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Tuning curves and receptive fields are widely used to describe the selectivity of sensory
neurons, but the relationship between firing rates and information is not always intuitive.
Neither high firing rates nor high tuning curve gradients necessarily mean that stimuli
at that part of the tuning curve are well represented by a neuron. Recent research has
shown that trial-to-trial variability (noise) and population size can strongly affect which
stimuli are most precisely represented by a neuron in the context of a population code (the
best-encoded stimulus), and that different measures of information can give conflicting
indications. Specifically, the Fisher information is greatest where the tuning curve gradient
is greatest, such as on the flanks of peaked tuning curves, but the stimulus-specific
information (SSI) is greatest at the tuning curve peak for small populations with high
trial-to-trial variability. Previous research in this area has focussed upon unimodal (peaked)
tuning curves, and in this article we extend these analyses to monotonic tuning curves.
In addition, we examine how stimulus spacing in forced choice tasks affects the
best-encoded stimulus. Our results show that, regardless of the tuning curve, Fisher
information correctly predicts the best-encoded stimulus for large populations and where
the stimuli are closely spaced in forced choice tasks. In smaller populations with high
variability, or in forced choice tasks with widely-spaced choices, the best-encoded stimulus
falls at the peak of unimodal tuning curves, but is more variable for monotonic tuning
curves. Task, population size and variability all need to be considered when assessing
which stimuli a neuron represents, but the best-encoded stimulus can be estimated on a
case-by case basis using commonly available computing facilities.
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1. INTRODUCTION
Mapping the response of a neuron to a range of stimuli by con-
structing a tuning curve or receptive field is one of the longest
established and most widely used approaches in sensory neuro-
science. Often the tuning curves of many neurons are distributed
across the space of possible stimuli to form a population code,
where information is transmitted through the combined activ-
ity of the neurons, and each neuron conveys information about
a limited range of stimuli. Despite the simplicity and widespread
use of tuning curves, they remain open to misinterpretation; in
particular, there is a tendency for neurons to be associated by
default with the stimuli that trigger their strongest responses.
This is sometimes stated explicitly, but is also implicit in the lan-
guage used to describe response properties, for example in the
term “preferred stimulus” or when a neuron is described as being
selective for a particular stimulus. While this is a convenient way
to refer to tuning curves, it is not a reliable indication of what
information a neuron contributes to a population code—what
its informational tuning curve is, and hence which stimulus (or
stimuli) it conveys the most information about: its best-encoded
stimulus.

Even within the simplified framework of rate coding there are
a number of measures that can be used to quantify the amount
of information transmitted by a neuron about a specific stimulus,
to construct informational tuning curves and identify the best-
encoded stimuli. These measures have distinct, but overlapping
scopes of application and do not always yield similar predictions
as to the best-encoded stimuli, so selecting the right measure is
an important step in any analysis. Here we give a brief overview
of the properties and applications of three such measures: the
Fisher information (Fisher, 1925), the stimulus-specific informa-
tion (Butts, 2003), and the Chernoff distance (Chernoff, 1952).
Mathematical definitions of all three measures are given in the
Materials and Methods Section.

Fisher information (Fisher, 1925) is a measure of the pre-
cision with which a parameter (typically a stimulus in studies
of neural coding) of a parametric probability distribution (e.g.,
a distribution of neuronal responses) can be estimated, based
on a sample from that distribution (e.g., a set of neuronal
responses). It has been used in both theoretical (see e.g., Paradiso,
1988; Seung and Sompolinsky, 1993; Abbott and Dayan, 1999;
Wilke and Eurich, 2002; Berens et al., 2011) and experimental
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(Jenison and Reale, 2003; Harper and McAlpine, 2004; Durant
et al., 2007; Gutnisky and Dragoi, 2008) population coding stud-
ies. Fisher information has also been used as an objective func-
tional for synaptic weights in feedforward neural networks, where
it leads to Hebbian-like learning (Echeveste and Gros, 2014). A
significant limitation of the Fisher information is that it is deter-
mined entirely by local properties of the tuning curve; as such,
its relevance is restricted to tasks involving closely spaced stim-
uli, for example fine discrimination, and it can only be applied to
continuous stimulus parameters. The Fisher information defines
a lower bound (the Cramér-Rao bound) on the variance of an
optimal unbiased estimator and, equivalently, the discrimination
threshold. This makes it useful for estimating these quantities
at the neural level, allowing comparison between neuronal and
behavioral precision. However, when the true precision of the
code does not saturate that bound the Fisher information can
be misleading (Bethge et al., 2002; Xie, 2002; Yarrow et al.,
2012); we refer to this as the pre-asymptotic regime. As the num-
ber of neurons in the population increases, the precision of the
code approaches the Cramér-Rao bound; we describe this as
the asymptotic regime. Because it is a function of the stimulus
and, for typical Poisson-like trial-to-trial variability, it is approx-
imately proportional to the first derivative of the tuning curve,
the Fisher information predicts best-encoded stimuli at points
of maximum tuning curve gradient (e.g., the flanks of peaked
tuning curves). Correspondingly, the Fisher information is zero
where the tuning curve gradient is zero—this includes tuning
curve peaks. One major advantage of the Fisher information is
that closed form solutions are available for many noise mod-
els, so it tends to be easy to compute from parametric tuning
curves and variability models, although constructing accurate
parametric models from experimental data may be difficult in
itself.

Information theory provides a powerful and general frame-
work for studying neural coding; it takes into account all forms
of statistical dependency (not just correlations), does not rely on
assumptions about the form of probability distributions, and is
not specific to any particular sensory task. The stimulus-specific
information (SSI; Butts, 2003) is a decomposition of Shannon’s
scalar mutual information into stimulus-specific components and
it quantifies the average reduction in uncertainty (entropy) result-
ing from the presentation of a given stimulus. As the SSI is not
linked to any particular task in the way that Fisher information
is, it gives a more general picture of the amount of information
conveyed about each stimulus. Interestingly, theoretical studies of
population codes based on bell-shaped unimodal tuning curves
have shown that the best-encoded stimulus can coincide with
either the peak of the tuning curve or, as predicted by the Fisher
information, the sloping flanks. The best-encoded stimulus pre-
dicted by the SSI is determined both by the level of trial-to-trial
variability (noise) and by the number of neurons in the popula-
tion (Butts and Goldman, 2006; Yarrow et al., 2012). Evaluating
the SSI is much more computationally intensive than computing
the Fisher information, but it has recently been shown that the
SSI can be computed for population codes involving hundreds of
neurons using a standard desktop computer (Yarrow et al., 2012).
Perhaps partly due to its computational complexity, the SSI has

until now been employed in only a small number of experimental
studies (e.g., Sawtell and Williams, 2008; Remedios et al., 2009;
Montgomery and Wehr, 2010).

The Chernoff distance (Chernoff, 1952) is a measure of the
difference between two probability distributions. In the study of
neural codes, it can be used to quantify the amount of overlap
between the response distributions associated with two stimuli,
and hence the ease with which the two stimuli can be discrimi-
nated. The Chernoff distance is linked to the mutual information
between stimulus and response and also to the error rate in
a two-alternative discrimination task (Kang and Sompolinsky,
2001). Although the Chernoff distance has been used to quan-
tify the precision of population codes as a function of the distance
between stimuli in a discrimination task (Kang et al., 2004), it
has not previously been used to predict best-encoded stimuli;
in this article we explore the latter application of the Chernoff
distance. Computing the Chernoff distance for many paramet-
ric distributions is faster than computing the SSI, making it a
potentially useful method of determining best-encoded stimulus
in two-alternative tasks, but it does involve iterative optimization,
which accounts for much of the computational effort. However,
a recently described information geometric approach (Nielsen,
2013) greatly reduces the computational complexity of the opti-
mization, and we show how this method can be used to effi-
ciently compute the Chernoff distance for populations of Poisson
neurons.

Several factors—both neuronal and environmental—affect the
best-encoded stimulus. Of the neuronal factors, the shape of the
tuning curve is perhaps the most obvious. Tuning curves are a
very widely used model of neuronal activity, but their impli-
cations in terms of the quantity of information that neurons
transmit about particular stimuli are still not fully understood.
While bell-shaped tuning curves have been widely studied (see
e.g., Paradiso, 1988; Zhang and Sejnowski, 1999; Sompolinsky
et al., 2001; Wilke and Eurich, 2002; Butts and Goldman, 2006;
Yarrow et al., 2012), sigmoidal monotonic tuning curves have
received little attention from the theoretical community (Guigon,
2003; Salinas, 2006; McDonnell and Stocks, 2008). Studies using
the SSI have shown that, for rich stimulus ensembles with many
possible stimuli, the best-encoded stimulus for peaked tuning
curves depends on the level of trial-to-trial variability and the
number of neurons in the population (Butts and Goldman, 2006;
Yarrow et al., 2012). Population codes involving monotonic tun-
ing curves have received comparatively little attention, but are
also important in sensory neuroscience as they are often found
where the intensity of neuronal activity reflects the intensity of
the stimulus, for example relative luminance in the visual sys-
tem (e.g., Sakmann and Creutzfeldt, 1969), sound intensity in
the auditory system (e.g., Sachs and Abbas, 1974), and pressure
of touch in the somatosensory system (Adrian and Zotterman,
1926). For monotonic tuning curves, the Fisher information pre-
dicts that the best-encoded stimulus lies on the sloping flank
of the tuning curve, but the SSI has not previously been com-
puted for such tuning curves. Building upon the earlier stud-
ies of unimodal tuning curves, we first focus on monotonic
tuning curves and ask: (1) what are the best-encoded stim-
uli for monotonic tuning curves? and (2) are the best-encoded
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stimuli dependent on the level of variability and the population
size?

Studying monotonic tuning curves introduces some additional
complexity, as monotonicity requires a linear stimulus variable
rather than a circular one. Most theoretical studies of popula-
tion coding (e.g., Paradiso, 1988; Seung and Sompolinsky, 1993;
Zhang and Sejnowski, 1999; Wilke and Eurich, 2002; Butts and
Goldman, 2006; Berens et al., 2011; Yarrow et al., 2012) use
angular stimuli, as the endless nature of the stimulus space is
mathematically convenient and orientation tuning in the visual
cortex is a popular subject for experimental work. Whereas a uni-
form stimulus distribution on a periodic variable (such as edge
orientation in natural scenes) can be a reasonable approximation
of reality, linear stimulus parameters such as luminance or sound
intensity are far from uniformly distributed in nature. The pop-
ularity of circular stimulus spaces in theoretical work has meant
that relatively little is known about how non-uniformity of the
stimulus distribution might affect which stimuli are best encoded
by a neuron. To address this, we compute the SSI for uniform
and non-uniform stimulus distributions, and show how best-
encoded stimuli for both unimodal and monotonic tuning curves
are affected by local non-uniformity in the stimulus distribution.

The SSI can also be used to determine the best-encoded
stimulus in the context of any arbitrary task by manipulating
the stimulus distribution; for example, a two-alternative forced
choice task can be modeled by a stimulus ensemble consisting
of only two stimuli. When the stimulus ensemble is restricted
by the task in this way, the spacing between stimuli determines
the best-encoded stimulus for unimodal tuning curves (Butts
and Goldman, 2006). For closely spaced stimuli, the difference
in the neuronal response distributions that they elicit is domi-
nated by the tuning curve gradient and the SSI predicts that the
best-encoded stimuli are on the flanks of the tuning curve. This
is the same as the prediction of the Fisher information—which
is unsurprising as the Fisher information is specific to fine dis-
crimination and is based on the derivative of the tuning curve.
Conversely, if the spacing between stimuli is large, the SSI predicts
that the best-encoded stimulus lies at the peak of the tuning curve.
Building upon this work, we ask: how does the best-encoded
stimuli for monotonic tuning curves depend on the behavioral
task?

In addition to addressing the open questions described above,
this article aims to give an overview of how the SSI, Fisher infor-
mation and Chernoff distance can be used to analyze tuning
curves and trial-to-trial variability to obtain informational tun-
ing curves and identify the best-encoded stimuli for any arbitrary
task. First, we use the SSI to determine the best-encoded stim-
uli for populations of neurons with monotonic tuning curves
and show that, as with unimodal tuning curves, the SSI and
the Fisher information predict similar best-encoded stimuli for
large populations. In smaller populations, we show that the best-
encoded stimulus depends on the level of trial-to-trial variability.
We then go on to show how Chernoff distance can be used to
quickly estimate the best-encoded stimulus for two-alternative
forced choice tasks, and to examine how the best-encoded stim-
ulus for monotonic tuning curves is affected by the behavioral
task, specifically the distance between stimuli and the number of

stimuli in discrimination and classification tasks. We show that,
as with unimodal tuning curves, when the stimulus distribution
is primarily defined by the task it is the task, together with the
tuning curves and variability, that determines the best-encoded
stimulus.

2. MATERIALS AND METHODS
2.1. MODEL FRAMEWORK
Our analyses are based upon a model population of rate-coding
neurons representing an abstract one-dimensional stimulus S. We
consider both discrete and continuous stimuli and, unless other-
wise stated, the stimulus is uniformly distributed across a finite
non-periodic interval.

Discrete: P(S = s) = 1

k
(1)

Continuous: p(S = s) = 1

smax − smin
(2)

Where P(S = s) and p(S = s) are probability mass and density,
respectively at the stimulus value s (uppercase characters rep-
resent ensembles and lowercase characters represent concrete
values). In the discrete case the ensemble consists of k stimulus
values, and in the continuous case stimuli can take any value in
the interval [smin, smax].

The stimulus is encoded in the firing rates of N neurons with
response spike counts r = {r1, r2, . . . , rN} (bold symbols indicate
vector quantities); the responses of each neuron are conditionally
independent given S. The characteristic stimuli of the N neurons
are uniformly distributed across the stimulus space. The response
Ri of the ith neuron is Poisson distributed with the expected value
defined by the product of a tuning function fi(s) and integration
time τ :

Ri ∼ pois
[
τ fi(s)

]
(3)

The conditional response distribution for the ith neuron, given s,
is therefore:

P(Ri = ri|S = s) = [τ fi(s)]ri exp
[−τ fi(s)

]
ri! (4)

Because the responses of each neuron are conditionally indepen-
dent, the population response distribution, conditioned upon s,
is given by:

P(R = r|S = s) =
N∏

i=1

[τ fi(s)]ri exp
[−τ fi(s)

]
ri! (5)

Two forms of tuning curve are investigated in this article:
Gaussian unimodal and sigmoidal monotonic. The tuning curve
of the ith neuron in a population with unimodal tuning curves is
defined as:

f i
U (s) = fbg + fmod exp

[
− (s − σi)2

2ω2

]
(6)
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Where fbg and fmod are the background firing rate and firing
rate modulation depth (fmod = fmax − fbg), both in spikes/s, σi

is the characteristic (peak) stimulus and ω is a width parame-
ter. The monotonic tuning curve of the ith neuron is similarly
defined as:

f i
M(s) = fbg + fmod

1 + exp
(− s−σi

ω

) (7)

In this case the characteristic stimulus σ is the midpoint of the
sloping flank of the tuning curve. Figure 1 shows examples of
both types of tuning curve.

2.2. FISHER INFORMATION
The Fisher information J(s) for a neuron with rate tun-
ing curve f (s), integration time τ , and Poisson variabil-
ity (Seung and Sompolinsky, 1993; Bethge et al., 2002) is
given by:

J(s) = τ
f ′(s)2

f (s)
(8)

The units of the Fisher information are A−2, where A are the
arbitrary units of the stimulus variable. The tuning curve deriva-
tives f ′

U (s) for unimodal turning curves and f ′
M(s) for monotonic

tuning curves are given by:

f ′
U (s) = fmod

σi − s

ω2
exp

[
− (s − σi)2

2ω2
i

]
(9)

f ′
M(s) = fmod

2ω
[
cosh

(
σi−s
ω

) + 1
] (10)

Figure 1 includes examples of the Fisher information for both
unimodal and monotonic tuning curves.

2.3. STIMULUS-SPECIFIC INFORMATION
The response-specific information (RSI; DeWeese and Meister,
1999), also known as the specific information, is the average
reduction in uncertainty about the stimulus (reduction in stim-
ulus entropy) associated with observing a neuronal response:

I(r) =
∑
s∈S

p(s|r) log p(s|r) − p(s) log p(s) (11)

= H(S) − H(S|R = r) (12)

It is often more useful to be able to quantify the information asso-
ciated with a given stimulus, rather than a response. The SSI I(s)
(Butts, 2003) is the expected value of the RSI associated with a
given stimulus i.e., the RSI averaged over the conditional response
distribution. Examples of response-specific and SSI for unimodal
and monotonic tuning curves are shown in Figure 1. The SSI is
defined as:

FIGURE 1 | Unimodal tuning curve for a single neuron (A), together with

the SSI and Fisher information. Note that the Fisher information is greatest
at the flanks of the tuning curve, while the SSI at the peak and flanks is
roughly equal in this case (close to the transition between peak and flank
coding regimes). (B) Shows the response specific information for the tuning
curve shown in (A). Example of a monotonic tuning curve for a single neuron

(C), along with its SSI and Fisher information; here both the SSI and Fisher
information predict similar best-encoded stimuli. (D) Gives the response
specific information for the tuning curve shown in (C). Parameters: N = 1,
fbg = 1 spike/s, fmod = 40 spikes/s, τ = 1 s, ω = 0.1, σ = 0, stimulus
ensemble consists of 401 equally probable discrete stimuli regularly spaced
in the interval [−1, 1].
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I(s) =
∑
r∈R

p(r|s)I(r) (13)

=
∑
r∈R

p(r|s)
[∑

s′∈S

p(s′|r) log p(s′|r) − p(s′) log p(s′)
]

(14)

The precision of the modeled population codes was always set
(by choosing appropriate fbg , fmod and τ ) such that the mutual
information between stimulus and response did not saturate the
stimulus entropy, as this would distort the shape of the SSI. We
compute the SSI using the Monte Carlo method described in
our earlier article (Yarrow et al., 2012). This approach removes
the necessity to exhaustively integrate over the high-dimensional
response ensemble and makes it feasible to compute the SSI for
populations of hundreds of neurons.

2.4. CHERNOFF DISTANCE
We use the Chernoff distance (Chernoff, 1952) to quantify the
dissimilarity between the response distributions elicited by two
stimuli, which gives an indication of the discriminability of the
stimuli. The Chernoff distance between the response distributions
P(r|s1) and P(r|s2) associated with two different stimuli s1 and s2

is defined as:

DC(s1, s2) = max
α∈(0,1)

[
− log

∑
r∈R

Pα(r|s1)P1−α(r|s2)

]
(15)

Much of the computational complexity in evaluating the Chernoff
distance arises from the need to integrate over the response
ensemble for every iteration of the maximization on the expo-
nent α. This means that, as the population size increases, it rapidly
becomes very time consuming to compute the Chernoff distance.
However, it is possible in many cases to avoid this expensive cal-
culation. Firstly, a closed-form solution exists for the Chernoff
distance between two univariate Poisson distributions (Johnson
and Sinanović, 2001; Nielsen, 2013), here with parameters λ1

and λ2:

DC(λ1, λ2) = λ1

(� − 1)
(

log �−1
log �

− 1
)

+ log �

log �

where � = λ2

λ1
(16)

The multivariate case, however, is a little more complex. A
recently proposed information geometric method (Nielsen, 2013)
provides a way to perform an alternative optimization with
reduced computational complexity; this method involves com-
puting Bregman divergences in the natural parameter space of
the distributions. Following Nielsen’s univariate Poisson example
(Nielsen, 2013), the natural parameters for the joint distribution
of N independent Poisson variables with means λ = {λ1 . . . λN}
are θ(λ), where θi(λi) = log λi. The Bregman divergence between
two such distributions with natural parameters θ and θ ′ is
given by:

B(θ , θ ′) =
N∑

i=1

exp θ ′
i −

N∑
i=1

exp θi −
N∑

i=1

(θ ′
i − θi) exp (θi) (17)

Considering the distributions of responses to two stimuli s1 and
s2, with corresponding natural parameters θ1 and θ2, there exists
a point θ on the line joining θ1 and θ2 such that B(θ1, θ) =
B(θ2, θ) = DC(s1, s2). The intermediate point θ can be expressed
as a weighted average, where α controls the weighting: θ = αθ1 +
(1 − α)θ2. Computing the Chernoff distance is thus reduced
to a bisection search involving the calculation of two Bregman
divergences (Equation 17) per iteration. Our implementation was
verified by cross checking against directly calculated Chernoff
distances for univariate test cases.

2.5. QUANTIFYING SIMILARITY IN THE SHAPE OF INFORMATION
MEASURES

It is often useful to compare the shapes of informational quan-
tities that are both functions of the stimulus, but have different
units, e.g., the SSI and the Fisher information. To do this, we
first discretize the stimulus space then compute the value of both
measures at each stimulus value. We can then treat the resulting
discretized functions of the stimulus as vectors, where the shape of
the function is equivalent to the direction of the vector. Similarity
of shape can then be quantified by normalizing the vectors to unit
length and taking the dot product. Using the SSI as an example,
the normalized SSI Î(s) is given by:

Î(s) = I(s)√∑
s∈S I2(s)

(18)

If, for example, the Fisher information J(s) is similarly
normalized, then the normalized dot product is given by:

Î • Ĵ =
∑
s∈S

Î(s)Ĵ(s) (19)

This is a scalar measure of shape similarity, where a value of one
indicates that the two functions have identical shape, i.e., that they
are directly proportional to one another.

2.6. TASK MODELING
Two-alternative forced choice tasks are frequently used in exper-
imental neuroscience because of their simplicity. We modeled
tasks of this type in order to find out which stimuli were best
encoded by a given neuron for a given stimulus spacing 	s. In
our model the absolute values of the stimuli (the choices) are not
fixed, only the distance between choices 	s appears as a param-
eter. This can be considered equivalent to an experimental setup
where the stimulus choices are fixed relative to one another, but
their position can vary with respect to the tuning curves, such
as in a visuospatial task without predefined gaze fixation or an
auditory source discrimination task where the head is free to
move.

Generalizing from two-alternative to K-alternative tasks, we
assume that the stimulus ensemble consists of K distinct stimuli
regularly spaced at intervals of 	s, and that the set of K stimuli
can be translated anywhere in the stimulus space. Any concrete

Frontiers in Computational Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 18 | 5

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Yarrow and Seriès Factors affecting the best-encoded stimulus

stimulus value s can be a member of the stimulus ensemble when
the ensemble is translated to K different positions, as s can be
the first, second, third, etc., stimulus in the set. We denote each
SSI component as Ik(s), where s is the kth member of the stimu-
lus ensemble. For example, if K = 2 we have two components of
the SSI:

I1(s) = I(s; S = {s, s + 	s}) (20)

I2(s) = I(s; S = {s − 	s, s}) (21)

By substituting the stimulus ensemble S into Equation 14, we can
obtain the full expression for I1(s):

I1(s) =
∑
r∈R

p(r|s)
[

p(s|r) log p(s|r) − p(s) log p(s)

+ p(s + 	s|r) log p(s + 	s|r) − p(s + 	s) log p(s + 	s)
]

(22)

I2(s) can be similarly expanded. We assume that each of the cases
is equally likely, and compute the SSI as the simple average over
the K components:

I(s) = 1

K

K∑
k=1

Ik(s) (23)

The same method was used to compute the Chernoff distance as
a function of the stimulus (see Figure 2 for an example of how
the combined Chernoff distance is computed), but here the num-
ber of stimuli in the set is fixed at K = 2 due to the inherent
limitations of the measure.

Note that this is slightly different to the method of averaging
used by Butts and Goldman. In Figure 4 of Butts and Goldman

(2006), the SSI at stimulus s is given by I(s) = I(s−	s/2) + I(s+	s/2)
2 ,

where the stimulus ensemble is S = {s − 	s/2, s + 	s/2}. As this
is an average over the stimulus ensemble it is equal to the mutual
information between the stimulus and responses, given that stim-
ulus ensemble. The two methods of averaging give very similar
results for small 	s, but differ at larger 	s. Our method of
averaging over SSI components does not yield a mutual informa-
tion, and is more strictly local to s, which makes it better suited
for assessing the best-encoded stimulus when 	s is large, while
remaining equally valid for small values of 	s.

When modeling forced choice tasks it is sometimes useful to
give the interval between stimuli 	s in a normalized form δs, such
that it is expressed relative to the width of the tuning curve flank:

δs = 	s
fmod

max f ′(s)
(24)

Where fmod and max f ′(s) are, respectively, the modulation depth
and maximum gradient of the tuning curve. 	s = |s2 − s1| is the
stimulus interval and s1, s2 are adjacent stimuli.

2.7. VISUALIZING UNCERTAINTY IN THE NEURAL CODE
In any probabilistic code, information is lost when symbols (here
neural responses) are ambiguous, when it is unclear which stim-
uli caused them. When studying best-encoded stimuli and the
shape of the SSI and similar measures, it is useful to be able to
visualize this ambiguity; the “confusion” between stimuli that is
introduced by the code. We do this by considering a hypotheti-
cal observer of the population response with no direct knowledge
of the stimulus, who tries to infer s from the responses r to a
single stimulus presentation. We represent the observer’s knowl-
edge of the stimulus by the random variable Z, and assume that
the observer has full knowledge of the stimulus distribution P(S)
and the stochastic encoding scheme P(R|S). For simplicity, we
assume that the observer’s prior P(Z) is equal to the true stimulus
distribution P(S) (although this need not be the case; any prior
could be modeled). We are interested in the distribution P(Z|S),

FIGURE 2 | Evaluating the best-encoded stimulus for a 2AFC task using

the Chernoff distance. (A) Shows a map of the Chernoff distance between
the response distributions for every possible pair of stimuli. The white lines
overlaid on the heat map indicate where the difference between stimuli s1 and
s2 is equal to the stimulus spacing of interest, in this case 	s = 0.1. In a 2AFC
task with a given stimulus spacing 	s, a stimulus s can occur in two ways:
paired with s − 	s or with s + 	s; these two possibilities correspond to the

two white lines on (A). The interrupted red and blue curves in (B) correspond
to slices through the map shown in (A); DC (s, s + 	s) corresponds to the line
s2 = s1 + 	s and DC (s, s − 	s) to s2 = s1 − 	s. We construct an information
tuning curve (solid black line) based on the Chernoff distance by taking the
average of these two components. Parameters: N = 1, fbg = 1 spike/s,
fmod = 40 spikes/s, τ = 50 ms, ω = 0.1, σ = 0, stimulus ensemble consists of
101 equally probable discrete stimuli regularly spaced in the interval [−0.5, 0.5].
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as this tells us what the hypothetical observer (or, equivalently, any
downstream neural information processing element) can infer on
average about the stimulus, following the presentation of a given
stimulus. Although there is a close relationship between SSI and
the uncertainty in P(Z|S), it is important to note that the SSI is
not directly related to the entropy H(Z|S = s). The RSI, and hence
the SSI, are based upon a difference in entropies (Equation 12)
and a similar stimulus-specific measure could be derived from
the posterior conditional distribution: I2(s) = H(S) − H(Z|S =
s). These measures are not the same: the SSI is based on an
expected entropy, whereas the alternative measure I2(s) is based
on the entropy of an expected distribution; the difference is in the
order in which the average is taken and the entropy calculated.

P(Z|S) is computed as follows.

P(z|s) =
∑
r∈R

P(z|r)P(r|s) (25)

Where P(z|r) = P(s|r), since our observer has full knowledge
of the encoding process—the model is symmetrical. P(s|r) is
obtained by applying Bayes’ theorem:

P(s|r) = P(r|s)P(s)

P(r)
= P(r|s)P(s)∑

s∈S P(r|s)P(s)
(26)

For single neurons or very small populations the sum over R
is straightforward, but it becomes intractable as the population
size increases. To overcome this, we used a Monte Carlo method
identical to that used when calculating the SSI (Yarrow et al.,
2012).

2.8. IMPLEMENTATION OF MODELS AND MEASURES
All models and measures were implemented in Matlab. This
Matlab code has been made publicly available as part of the
Popcode toolbox (https://github.com/StuYarrow/Popcode).

3. RESULTS
3.1. THE EFFECT OF TRIAL-TO-TRIAL VARIABILITY IN SINGLE NEURONS
3.1.1. Unimodal tuning curves
In neurons with unimodal tuning curves, the best-encoded stim-
ulus predicted by the SSI depends both on the level of trial-to-trial
variability (noise) and on the number of neurons in the pop-
ulation (Butts and Goldman, 2006; Yarrow et al., 2012). The
best-encoded stimuli according to the SSI can lie on the flanks
of the tuning curves, or at the peaks of the tuning curves (in
small populations with high noise or short integration times),
suggesting that there may be two distinct coding regimes.

To illustrate how and why the best-encoded stimuli predicted
by the SSI change with the trial-to-trial variability, we simulated
a single unimodally-tuned neuron and manipulated the level of
variability by changing the integration time. Under the Poisson
variability model, as time passes following the presentation of
the stimulus the mean spike count increases in proportion to
the elapsed time τ , but the standard deviation only increases as√

τ , so the signal to noise ratio also increases in proportion to√
τ (Figures 3A–C). Figures 3D–F show the expected posterior

distribution on the stimulus conditioned on the true stimulus

(P(Z|S); we use the variable Z to represent the observer’s knowl-
edge of the stimulus to avoid confusion with the true stimulus
S; see Materials and Methods for further details). This posterior
distribution describes the knowledge that a hypothetical observer
(e.g., a downstream neuron) has, on average, about the stimu-
lus after receiving the output from our model neuron in a single
trial. The symmetric cross shape of the distribution is due to the
symmetry of the unimodal tuning curve: because of the ambigu-
ity between the two halves of the tuning curve, it is not possible
to distinguish stimuli on one side of the peak from those on the
other based on the responses of that neuron alone. In the context
of a population, however, the ambiguity between tuning curve
flanks tends to be resolved by the responses of the other neu-
rons. Although the gradient of the tuning curve is greatest on
its flanks, the inter-flank ambiguity greatly increases the condi-
tional entropy of the posterior. While the distribution is visibly
more concentrated around Z = S and Z = −S (i.e., precisely cor-
rect decoding) when the variability is lower, there is no obvious
qualitative change in the distribution between Figures 3D,F that
accounts for the change in best-encoded stimulus. The reason for
the difference in best-encoded stimuli becomes clearer when each
column of the distribution is sorted so that the amount of uncer-
tainty [i.e., the conditional entropy H(Z|S = s)] can be seen more
easily (Figures 3G,H). Through this visualization, we can see that
the transition between peak and flank coding occurs where the
uncertainty associated with the two flanks is equal to that of the
flat, but narrow, peak (Figures 3B,E,H).

The peak of a tuning curve is associated with a uniquely high
mean response, which is more different from the background
response than any other point on the tuning curve. Responses
to stimuli around the peak are therefore always informative as
they allow coarse discrimination of the peak from untuned back-
ground activity, and this contribution to the overall information
dominates when the variability is high (e.g., Figures 3A,D,G).
In order to discriminate between closely neighboring stimuli
and hence estimate the stimulus more precisely, the responses
associated with those stimuli must be different. This fine discrim-
inability is quantified by the Fisher information and is maximal
where the gradient of the tuning curve is greatest. When the vari-
ability is low, fine discrimination dominates, with the result that
the best-encoded stimulus shifts to the flanks of the tuning curve
(Butts and Goldman, 2006, and Figures 3C,F,I).

3.1.2. Monotonic tuning curves
To investigate whether similar distinct coding regimes could also
exist for monotonic tuning curves, we calculated the SSI for a
single sigmoidally-tuned model neuron with Poisson trial-to-
trial variability. The tuning curve parameters were fixed and the
level of variability was manipulated by changing the integra-
tion time. Figure 4 shows the SSI and the RSI for the model
neuron at several different integration times from 5 ms to 1 s.
At very short integration times (very high trial-to-trial variabil-
ity) the RSI increases monotonically with increasing spike count
(Figure 4A) and the SSI is almost proportional to the tuning
curve (Figure 4F). The mean responses to all stimuli are less
than one spike, therefore the Poisson response distributions for
all stimuli are monotonically decreasing with maxima at zero
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FIGURE 3 | Bayesian reconstruction with a unimodal tuning curve. (A–C)

Show tuning curves and trial-to-trial variability for a single neuron at three
different integration times and hence three different levels of trial-to-trial
variability. Variability is illustrated by shading: the dark region contains half of
the probability mass (25th to 75th percentile), while the light region extends
down to the 2.5th percentile and up to the 97.5th percentile and, together with
the dark region, contains 95% of the probability mass. (D–F) Show P(Z |S), the
average posterior stimulus distribution after observing the response to a single
trial, conditioned on the true stimulus, for the tuning properties shown in
(A–C). Darker shading indicates higher probability and, for clarity, the shading
density is scaled independently for each panel and does not span the full [0, 1]
interval. This distribution can be read like a lookup table: if the true stimulus is
selected on the horizontal axis then the average posterior distribution is given
by that column. The more information conveyed by the neuron, the more

precise the reconstruction and hence the more the response probability mass
is concentrated close to the blue dashed line that corresponds to exact
reconstruction (Z = S). (G–I) The SSI for the same three cases overlaid upon
the distributions shown in (D–F), where each column of the distribution is
sorted so that the highest probability bins are uppermost. This illustrates more
clearly the relationship between the SSI and the amount of uncertainty [i.e.,
the entropy H(Z |S = s)] in the distribution P(Z |S); greater SSI corresponds to
more precise reconstruction and hence lower posterior entropy. The transition
between peak coding and flank coding, according to the SSI, occurs close to
the case shown in (B,E,H) where the uncertainty associated with the
low-gradient peak region of the tuning curve is equal to that due to ambiguity
between the two symmetric flanks. Parameters: N = 1, fmod = 40 spikes/s,
fbg = 5 spikes/s, ω = 0.1, σ = 0, stimulus ensemble consists of 401 equally
probable discrete stimuli regularly spaced in the interval [−0.5, 0.5].

spikes. At this point in most trials no spikes have occurred yet,
regardless of the stimulus, so zero spike counts are uninforma-
tive, as indicated by their low RSI. Non-zero responses, however,
are more likely to have been caused by stimuli at the high-
responding region of the tuning curve (we refer to this as the
tuning curve plateau), so these have higher RSI. As the integration
time increases and the mean responses to plateau stimuli increase
above one spike (Figures 4B,C), these response distributions are
no longer monotonic, but peaked around the expected response.
This means that very low spike counts are indicative of stimuli on
the non-selective, low-responding “baseline” region of the tuning
curve, while high responses are more likely to be caused by stim-
uli on the plateau. Both high and very low spike counts therefore
have relatively high RSI, and there is a trough in the RSI curve
at intermediate responses (Figures 4B,C) and a corresponding
trough in the SSI at the flank (sloping region) of the tuning curve
(Figures 4G,H). This is the coarse discrimination regime for
monotonic tuning curves, analogous to the peak coding regime

for unimodal tuning curves. Here the neuronal responses sup-
port discrimination of baseline from plateau stimuli, but are too
noisy to allow neighboring stimuli to be distinguished from one
another. This can be seen in the conditional posterior distribution
P(Z|S); the chequerboard pattern in Figure 5D means that stim-
uli can be decoded as being from either the baseline or plateau
regions of the tuning curve, but stimuli from within either region
are indistinguishable. The distributions of responses to stimuli
on the flank of the tuning curve overlap with those of the base-
line and plateau, so these intermediate responses could have been
caused by any stimulus and are therefore uninformative. This
is clearly visible as the dark central band in Figure 5G, which
shows that the posterior distribution for stimuli on the flank of
the tuning curve is broad rather than tightly peaked around the
correct stimuli. Within the coarse discrimination regime the rel-
ative values of the SSI for the baseline and plateau regions are
largely determined by the characteristic stimulus of the neuron:
the position of the tuning curve flank within the stimulus space.
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FIGURE 4 | SSI for a sigmoidal monotonic tuning curve. (A–E) show the
response specific information (RSI), together with response distributions
for low, mid and high responding regions of the tuning curve. These are
shown for five different levels of trial-to-trial variability determined by the
integration time τ ; short integration times lead to high variability and vice
versa. The differences in trial-to-trial variability are best illustrated by the
increasing separation between the high, mid and low response
distributions. (F–J) give the SSI for the same five sets of parameter values.
Parameters: N = 1, fmod = 40 spikes/s, fbg = 5 spikes/s, ω = 0.044, σ = 0,
stimulus ensemble consists of 401 equally probable discrete stimuli
regularly spaced in the interval [−0.5, 0.5].

If the plateau is relatively narrow then high spike counts identify
a smaller range of stimuli than low spike counts and the SSI is at
its greatest on the plateau. Conversely, and perhaps unintuitively,
if the plateau is broader than the baseline region then low spike
counts are more informative and the maximum SSI occurs on
the baseline region (results not shown). When the flank is located
centrally in the stimulus space, the SSI of the plateau and baseline
regions are similar, as in Figure 4H.

As the integration time is increased and the trial-to-trial vari-
ability consequently decreases, the RSI for intermediate spike
counts (Figure 4D) and the SSI at the flank of the tuning curve
(Figure 4I), increase and become maxima (both were minima at
shorter integration times). The best-encoded stimulus is now at
the flank of the tuning curve. This is the emergence of the fine
discrimination regime; here the trial-to-trial variability is suffi-
ciently low to allow discrimination between stimuli on the flank
of the tuning curve. The gradient of the tuning curve is greatest
in the center of the flank, and it is here that the Fisher informa-
tion is greatest and the response distributions of adjacent stimuli
are most different. The relatively high precision of decoding on
the flank can be seen in the conditional posterior distributions
(Figures 5E,H) as a concentration of posterior probability mass
around the correct stimulus (Z = S). Further increases in inte-
gration time increase the maximum values of the RSI (Figure 4E)
and SSI (Figure 4J; see also Figures 5F,I), but the best-encoded
stimulus remains the same.

3.1.3. Summary
Monotonic tuning curves exhibit distinct coding regimes analo-
gous to the peak and flank regimes of unimodal tuning curves.
When the trial-to-trial variability is low, fine discrimination dom-
inates and the maximum SSI is on the flank of the tuning curve,
where the Fisher information is also maximal, and hence both
measures predict similar best-encoded stimuli. For high vari-
ability, coarse discrimination dominates and the best encoded
stimulus is less easy to predict. Monotonic tuning curves differ
from unimodal tuning curves in that the high-response region is
broad rather than localized. This means that, as described above,
strong responses are not always informative (as is the case for
peaked tuning curves), as any stimulus on the upper plateau of
the tuning curve is likely to generate a strong response. The best-
encoded stimulus for a single monotonically-tuned neuron is not
clearly defined, as maximum SSI can occur over the whole of
the plateau or the whole of the baseline region. Another impor-
tant difference between monotonic and unimodal tuning curves
is symmetry: as monotonic tuning curves have only a single flank,
each stimulus on the flank is unambiguously associated with a
unique response distribution. This means that, for a given tun-
ing curve gradient and variability (equal Fisher information),
responses to stimuli on the tuning curve flank are more infor-
mative than they would be for a single neuron with a unimodal
tuning curve. For example, compare the SSI peaks close around
the threshold stimulus in Figures 5H,I (approximately 3.5 and 4.5
bits, respectively) with the SSI peaks at the tuning curve flanks in
Figures 3H,I (approximately 2.5 and 3.5 bits).

3.2. THE EFFECT OF POPULATION SIZE
Population size is an important determinant of the magnitude
and shape of the SSI for population coding neurons, and hence
of the best-encoded stimulus. To quantify the information con-
tributed by a neuron in the context of a population code, we use
the marginal SSI (mSSI). The mSSI of a neuron is the difference
between the SSI of the entire population and the SSI of the pop-
ulation without the neuron of interest. It is useful to think of the
single-neuron SSI and marginal SSI as upper and lower bounds,
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FIGURE 5 | Bayesian reconstruction with a monotonic tuning curve. (A–C)

tuning curves and trial-to-trial variability for a single neuron at three different
integration times and hence three different levels of trial-to-trial variability.
Variability is illustrated by shading: the dark region contains half of the
probability mass (25th to 75th percentile), while the light region extends down
to the 2.5th percentile and up to the 97.5th percentile and, together with the
dark region, contains 95% of the probability mass. (D–F) P(Z |S), the average
posterior stimulus distribution after observing the response to a single trial,
conditioned on the true stimulus, for the tuning properties shown in (A–C).
Darker shading indicates higher probability and, for clarity, the shading density
is scaled independently for each panel and does not span the full [0, 1]
interval. This distribution can be read like a lookup table: if the true stimulus is
selected on the horizontal axis then the average posterior distribution is given
by that column. The more information conveyed by the neuron, the more

precise the reconstruction and hence the more the response probability mass
is concentrated close to the blue dashed line that corresponds to exact
reconstruction (Z = S). (G–I) the SSI for the same three cases overlaid upon
the distributions shown in (D–F), where each column of the distribution is
sorted so that the highest probability bins are uppermost. This illustrates more
clearly the relationship between the SSI and the amount of uncertainty (i.e.,
the entropy H(Z |S = s)) in the distribution P(Z |S); greater SSI corresponds to
more precise reconstruction and hence lower posterior entropy. Two
contrasting coding regimes can be seen: a Fisher-like regime (best-encoded
stimulus at the steepest part of the tuning curve (H,I), and a regime where the
SSI is relatively flat, with minimum information occurring at the steep region
of the tuning curve (G). Parameters: N = 1, fmod = 40 spikes/s,
fbg = 5 spikes/s, ω = 0.044, σ = 0, stimulus ensemble consists of 401 equally
probable discrete stimuli regularly spaced in the interval [−0.5, 0.5].

respectively, on the informational contribution of a neuron to a
population code. One way to understand this is to imagine build-
ing up a population by adding one neuron at a time. Assuming
that the code is redundant (as population codes of the type mod-
eled here are), each successive neuron will result in a smaller and
smaller additions to the population SSI: the first increment is the
single-neuron SSI and the last is the marginal SSI.

3.2.1. Unimodal tuning curves
Previous research on unimodal tuning curves showed that
increasing the number of neurons in the population shifts the
code toward the asymptotic regime, where Fisher information
accurately predicts both the mutual information between stimu-
lus and response (Brunel and Nadal, 1998), and the best-encoded
stimulus predicted by the mSSI (Yarrow et al., 2012). In large
populations the best-encoded stimuli predicted by the mSSI lie
on the flanks of the tuning curves and coincide with the Fisher
information maxima. In small populations with high trial-to-trial

variability, the best-encoded stimuli according to the mSSI are at
the peaks of the tuning curves. The number of neurons at which
the transition between the peak and flank coding regimes occurs
depends upon the variability: if the variability is low, each neuron
conveys a correspondingly higher amount of information and the
peak to flank transition occurs at relatively low N. The higher the
variability, the larger the population must be before it enters
the asymptotic regime. Other factors, including the strength and
structure of correlations in the trial-to-trial variability, also affect
the population size at which the asymptotic regime is reached,
but these effects are relatively small (see Yarrow et al., 2012, for
details).

3.2.2. Monotonic tuning curves
To study how population size affects the best-encoded stimulus
for monotonic tuning curves, we calculated the mSSI for popu-
lations of N model neurons with stereotypical sigmoidal tuning
curves and Poisson trial-to-trial variability (again controlled by
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the integration time τ ). Our results show that, as for unimodal
tuning curves, the shape of the mSSI converges toward the shape
of the single-neuron Fisher information as the number of neu-
rons in the population increases (Figure 6A). In the asymptotic
regime, the best-encoded stimulus is on the flank of the tun-
ing curve (Figure 6H). The rate with which the shape of the
mSSI converges to the shape of the Fisher information with
increasing population size depends on the level of variability;
as for unimodal tuning curves, the higher the variability, the
slower the convergence and the larger the population at which
the asymptotic regime is reached (Figure 6A). Like the SSI for
single neurons, the shape of the mSSI in small populations with
high variability is close to that of the tuning curve (Figure 6B)
and the best-encoded stimuli are those on the tuning curve
plateau.

Between these extremes of a small population with high vari-
ability and a large population with low variability, the mSSI for
a unimodal tuning curve can take on variety of different shapes
and consequently the best-encoded stimuli vary widely. The mSSI
goes through a predictable progression of shapes as the trial-to-
trial variability is decreased (by increasing the integration time),
or the population size increased. As we have already seen, the
mSSI is sigmoidal for small populations and short integration
time (Figure 6B). If τ or N is increased slightly, the mSSI for the
baseline region of the tuning curve increases and an mSSI peak
forms at the lower end of the tuning curve flank (Figures 6C–E).
This peak in the mSSI becomes sharper and moves toward the
the characteristic stimulus (the center of the tuning curve flank)
as τ or N increase (Figures 6D,F). At the same time, the mSSI
around the tuning curve plateau changes from the flat upper part

FIGURE 6 | Marginal SSI in populations of sigmoidally tuned neurons.

(A) The normalized dot product of the mSSI and the singleton Fisher
information (Îm • Ĵs) as a function of integration time τ for various
population sizes N. This indicates the similarity in shape of the mSSI
and the Fisher information; a value of 1 indicates that the mSSI is
directly proportional to the Fisher information, while low values indicate

that the two measures have dissimilar shapes. (B–H) mSSI as a function
of the stimulus for parameter values corresponding to the points labeled
in (A). The Fisher information and tuning curve for the neuron of interest
are also shown. All quantities in (B–H) are normalized. Parameters:
fmod = 40 spikes/s, fbg = 10 spikes/s, ω = 0.1, σ = 0, stimulus variable is
continuous in the interval [−1, 1].
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of a sigmoid into a second peak, which also becomes sharper and
migrates toward the characteristic stimulus as τ or N is increased
(Figures 6C–F). At these intermediate, transitional values of τ

and N, the mSSI is bimodal, with both peaks having approxi-
mately equal magnitude. As τ or N is increased further, the two
mSSI peaks ultimately merge into a single peak located at the
tuning curve flank, coincident with the maximum Fisher infor-
mation (Figures 6E–G). This convergence of the best-encoded
stimuli predicted by the mSSI and the Fisher information occurs
at population sizes that are modest in the context of the mam-
malian brain: the shapes of the two measures are close even in
populations of the order of 100 neurons at biologically relevant
integration times (of the order of 100 ms; Figure 6A).

3.2.3. Summary
The single neuron SSI for monotonically-tuned neurons is depen-
dent upon the level of trial-to-trial variability and the marginal
SSI is dependent upon the variability and the population size.
For large populations the best-encoded stimulus lies on the slop-
ing region of the tuning curve, close to the point of maximum
gradient, as predicted by the Fisher information. In smaller pop-
ulations the best-encoded stimulus is dependent on the variability
and can be anywhere on, or close to, the sloping part of the
tuning curve. These findings are in agreement with those for uni-
modal tuning curves (Butts and Goldman, 2006; Yarrow et al.,
2012), but the shape of the SSI—and hence the best-encoded
stimulus—is more varied in the case of monotonic tuning
curves.

3.3. NON-UNIFORM STIMULUS DISTRIBUTIONS
For most of the simulations described in this article we have
assumed that stimuli are uniformly distributed, but this is rarely
the case in nature. Even stimulus variables that seem uniformly
distributed may not be; for example edge orientation in natural
scenes is non-uniformly distributed, with horizontal and verti-
cal contours occurring more frequently than other orientations
(Coppola et al., 1998). In particular, monotonic tuning curves
imply a linear (as opposed to circular) stimulus space and this,
in turn, implies that the stimuli are non-uniformly distributed
such that they fall within some finite interval; a uniform dis-
tribution within sharply defined limits is extremely unlikely. As
the space of possible stimulus distributions is essentially limit-
less, we did not attempt to examine a wide variety of distribution
forms and instead focussed on determining the effect of local
non-uniformity of the stimulus distribution on the mSSI of neu-
rons with both unimodal and monotonic tuning curves. To this
end, we modeled a broadly peaked stimulus distribution p(s) and
considered three neurons of each tuning curve type: one with its
characteristic stimulus at the peak of the stimulus distribution
and one on either flank (see Figures 7A,C). The mSSI of each of
the neurons of interest was computed for both the peaked stimu-
lus distribution and a uniform distribution extending well beyond
the tuned regions of the neurons (Figures 7B,D). The simula-
tions were repeated for a range of population sizes and integration
times.

As previously discussed, the mSSI peaks converge toward those
of the Fisher information as the population size goes to infinity

(Yarrow et al., 2012). This holds for non-uniform stimulus
distributions, so the stimulus distribution (provided that it is
non-zero) has no effect upon the best-encoded stimulus predicted
by the mSSI in the limit of large populations (this was confirmed
by numerical simulation; results not shown). As we shall see, away
from the asymptotic regime the stimulus distribution can strongly
affect the best-encoded stimulus, particularly for neurons with
monotonic tuning curves.

3.3.1. Unimodal tuning curves
For small populations and high variability (i.e., in the peak cod-
ing regime) the peak of a unimodal tuning curve defines the
best-encoded stimulus, and the stimulus distribution has little
or no effect. Therefore, non-uniformity of the stimulus distri-
bution affects the best-encoded stimulus primarily in the tran-
sition between the peak and flank coding regimes, where the
mSSI is bimodal (as in Figure 7B). The effect of non-uniformity
is to skew the mSSI toward greater stimulus probability: the
mSSI peak coinciding with the greater stimulus probability
is amplified, while the other is suppressed. Thus, the best-
encoded stimulus is shifted toward the peak of the stimulus
distribution.

3.3.2. Monotonic tuning curves
The best-encoded stimuli of monotonically-tuned neurons are
more strongly affected by the stimulus distribution, and the effect
is greatest for small populations with high variability (results not
shown). As is the case for the single-neuron SSI, it is difficult
to predict the shape of the mSSI under these conditions with-
out actually computing it, as it is sensitive to the tuning curve
shape, the position of the characteristic stimulus within the stim-
ulus range, as well as to the stimulus distribution. For monotonic
tuning curves, the effect of non-uniformity in the stimulus dis-
tribution is that the mSSI peak with lower stimulus probability is
amplified and the peak with higher stimulus probability is atten-
uated (Figure 7D); thus the best-encoded stimulus is shifted away
from the most probable stimulus. This is the opposite of the effect
that occurs with peaked tuning curves.

3.3.3. Unexpected stimuli
The presence of unexpected stimuli—those with a low probability
of occurrence—in a stimulus ensemble can lead to counterintu-
itive SSI values. If much of the probability mass in the stimulus
distribution is concentrated around a subset of common stimuli,
then evidence of an unusual stimulus causes an initial increase in
the posterior entropy; this can be seen as a negative SSI or mSSI
(Figure 7E shows an example of this: the mSSI at the tails of the
central (green) tuning curve are slightly negative). Although the
SSI is transiently negative, the weak evidence provided by the early
response does make the posterior more “correct” i.e., it increases
the posterior probability of the true stimulus relative to other
stimuli. This odd property of the SSI serves as a reminder that
care is sometimes required when interpreting information theo-
retic measures. It is important to note that a locally negative SSI
does not violate the non-negativity of Shannon information, as
the mutual information—the expected value of the SSI—remains
non-negative.
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FIGURE 7 | Effect of stimulus distribution non-uniformity on the marginal

SSI. Non-uniformity of the stimulus distribution can affect the marginal SSI.
Here we consider a stimulus distribution that is peaked around zero and
compute the mSSI for three neurons, one at the peak of the stimulus
distribution and one on either flank. (A) Stimulus distribution p(s) and tuning
curves (TC) for unimodal neurons of interest. (B) mSSI for the tuning curves
and stimulus distribution shown in A (solid lines), together with the mSSI for
identical tuning curves and variability, but a uniform stimulus distribution

(broken lines). (C–D) As (A–B), for monotonic tuning curves. (E) The mSSI for
the same neurons illustrated in (A), but with a very short integration time
(τ = 5 ms). Notice the negative mSSI values coinciding with the tails of the
central (green) tuning curve. Uncertainty in the mSSI is indicated by shaded
regions of ±1 Standard Error where it is greater than the width of the line.
Parameters: N = 17, τ = 500 ms, fmod = 40 spikes/s, fbg = 10 spikes/s,
ω = 0.1 (unimodal), ω = 0.044 (monotonic), stimulus variable is continuous
and distributed as shown, or uniformly across the interval [−1, 1].

3.3.4. Summary
The stimulus distribution itself can affect the shape of the mSSI
and the best-encoded stimulus in the pre-asymptotic regime.
When there is a gradient in the stimulus distribution p(s) around
the characteristic stimulus of a neuron (peak of unimodal, or
flank of monotonic tuning curve), the best-encoded stimulus
is shifted in the direction of greater p(s) in the case of uni-
modal tuning curves and in the opposite direction in the case
of monotonic tuning curves. In small, noisy populations with
monotonic tuning curves the stimulus distribution can strongly
effect the best-encoded stimulus; such cases should be analyzed
individually.

3.4. BEST-ENCODED STIMULI IN FORCED CHOICE TASKS
The preceding sections described how the best-encoded stimulus
of a neuron depends upon trial-to-trial variability and popula-
tion size when there are many possible stimuli. Large changes
in the best-encoded stimulus, such as the peak-flank transi-
tion for unimodal tuning curves, are caused by changes in the

relative amounts of information associated with fine vs. coarse
discrimination (Butts and Goldman, 2006). These effects can
only be observed when the stimulus ensemble is sufficiently rich,
in the sense that it must include both narrowly and widely
separated stimuli so that both fine and coarse discrimination
are relevant. When applied to rich stimulus ensembles, infor-
mation theoretic measures, such as the SSI, quantify informa-
tion in a way that is not specific to any particular behavioral
task. Sometimes, however, it is useful to predict what the best-
encoded stimulus is for a specific behavioral task, particularly
when comparing precision at the neural and behavioral lev-
els, as behavioral experiments typically involve simplified tasks
(e.g., two-alternative forced choice; 2AFC). This type of task
involves making a decision between predefined choices, and the
SSI can be used to analyze these tasks by tailoring the stim-
ulus ensemble to match the choices in the task: for instance,
a 2AFC task corresponds to an ensemble with two stimuli.
Modeling the task in this way allows us to identify the stimulus
values for which a neuron conveys the most decision-relevant
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information, where the decision to be made is defined by the
task.

3.4.1. Unimodal tuning curves
In single neurons with unimodal tuning curves, when the stim-
ulus ensemble is simple (contains few stimuli) it is the ensem-
ble itself that determines the best-encoded stimulus (Butts and
Goldman, 2006). For example, in a 2AFC task involving two
closely-spaced stimuli (i.e., when 	s is much less than the width
of the tuning curve flank), coarse discrimination is irrelevant as
there are no widely-spaced stimuli in the ensemble, so informa-
tion about the stimulus is maximized when the stimuli fall on
the steepest part of the tuning curve flank, where Fisher informa-
tion is maximal. Thus, for closely-spaced stimuli the best-encoded
stimuli are on the flanks of the tuning curve, meaning that a
neuron conveys the most information in support of a decision
between the two stimuli when they fall on a flank of the tun-
ing curve. Conversely, for widely spaced pairs of stimuli (such
that when one lies at the tuning curve peak the other lies on
the non-tuned baseline region) fine discrimination is irrelevant
and the best-encoded stimulus is at the peak of the tuning curve.
Because the coding regime is determined entirely by the stimulus
ensemble, the best-encoded stimulus is not affected by the level of
trial-to-trial variability as they are when the stimulus ensemble is
rich.

To investigate the effect of the task (stimulus ensemble) on
the best-encoded stimuli in the context of a population code, we

computed the mSSI for unimodal tuning curves in 2AFC tasks
with normalized stimulus spacings in the range δs = [0.1, 3.5].
Our results show that the best-encoded stimuli indicated by the
mSSI in 2AFC tasks is determined by the stimulus spacing in the
same way that the single-neuron SSI is, i.e., it is at the tuning curve
peak for coarse discrimination and at the flanks for fine discrim-
ination (see Figures 8A,B; the transition between coarse and fine
discrimination occurs at approximately δs = 1). With unimodal
tuning curves, the trial-to-trial variability and the size of the pop-
ulation have little effect upon the best-encoded stimulus. In the
coarse discrimination regime, the only effect of changing the level
of variability (Figure 8C) or the number of neurons in the popu-
lation (Figure 8D) is to change the height of the secondary mSSI
peaks relative to the central maximum. In the fine discrimina-
tion regime, neither the level of variability or the population size
have any effect on best-encoded stimulus—it is always the same
as that predicted by the Fisher information, but for intermediate,
transitional stimulus spacings where the mSSI is bimodal, changes
in τ can cause small shifts in the best-encoded stimuli (results not
shown).

3.4.2. Monotonic tuning curves
We extended the analysis to populations of monotonic tuning
curves by again computing the mSSI for 2AFC tasks with stim-
ulus spacings in the range δs = [0.01, 1]. For monotonic tuning
curves, the best-encoded stimulus for fine discrimination tasks
is again at the point of maximum Fisher information i.e., the

FIGURE 8 | Best-encoded stimuli for unimodal tuning curves in a

two-alternative discrimination task. (A) mSSI of a neuron in a very small
population with high trial-to-trial variability, for two-alternative discrimination
tasks with varying normalized stimulus interval δs. (B) As (A), but for a slightly

larger population and lower variability. (C–D) Show typical effects of changing
the variability and population size, respectively. Uncertainty in the mSSI is
indicated by shaded regions of ±1 Standard Error where it is greater than the
width of the line. Parameters: fmod = 40 spikes/s, fbg = 10 spikes/s, ω = 0.1.
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flank of the tuning curve (Figure 9). However, for coarse dis-
crimination tasks, predicting the best-encoded stimulus is less
straightforward than is the case for peaked tuning curves, as the
shape of the mSSI is somewhat dependent on trial-to-trial vari-
ability and population size. As the stimulus interval is increased,
the best encoded stimulus shifts toward the upper end of the
tuning curve flank (Figure 9A). For coarse discrimination a sec-
ondary mSSI peak emerges on the low-responding side of the
flank and grows as the variability is reduced or the population
size increased (Figure 9B). The two peaks are due to the two com-
ponents of the SSI in a two-alternative task (see Materials and
Methods), each of which is bell-shaped. The distance between
the peaks of the two components is determined by the stimu-
lus interval, until the stimulus interval is greater than the width
of the tuning curve flank. The effect of decreasing the variability
(Figure 9C) or increasing the number of neurons in the popula-
tion (Figure 9D) is to increase the magnitude of the mSSI peak
on the low-responding side of the tuning curve; eventually this
peak exceeds the one at the plateau end of the flank, and the best-
encoded stimulus shifts to the baseline end of the flank. In general,
the best-encoded stimulus is at the baseline end of the tuning
curve flank for large populations, low variability or widely-spaced
stimuli.

3.4.3. What constitutes coarse discrimination?
In contrast to the SSI, the Fisher information is specific to
tasks where information on fine-grained stimulus differences

dominates—fine discrimination, estimation, reconstruction—
and does not quantify information that contributes to coarse dis-
crimination. The Fisher information always predicts that the best-
encoded stimuli coincide with the flanks of peaked tuning curves,
and when the SSI is used to analyze equivalent fine-grained tasks
it yields similar predictions. So far, we have described the stimu-
lus spacing in 2AFC tasks rather loosely as being coarse or fine,
but what actually constitutes a “fine” or “coarse” discrimination
task? Where is the boundary between fine and course discrimina-
tion, and what are the limits of applicability of Fisher information
in terms of stimulus spacing; when does Fisher information cor-
rectly identify the best-encoded stimulus? What if there are more
than two alternatives in a forced choice task?

To address these questions we computed the mSSI for two,
three and four-alternative forced choice tasks with a range of
stimulus spacings, for populations of 81 neurons with either
unimodal or monotonic tuning curves (Figure 10). We mod-
eled normalized stimulus spacings in the range δs = [0.16, 1.6],
which covers the transition between the fine and coarse discrim-
ination regimes. For both types of tuning curve, the transition
between fine discrimination and coarse discrimination, accord-
ing to the mSSI, occurs at approximately δs = 1 (Figure 10A),
i.e., where the distance between the stimuli is roughly the same as
the width of the tuning curve flank (Figure 10B). Increasing the
number of alternatives in the task introduces elements of coarser
discrimination; for example, a three-alternative task involves
distinguishing between non-adjacent stimuli separated by 2	s, as

FIGURE 9 | Best-encoded stimuli for monotonic tuning curves in a

two-alternative discrimination task. (A) mSSI of a neuron in a very small
population with high trial-to-trial variability, for two-alternative discrimination
tasks with varying normalized stimulus interval δs. (B) As (A), but for a slightly

larger population and lower variability. (C,D Show typical effects of changing
the variability and population size, respectively. Uncertainty in the mSSI is
indicated by shaded regions of ±1 Standard Error where it is greater than the
width of the line. Parameters: fmod = 40 spikes/s, fbg = 10 spikes/s, ω = 0.1.
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FIGURE 10 | Best-encoded stimulus depends on stimulus spacing in a

forced-choice task. This figure summarizes how the best-encoded stimulus
predicted by the marginal SSI and marginal Chernoff distance diverges from
that predicted by the Fisher information as the distance between stimuli is
increased in a forced-choice discrimination task. (A) Normalized dot product
(see Materials and Methods) of mSSI and Fisher information (for 2, 3, and
4-alternative tasks) together with the normalized dot product of Chernoff
distance and Fisher information (for 2-alternative tasks), for unimodal and
monotonic tuning curves. Markers indicate the approximate transition point
between the fine and coarse discrimination regimes. The interval between
stimuli δs is normalized such that it is expressed as a fraction of the tuning

curve flank width as shown in (B) (see also Materials and Methods). (B)

Tuning curves; the widths of unimodal and monotonic tuning curves were
chosen such that both have equal peak Fisher information, equal maximum
gradient, and equal flank width (see Materials and Methods). (C) mSSI of a
neuron in a population of 81 with unimodal tuning curves, for 2-alternative
forced choice tasks with normalized stimulus intervals ranging from δs = 0.16
to δs = 1.6. The heavy black line indicates the approximate transition point as
shown in (A). (D) As (C), for monotonic tuning curves. (E,F) As (C–D), but
showing the marginal Chernoff distance. Parameters: N = 81, τ = 20 ms,
fmod = 40 spikes/s, fbg = 10 spikes/s, ω = 0.1 (unimodal), ω = 0.044
(monotonic).

well as adjacent stimuli with an interval of 	s. The presence of
more widely spaced stimulus pairs within the ensemble can drive
the shape of the mSSI toward the coarse discrimination regime
i.e., a shape less like that of the Fisher information, as indicated
by lower Îm • Ĵ values (Figure 10A; see Materials and Methods for
more details of how we quantify similarity of shape). Figure 10C

shows how the mSSI varies with δs for a two-alternative task and
unimodal tuning curves; the transition between the Fisher-like
bimodal shape of the fine discrimination regime and the strong
central peak of the coarse discrimination regime can be clearly
seen. Similarly, for monotonic tuning curves, the transition is
between unimodal mSSI for fine discrimination (best-encoded
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stimulus at the flank of the tuning curve) and bimodal mSSI for
coarse discrimination (best-encoded stimulus near one end of the
flank), as can be seen in Figure 10D.

3.4.4. Chernoff distance: an efficient measure for 2AFC tasks
For two-alternative tasks, the Chernoff distance can be used to
measure the discriminability of the two stimuli. To compare
the best-encoded stimuli predicted by the SSI and Chernoff dis-
tance, we computed the marginal Chernoff distance (mDC; see
Materials and Methods) for the same population models and
tasks described in the preceding paragraph (Figures 10E,F). For
unimodal tuning curves, the difference in shape between the mSSI
and mDC is primarily in the outer information peaks located
at approximately ±	s (Figures 10C,E), and this has little effect
on the best-encoded stimulus. The asymmetry of the monotonic
tuning curve, however, reveals an important difference between
the mSSI and mDC: because the Chernoff distance is commuta-
tive [D(s, s + 	s) = D(s + 	s, s)] both components of the mDC
are identical, but shifted by 	s. This means that the mDC for
the monotonic tuning curve is symmetrical, with two informa-
tion peaks of equal height and thus two best-encoded stimuli.
Although the shapes of the mSSI and mDC are not exactly
the same, the best-encoded stimuli predicted by the marginal
Chernoff distance are qualitatively consistent with those predicted
by the mSSI and, as for the mSSI, the transition between fine and
coarse discrimination regimes occurs at approximately δs = 1.
The shape of the mDC is also very close to the shape of the Fisher
information for fine discrimination: D̂m • Ĵ approaches 1 as δs →
0 (Figure 10A). The best-encoded stimulus predictions of the
Chernoff distance agree with those of the SSI, and the marginal
Chernoff distance is therefore a computationally efficient method
of estimating best-encoded stimuli for two-alternative tasks.

3.4.5. Summary
When the task in hand limits the possible stimulus choices, such
as in a 2AFC protocol, the spacing between the alternatives deter-
mines the best-encoded stimulus. If the stimulus alternatives are
separated by less than the width of the tuning curve flank, a neu-
ron is most informative when the stimuli fall on the steepest parts
of the tuning curve flanks, as predicted by the Fisher informa-
tion. For stimulus spacings greater than the width of the tuning
curve flank, the best-encoded stimuli are at the tuning curve peak
for unimodal tuning curve, and at either end of the flank for
monotonic tuning curves. The Chernoff distance can be used
to assess best-encoded stimulus for 2AFC tasks, and is an effi-
cient alternative to the SSI while yielding qualitatively equivalent
predictions.

4. DISCUSSION
We have shown how the best-encoded stimulus for neurons with
sigmoidal monotonic tuning curves depends on the number of
neurons in the population, the level of trial-to-trial variability
and on the location of the tuning curve flank within the stimu-
lus space. This builds upon earlier studies (Butts and Goldman,
2006; Yarrow et al., 2012) that showed how best-encoded stimuli
for unimodal tuning curves depend on the level of trial-to-trial
variability and the population size. For large populations (of the

order of hundreds of neurons), we confirmed by numerical sim-
ulation that the best-encoded stimulus predicted by the SSI for
monotonically tuned neurons agrees with that predicted by the
Fisher information: i.e., the best-encoded stimulus is on the slop-
ing flank of the tuning curve. This is in agreement with the
earlier studies addressing unimodal tuning curves and also with
the proven equivalence of Fisher information and mutual infor-
mation in the limit as the population size N → ∞ (Brunel and
Nadal, 1998). Away from the asymptotic regime, in smaller pop-
ulations where the shapes of the marginal SSI and the Fisher
information differ, the best-encoded stimulus is harder to predict
as it can be strongly affected by the population size, variability
and stimulus distribution as well as the tuning curve; this is in
contrast to peaked tuning curves, where the SSI is greatest at the
peak of the tuning curve under similar conditions. This difference
is due to the fact that strong responses by neurons with saturating
monotonic tuning curves are often triggered by a wider range of
stimuli, which makes them less informative. Far from the asymp-
totic regime, the best-encoded stimuli can be at either end of the
tuning curve flank, and may extend (i.e., the SSI or mSSI may
be flat) across either the plateau or baseline regions of the tuning
curve. Where the variability is very high, for instance in the first
few milliseconds post-stimulus in the case of Poisson-like noise,
the best-encoded stimulus is determined by the characteristic
stimulus (cutoff point) of the tuning curve, which paradoxically
can mean that an absence of activity conveys the most informa-
tion in terms of estimation; this is not the case for peaked tuning
curves.

We next examined how the behavioral task can affect the best-
encoded stimulus. One of the strengths of the SSI is its flexibility:
it can be used to analyze an arbitrary task by manipulating the
stimulus distribution. Butts and Goldman (Butts and Goldman,
2006) showed that when the SSI is used to quantify informa-
tion in the context of a specific task, the task itself can determine
what the best-encoded stimulus is, with population size and vari-
ability having little effect. Our results support this and show
that it also holds for monotonic tuning curves. In general, if
tasks are thought of as lying on a continuum between the two
extremes of stimulus distribution richness (i.e., two discrete stim-
uli and a continuous stimulus distribution), the simpler the task,
the more influence it will have on the best-encoded stimulus.
Where the best encoded stimulus is determined mainly by the
task, population size and variability have little effect and no dis-
tinct asymptotic and non-asymptotic regimes exist (such as the
peak and flank coding regimes for unimodal tuning curves). For
fine discrimination tasks, the best-encoded stimuli are as pre-
dicted by the Fisher information: at the steepest parts of the
tuning curve. As a rule of thumb, fine discrimination tasks are
those where the stimulus spacing is less than the width of the
tuning curve flank or flanks. For greater stimulus spacings the
best-encoded stimuli shift from the flanks to the peak, or the
ends of the flank for monotonic tuning curves. For tasks involving
more than two distinct stimuli, the distance between the clos-
est pair of stimuli in an ensemble is important, as it determines
whether the fine discrimination regime is relevant. In addition
to this, the closest stimuli are likely to have the most similar
response distributions, which in turn determines the rate at which
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the mutual information increases with population size (Kang and
Sompolinsky, 2001).

Although the SSI can be used to analyze many different tasks,
using it to determine best-encoded stimuli in a two-alternative
task is not computationally efficient. This type of analysis boils
down to measuring the difference between two response distri-
butions, and if these distributions are known—as in a modeling
study—then a measure such as the Chernoff distance is more
efficient. Our results confirm that the SSI and Chernoff dis-
tance are in close agreement as to the best-encoded stimuli in
two-alternative tasks where each stimuli is equally likely. This is
related to the work of Kang et al. (2004), who used Chernoff dis-
tance to analyze the relative amounts of information conveyed by
neurons in discrimination tasks of varying coarseness. Whereas
they constructed curves of Chernoff distance vs. stimulus inter-
val for whole populations, we used it to identify which stimuli
were best encoded by a given neuron. Just as the SSI and the
Chernoff distance are consistent with one another where both are
valid (two-alternative tasks), the SSI and the Fisher information
are consistent where the Fisher information is valid, i.e., in the
asymptotic regime and for fine discrimination tasks. The Fisher
information gives insight into fine discrimination, the Chernoff
distance into two-alternative discrimination of arbitrary coarse-
ness, while the SSI is flexible and can give a generalized picture
of the informational tuning curve. These measures do not con-
tradict each other, they simply have limited validity and may not
yield meaningful predictions outside their respective domains of
validity.

Like any study, ours has a few limitations. Firstly, our model
only considers information transmitted in firing rates, and
assumes uncorrelated Poisson trial-to-trial variability. These are
clearly simplifications that discount any information conveyed by
spike times, but analysis of rate coding remains important as tun-
ing curves are still widely used by experimentalists to describe
the information-bearing activity of neurons. Also, correlations
in trial-to-trial variability have been shown to have a relatively
small effect on best-encoded stimuli (Yarrow et al., 2012). We have
assumed that all tuning curves in a population are stereotypical
copies with equal amplitude. Heterogeneity in the amplitude of
tuned responses can have a significant effect on the total infor-
mation content of a population code (Ecker et al., 2011), so it
may also affect best-encoded stimuli; this should be investigated
in future work.

In this article we have examined two classes of one-
dimensional tuning function: unimodal and monotonic. In real-
ity these are often encountered as a combined tuning function
of two or more stimulus dimensions, for example a neuron in
the visual cortex may be unimodally tuned to contour orienta-
tion and also monotonically responsive to contrast. Investigating
the best-encoded stimuli in population codes comprised of neu-
rons with two-dimensional combined monotonic and unimodal
tuning functions would be an interesting topic for future research.

Estimating the best-encoded stimulus of a neuron is not an
empty theoretical exercise; there is a growing body of evidence
that the neurons with the most informative activity contribute
strongly to decision-making. For any given task, determining the
best-encoded stimulus of a given neuron, and identifying the

neurons in a population that are most informative, are closely
related problems (in fact they are exactly equivalent when all
tuning curves are identical, shifted copies and the stimulus dis-
tribution is uniform). Testing the hypothesis that the most infor-
mative neurons contribute most to decision-making is relatively
tractable for two-alternative tasks where the best-encoded stimu-
lus is controlled by the task itself and behavioral performance in
the task is easily measured. In a theoretical study of maximum-
likelihood decoding of population codes, Jazayeri and Movshon
(2006) found that the spacing between stimuli in a discrimination
task was an important determinant of which neurons contribute
to decision-making, with neurons tuned to the task stimuli con-
tributing most to coarse discrimination and flanking neurons
(i.e., those whose tuning curve flanks span the stimuli to be dis-
criminated) contributing most to fine discrimination. The ques-
tion of whether subsequent neural processing makes optimal use
of the information propagated by a population code is an impor-
tant one, as the information content of the population activity
itself is less relevant if it is not fully utilized. Some experimental
studies have reported evidence of population codes that are uti-
lized optimally, in that the most informative neurons appear to
have the greatest causal effect on behavior in both fine and coarse
discrimination tasks. Evidence that flanking, “off-channel” neu-
rons are most important in fine discrimination tasks has been
found in psychophysical studies (e.g., Hol and Treue, 2001) and
studies involving direct measurement of single neuron activity
(Purushothaman and Bradley, 2005) and BOLD response in fMRI
voxels (Scolari and Serences, 2010). Recent theoretical progress
in the interpretation of choice probabilities (Haefner et al., 2013)
opens the door to more robust estimation of neuronal contribu-
tions to decision making. Given these advances, we might expect
to see new experimental evidence of the importance of flanking
neurons in fine discrimination tasks, and unimodally-tuned neu-
rons selective for the stimuli in coarse discrimination tasks—if
firing rate information is indeed optimally utilized. Similarly, the
results of our simulations suggest that neurons whose activity is
just above baseline, or just reaching its saturated plateau level, at
the stimulus of interest will be influential in coarse discrimination
tasks involving monotonically-tuned populations.

Comparing precision at the neuronal and behavioral levels is
much more difficult when the stimulus ensemble is richer than
that of a simple two-alternative discrimination task, for instance
in the case of estimation. This makes it difficult to test whether
the pre-asymptotic regime (where the best encoded stimuli do
not coincide with the flanks of the tuning curves) is biologically
relevant. Our results confirm that the pre-asymptotic regime is
restricted to very high levels of trial-to-trial variability or very
short integration times when the population size is of the order
of hundreds of neurons, as it likely to be the case in the cortex.
Do neural systems ever operate in the pre-asymptotic regime? If
they do, is subsequent information processing adapted to make
use of the fact that different neurons may be most informative at
short vs. long integration times? These remain open questions. It
may be important to consider stimulus detection when address-
ing these questions, as the time required to accumulate evidence
for detection may impose a lower limit on the range of integration
times that are relevant for estimation.
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To conclude, our results should serve as a reminder that it is
not safe to assume that strong neuronal responses are informative;
it is perhaps more often the case that moderate responses are most
informative, as these occur in response to stimuli that lie on the
flanks of the tuning curve. However, information tuning curves
and best-encoded stimuli can be easily estimated from experi-
mentally measured tuning curves using the measures discussed
in this article.
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