LIF with small cross-correlations between noise
channels (orange), mLIF PSPs mediated by a superposition of LIF PSP
kernels (gray), abstract model with alpha-shaped PSPs (blue), abstract
model with rectangular PSPs (red) and analytically calculated (black). The
error bars for the noised LIF networks represent the standard error over
10 trials with different noised parameters. All other error bars represent
the standard error over 10 trials with identical parameters. (A) Comparison
of the four used PSP shapes. (B,C) Inferred marginals of the hidden
variables Z1 and Z2 conditioned on the observed (clamped) states of Z3

and Z4. In (B) (Z3, Z4) = (1, 1). In (C) (Z3, Z4) = (1, 0). The duration of a
single simulations is 10 s. (D) Marginal probabilities of the hidden variables
reacting to a change in the evidence Z4 = 1 → 0. The change in firing
rates (top) appears slower than the one in the raster plot (bottom) due to
the smearing effect of the box filter used to translate spike times into
firing rates. (E,F) Convergence toward the unconstrained equilibrium
distributions compared to the target distribution. In (D) the performance of
the four different PSP shapes from (A) is shown. The abstract model with
rectangular PSPs converges to Dnorm

KL = 0, since it is guaranteed to sample
from the correct distribution in the limit t → ∞. In (E) the performance of
the three different LIF implementations is shown.

Boltzmann machines (see Equation 5) leads to a large overshoot
of the membrane potential at the arrival of a PSP and a nonzero
PSP tail beyond t = tspike + τ ref (see Figure 3A).

In order to reduce this discrepancy, we replaced the single-PSP-
interaction between pairs of neurons by a superposition of LIF
PSP kernels. For this, we replaced the single neuron that coded
for an RV by a chain of neurons (see Figure 4). In this setup,
the first neuron in a chain is considered the “main” neuron, and
only the spikes it emits are considered to encode the state zk = 1.
However, all neurons from a chain project onto the main neuron
of the chain representing a related RV. This neuron then regis-
ters a superposition of PSPs, which can be adjusted (e.g., with
the parameter values from Table 2) to closely approximate the
ideal rectangular shape by appropriately setting synaptic weights
and delays within as well as between the chains. In particular,
the long tail of the last PSP is cut off by setting the effect of
the last neuron in the chain to oppose the effect of all the oth-
ers (e.g., if the interaction between the RVs is to be positive, all
neurons in the chain project with excitatory synapses onto their
target, while the last one has an inhibitory outgoing connection).
While this implementation only scales the number of network
components (neurons and synapses) linearly with the chosen

length of the chains, it improves the sampling results significantly
(Figures 3B,C,E gray bars/traces).

3. RESULTS
In the Materials and Methods Section, we have provided a com-
prehensive description of the translation of arbitrary Bayesian
graphs to networks of LIF neurons. Now, we apply these
networks to several well-studied cognitive inference problems
and study their robustness to various types of substrate
imperfections.

3.1. BAYESIAN MODEL OF THE KNILL-KERSTEN ILLUSION
Figure 1 illustrates the translation of the Bayesian graph describ-
ing the well-studied Knill-Kersten illusion (Knill and Kersten,
1991) to the LIF domain. Panel A shows the visual stimuli consist-
ing of two geometrical objects, both of which are composed of two
identical 3D shapes (two cylinders and two cubes, respectively).
Both stimuli feature the same shading profile in the horizon-
tal direction, but differ in their contours. The perception of the
reflectance of each stimulus is influenced by the perceived 3D
shape: In the case of a flat surface (cubes), the right object appears
brighter than the left one. This perceived change in reflectance
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Table 1 | Standard neuron and network parameters used in this paper.

Standard Noisy

LIF PARAMETER

Resting membrane potential Vrest V b
k V b

k ± 2.0 mV

Capacity of the membrane Cm 0.2 nF 0.2 nF

Membrane time constant τm 0.1 ms (1.0 ± 0.1) ms

Duration of refractory period τref 20.0 ms (20.0 ± 1.0) ms

Excitatory synaptic time constant
τ syn,exc

10.0 ms (20.0 ± 2.0) ms

Inhibitory synaptic time constant
τ syn,inh

10.0 ms (20.0 ± 2.0) ms

Reversal potential for excitatory
input Erev,exc

0.0 mV (0.0 ± 2.0) mV

Reversal potential for inhibitory
input Erev,inh

−100.0 mV (− 100.0 ± 2.0) mV

Spike threshold Vth −50.0 mV (− 50.0 ± 0.5) mV

Reset potential after a spike Vreset −53.0 mV (− 53.0 ± 0.5) mV

Utilization of synaptic efficacy U0 1.0 1.0

Recovery time constant τrec 0.99 · τ syn 0.99 · τ syn

Facilitation time constant τfacil 0.0 ms 0.0 ms

Excitatory/inhibitory Poisson input
rate νsyn

400.0 Hz 5000.0 Hz

Excitatory/inhibitory background
weight wsyn

0.002 μS 0.001 μS

Synaptic delays 0.1 ms 1.2 ms

BOLTZMANN MACHINES: PARAMETER

Wij Wij ε · Wij

bi bi ε · bi

γ (Equation 16) 10 5

μ (Equation 17) 1 + 10−4 1 + 10−4

The network parameter ε denotes a sample from the uniform distribution unif

(0.9, 1.1).

does not happen in the case of the cylinders. A cylindrical shape is
therefore said to explain away the shading profile, while a cuboid
shape does not, therefore leading the observer to the assumption
of a jump in reflectance.

We have chosen this experiment since it has been thoroughly
studied in literature and it has a rather intuitive Bayesian repre-
sentation. More importantly, it features some essential properties
of Bayesian inference, such as higher-order dependencies within
groups of RVs and the “explaining away” effect. The underly-
ing Bayesian model consists of four RVs: Z1 (reflectance step vs.
uniform reflectance), Z2 (cylindrical vs. cuboid 3D shape), Z3

(sawtooth-shaped vs. some other shading profile) and Z4 (round
vs. flat contour). The network structure defines the decomposi-
tion of the underlying probability distribution:

p(Z1, Z2, Z3, Z4) = p(Z1) p(Z2) p(Z3|Z1, Z2) p(Z4|Z2) . (23)

The inference problem consists in estimating the relative
reflectance of the objects given the (observed) contour and
shading. Analytically, this would require calculating p(Z1|Z3 =
1, Z4 = 0) for the cuboid shapes and p(Z1|Z3 = 1, Z4 = 1) for
the cylindrical ones.

FIGURE 4 | In order to establish a coupling which is closer to the ideal

one (rectangular PSP), the following network structure was set up:

Instead of using one principal neuron ν per RV, each RV is represented

by a neural chain. In addition to the network connections imposed by the
translation of the modeled Bayesian graph, feedforward connections
between the neurons in this chain are also generated. Furthermore, each of
the chain neurons projects onto the first neuron of the postsynaptic
interneuron chain (here: all connections from ν i

1 to ν1
2 ). By choosing

appropriate synaptic efficacies and delays, the chain generates a
superposition of single PSP kernels that results in a sawtooth-like shape
which is closer to the desired rectangular shape than a single PSP.

Figure 3 shows the behavior of the LIF network that repre-
sents this inference problem. When no variables are clamped,
the network samples freely from the unconstrained joint distri-
bution over the four RVs. The performance of the network, i.e.,
its ability to sample from the target distribution, is quantified
by the Kullback-Leibler (KL) divergence between the target and
the sampled distribution normalized by the entropy of the target
distribution:

Dnorm
KL (q||p) = DKL(q||p)

H(p)
, (24)

with the KL divergence between the sampled distribution q and
the target distribution p

DKL(q||p) =
∑

z

q(z) log

(
q(z)

p(z)

)
(25)

and the entropy of the target distribution p

H(p) = −
∑

z

p(z) log
[
p(z)

]
. (26)

When presented with the above inference problem the LIF net-
work performs well at sampling from the conditional distribu-
tions p(Z1|Z3, Z4) (Figures 3B,C). When the stimulus is changed
during the simulation, the optical illusion, i.e., the change in the
inferred (perceived) 3D shape and reflectance profile, is clearly
represented by a change in firing rates of the corresponding prin-
cipal neurons (Figure 3D). For each point in time, the rate is
determined by convolution of the spike train with a rectangular
kernel

κ(t) =
{

1/8 Hz for −8 s < t < 0 ,

0 otherwise .
(27)
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Table 2 | Parameters of the interneuron chain of 6 neurons, which are

used to generate the mLIF PSP.

PARAMETERS OF THE FIRST CHAIN NEURON

Capacity of the membrane Cm 0.2 nF
Membrane time constant τm 0.1 ms
Duration of refractory period τref 29.5 ms
Decay time of the excitatory synaptic conductance τsyn,exc 30.0 ms
Decay time of the inhibitory synaptic conductance τsyn,inh 30.0 ms
Reversal potential for excitatory input Erev

exc 0.0 mV
Reversal potential for inhibitory input Erev

inh −100.0 mV
Spike threshold Vth −50.0 mV
Reset potential after a spike Vreset −50.01 mV
PARAMETERS OF THE REMAINING CHAIN NEURONS

Capacity of the membrane Cm 0.2 nF
Membrane time constant τm 0.1 ms
Duration of refractory period τref 29.3 ms
Decay time of the excitatory synaptic conductance τsyn,exc 2.0 ms
Decay time of the inhibitory synaptic conductance τsyn,inh 2.0 ms
Reversal potential for excitatory input Erev

exc 0.0 mV
Reversal potential for inhibitory input Erev

inh −100.0 mV
Spike threshold Vth −50.0 mV
Reset potential after a spike Vreset −52.3 mV
Resting membrane potential Vrest −52.3 mV
PARAMETERS OF THE NEURAL CHAIN

Number of chain neurons 6
Delay: sampling → sampling neuron 0.1 ms
Delay: sampling → forwarding neuron 5.8 ms
Delay: forwarding → sampling neuron 0.1 ms
Delay: forwarding → forwarding neuron 5.8 ms
Delay: forwarding → last forwarding neuron 5.9 ms
Weight: sampling → sampling neuron w
Weight: sampling → forwarding neuron 0.16 μS
Weight: forwarding → sampling neuron 0.180 · w
Weight: last forwarding → sampling neuron −0.815 · w
Weight: forwarding → forwarding neuron 0.16 μS

At t = 100 s (red line), the evidence is switched: Z4 = 1 → 0. The
network reacts appropriately on the time scale of several seconds,
as can be seen in the spike raster plot.

When not constrained by prior evidence, i.e., when sampling
from the joint distribution over all RVs, the LIF network settles
on an equilibrium distribution that lies close to the target distri-
bution (Figures 3E,F, green traces). For this particular network,
the convergence time is of the order of several tens of seconds.

3.2. ROBUSTNESS TO PARAMETER DISTORTIONS
We further investigated the robustness of our proposed imple-
mentation of Bayesian inference with LIF neurons to low levels
of parameter noise (see Table 1, noisy). Here, we focus on fixed-
pattern noise, which is inherent to the production process of
semiconductor integrated circuits and is particularly relevant for
analog neuromorphic hardware (Mitra et al., 2009; Petrovici et al.,
2014). However, such robustness would naturally also benefit
in-vivo computation.

Some of the noise (the one affecting the neuron parameters
that are not changed when setting weights and biases) can be

completely absorbed into the translation rules from Section 2.3.
Once the neurons are configured, their activation curves can
simply be measured, allowing a correct transformation from
the abstract to the LIF domain. However, while the neurons
remain the same between different simulation runs, the weights
and biases may change depending on the implemented inference
problem and are still subject to noise. Nevertheless, even with a
noise level of 10% on the weights and biases, the LIF network still
produces useful predictions (Figures 3B,C,F yellow bars/traces).

3.3. ROBUSTNESS TO NOISE CORRELATIONS
The investigated implementation of Bayesian networks ideally
requires each neuron to receive independent noise as a Poisson
spike train. When aiming for a hardware implementation of large
Bayesian networks, this requirement may become prohibitive
due to the bandwidth limitations of any physical back-end. We
therefore examined the the robustness of our LIF networks to
small cross-correlations between the Poissonian noise channels of
individual neurons.

For both the excitatory and the inhibitory background pools,
we induced pairwise noise correlations by allowing neurons
within the network to share 10% of their background Poisson
sources. The controlled cross-correlation of 10% between noise
channels is achieved in the following way: each neuron receives
Poisson background from three shared and seven private Poisson
spike trains. The excitatory and inhibitory noise of each individ-
ual neuron remained uncorrelated in order to leave its activation
function (Equation 13) unaltered. Each of shared sources projects
onto exactly two neurons in order to prevent higher-order cor-
relations. The single Poissonian spike trains have a firing rate of
ν/10, such that their superposition is also Poisson, with the tar-
get firing rate of ν. With this setup, we were able to verify that
small pairwise correlations in the background noise do not sig-
nificantly reduce the ability of the LIF network to produce useful
predictions (Figures 3B,C,F orange bars/traces).

3.4. GENERAL BAYESIAN NETWORKS
In order to study the general applicability of the proposed
approach, we quantified the convergence behavior of LIF net-
works generated from random Bayesian graphs. Here, we used a
method proposed in Ide and Cozman (2002) to generate random
Bayesian networks with K binary RVs and random conditional
probabilities. The algorithm starts with a chain graph Z1 →
Z2 → · · · → ZK and runs for N iterations. In each iteration step,
random RV pairs (Zi, Zj) with i > j are created. If the connec-
tion Zi → Zj does not exist, it is added to the graph, otherwise
it removed, with two constraints: any pair of nodes may not
have more than 7 connections to other nodes and the procedure
may not disconnect the graph. For every possible assignment of
pai, the conditional probabilities p

pai
i := p(Zi = 1|pai) are drawn

from a second-order Dirichlet distribution

D(p
pai
i , η1, η2) = 1

B(η1, η2)
(p

pai
i )η1−1(1 − p

pai
i )η2−1 , (28)

with the multinomial Beta function
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B(η1, η2) =
∏2

i=1 � (ηi)

�
(∑2

i=1 ηi

) , (29)

where �( · ) denotes the gamma function. We chose the
parameters η1 = η2 =: η in order to obtain a symmetrical dis-
tribution. Figure 5A shows three examples of a symmetrical
two-dimensional Dirichlet distribution. A larger η favors condi-
tional probabilities which are closer to 0.5 than to the boundaries
0 and 1.

We implemented Bayesian networks with K = 5 RVs running
for N = 50000 iterations. The random graphs were then trans-
lated to sampling neural networks, both with abstract model
neurons and LIF neurons. The performance was tested for sam-
pling from the unconstrained joint distributions over the 5 RVs.
In the simulations, we varied η between 0.3 and 10 and created 30
random Bayesian graphs for each η. Each network was then run
for a total duration of 100 s.

Figure 5B illustrates the average sampling results for the dif-
ferent PSP shapes as a function of the “extremeness” of the
randomized conditional probabilities, which is reflected by the
parameter η. For larger η, conditionals cluster around 0.5 and
the RVs become more independent, making the sampling task
easier and therefore improving the sampling performance. The
curves show the median of the Dnorm

KL between sampled and
target distributions of the 30 random Bayesian graphs. The
shaded regions denote the standard error. Overall, the LIF net-
works perform well, capturing the main modes of the target
distributions.

Figure 5C shows the temporal evolution of the Dnorm
KL between

sampled and target distributions for a sample Bayesian network
drawn from the distribution with η = 1 that lied close to the
Dnorm

KL median in Figure 5B. The curves illustrate the average
results of 10 simulations, while the shaded regions denote the
standard error.

As with the Bayesian model of the Knill-Kersten illusion,
the main cause of the remaining discrepancy is the difference
in PSP shapes between the LIF domain and the theoretically
optimal abstract model. A modification of the RV coupling by
means of the neuron chains described in Section 2.6 leads to

a significant improvement of the sampling results for arbitrary
Bayesian networks (Figures 5B,C gray traces).

4. DISCUSSION
In this article, we have presented a complete theoretical frame-
work that allows the translation of arbitrary probability distribu-
tions over binary RVs to networks of LIF neurons. We build upon
the theory from Buesing et al. (2011) and Pecevski et al. (2011)
and extend their work to a mechanistic neuron model widely used
in computational neuroscience based on the approach in Petrovici
et al. (2013). In particular, we make use of the conductance-based
nature of membrane dynamics to enable fast reponses of neurons
to afferent stimuli.

We have demonstrated how networks of conductance-based
LIF neurons can represent probability distributions in arbi-
trary spaces over binary RVs and can perform stochastic
inference therein. By comparing our proposed implementation
to the theoretically optimal, abstract model we have shown
that the LIF networks produce useful results for the consid-
ered inference problems. Our framework allows a compara-
tively sparse implementation in neural networks, both in terms
of the absolute number of neurons as well as considering
energy expenditure for communication, since state switches
are encoded by single spikes. This compares favorably with
other implementations of inference with LIF neurons, based
on e.g., firing rates or reservoir computing (Steimer et al.,
2009).

The main cause for the deviations of the LIF equilibrium dis-
tributions from the target distributions lie in the shape of synaptic
PSPs. We shave shown how a more complex coupling mechanism
based on interneuron chains can improve inference by allowing
a more accurate translation of target distributions to networks
of LIF neurons. This kind of interaction provides a connection
to other well-studied models of chain-based signal propagation
in cortex (Diesmann et al., 1999; Kremkow et al., 2010; Petrovici
et al., 2014). A similar interaction kernel shape can be achieved
by multiple synapses between two neurons (multapses) lying at
different points along a dendrite, causing their PSPs to arrive at
the soma with different delays. From a computational point of
view, the increased sampling performance due to this coupling

FIGURE 5 | Sampling from random distributions over 5 RVs with

different networks: LIF (green), mLIF (gray), abstract model with

alpha-shaped PSPs (blue) and abstract model with rectangular PSPs

(red). (A) Distributions for different values of η from which conditionals
are drawn. (B) Dnorm

KL between the equilibrium and target distributions

as a function of η. The error bars denote the standard error over 30
different random graphs drawn from the same distribution. (C) Evolution
of the Dnorm

KL over time for a sample network drawn from the
distribution with η = 1. Error bars denote the standard error over 10
trials.
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mechanism only comes at the cost of linearly increasing network
resources.

An explicit goal of our theoretical framework was to establish
a rigorous translation of abstract models of Bayesian infer-
ence to neural networks based on mechanistic neuron mod-
els that are commonplace in computational neuroscience. Our
particular formulation uses LIF neurons, but a translation to
similar integrate-and-fire spiking models such as AdEx (Brette
and Gerstner, 2005) is straightforward. An equivalent formu-
lation for more biological models such as Hodgkin-Huxley
(Hodgkin and Huxley, 1952) is feasible in principle, but
non-trivial, mostly due to the fact that the Hodgkin-Huxley
model inherently incorporates a form of relative refractori-
ness. A study of neural sampling with relative refractoriness
does exist (Buesing et al., 2011), but how the abstract model
is mappable to Hodgkin-Huxley dynamics remains an open
question.

Another important issue concerns how the structure of these
networks can be learned from data samples through synap-
tic plasticity mechanisms such as STDP. The auxiliary sub-
networks required by our model are conceptually equivalent
to the well-studied winner-take-all (WTA) motif. The emer-
gence of such structures for discriminative tasks based on both
supervised and unsupervised STDP protocols has been the
subject of recent investigations (Nessler et al., 2013; Kappel
et al., 2014). The application of these protocols to networks of
integrate-and-fire neurons in general and to our implementa-
tion of Bayesian networks in particular is the subject of ongoing
research.

Concerning the practical application of our model, we have
studied its robustness to small levels of parameter noise as well
as weak correlations between the noise channels of individual
neurons. We were able to show that imperfections of the phys-
ical substrate of the neuronal implementation, be it biological
or artificial, can be well tolerated by our networks. Further
improvement of the robustness toward parameter noise, as well
as a higher degree of biological plausibility, can be achieved by
implementing individual RVs as populations of neurons, as has
been recently proposed by Legenstein and Maass (2014). We
therefore regard our model as a promising candidate for imple-
mentation on neuromorphic devices, which can augment these
already efficient networks by providing a fast, low-power emula-
tion substrate. Implemented on such substrates, our networks can
serve as a basis for machine learning algorithms, thereby facil-
itating the development of, e.g., autonomous robotic learning
agents.
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