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The only way we can interact with the world is through movements, and our primary
interactions are via the hands, thus any loss of hand function has immediate impact on our
quality of life. However, to date it has not been systematically assessed how coordination
in the hand’s joints affects every day actions. This is important for two fundamental
reasons. Firstly, to understand the representations and computations underlying motor
control “in-the-wild” situations, and secondly to develop smarter controllers for prosthetic
hands that have the same functionality as natural limbs. In this work we exploit the
correlation structure of our hand and finger movements in daily-life. The novelty of our idea
is that instead of averaging variability out, we take the view that the structure of variability
may contain valuable information about the task being performed. We asked seven
subjects to interact in 17 daily-life situations, and quantified behavior in a principled manner
using CyberGlove body sensor networks that, after accurate calibration, track all major
joints of the hand. Our key findings are: (1) We confirmed that hand control in daily-life
tasks is very low-dimensional, with four to five dimensions being sufficient to explain
80–90% of the variability in the natural movement data. (2) We established a universally
applicable measure of manipulative complexity that allowed us to measure and compare
limb movements across tasks. We used Bayesian latent variable models to model the
low-dimensional structure of finger joint angles in natural actions. (3) This allowed us to
build a naïve classifier that within the first 1000 ms of action initiation (from a flat hand
start configuration) predicted which of the 17 actions was going to be executed—enabling
us to reliably predict the action intention from very short-time-scale initial data, further
revealing the foreseeable nature of hand movements for control of neuroprosthetics and
tele operation purposes. (4) Using the Expectation-Maximization algorithm on our latent
variable model permitted us to reconstruct with high accuracy (<5–6◦ MAE) the movement
trajectory of missing fingers by simply tracking the remaining fingers. Overall, our results
suggest the hypothesis that specific hand actions are orchestrated by the brain in such a
way that in the natural tasks of daily-life there is sufficient redundancy and predictability to
be directly exploitable for neuroprosthetics.

Keywords: neurotechnology, motor control, neuroprosthetics, movement variability, Bayesian classifier, activities

of daily living, finger movement

INTRODUCTION
The human hand is a highly complex actuator and perhaps the
most important and diverse tool we use to interact with the
environment. The hand is capable of both a powerful grip to
push, pull, or twist objects, and a precise grip to twist and turn
small objects or handles (Napier, 1980). These are just a few
of the countless gestures we can use and learn. Anatomically,
the hand comprises a total of 27 bones, 18 joints, and 39 mus-
cles (Tubiana, 1981), which afford over 20 degrees of freedom
(DOF) (Stockwell, 1981; Soechting and Flanders, 1997; Jones
and Lederman, 2006). The number of degrees of freedom is an

important characterization of the human hand because it defines
the dimensionality of the control problem that has to be solved
by the motor system. However, previous studies of human motor
control showed that normal hand behavior uses only a small sub-
set of possible hand configurations (Todorov and Ghahramani,
2004; Weiss and Flanders, 2004; Ingram et al., 2008; Valero-
Cuevas et al., 2009). It is known that biomechanically, the control
of individual joints is limited by the redundant set of muscles that
control single or several joints (Lang and Schieber, 2004; Rácz
et al., 2012). Studies of neural and neuromuscular architecture
of the hand have demonstrated that these do not support fully
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isolated joint movements (Lemon, 1997; Poliakov and Schieber,
1999; Reilly and Schieber, 2003), and biomechanical constraints
appear to result in all muscles being required for full direc-
tional control of grip forces (Kutch and Valero-Cuevas, 2011).
Additionally, it has been proposed that motor control of the hand
joints is organized in a modular way, where several degrees of free-
dom are organized into functional groups to simplify the control
problem (Santello et al., 1998; Tresch et al., 2006).

In the realm of muscle co-actions so called motor synergies
were identified to represent structured spatio-temporal patterns
of muscle interplay in defined movements (Bernstein, 1967;
Santello et al., 2002; Daffertshofer et al., 2004; d’Avella et al.,
2006; Tresch et al., 2006). Also, studies that have focused on fin-
ger joint kinematics of complex hand shapes (Santello et al., 1998;
Mason et al., 2001; Daffertshofer et al., 2004), as well as contin-
uous daily-life-day activity (Ingram et al., 2008) found that most
variability in the data could be explained by just a few (four to six)
characteristic parameters (so called principal components) that
indicates a high degree of correlation between the angles of the
fingers. These have also been replicated in studies focusing on the
key evolutionary ability to produce flint-stone tools (Faisal et al.,
2010).

The importance of the hand as our means to interact with the
world becomes painfully evident when loss of a hand or hand
function occurs. Here neuroprosthetics and robotic hands have
rapidly evolved to imitate an unprecedented level of hand-control
(Wolpaw and McFarland, 1994, 2004; Taylor et al., 2002; Bitzer
and van der Smagt, 2006; Carrozza et al., 2006; Hochberg et al.,
2006, 2012; Kuiken et al., 2007, 2009; Rothling et al., 2007; Steffen
et al., 2007; Zhou et al., 2007; Cipriani et al., 2008; Liu et al., 2008;
Velliste et al., 2008; Schack and Ritter, 2009; Schröder et al., 2012;
Feix et al., 2013; Thomik et al., 2013). Yet, it is still very difficult
for people with a lost limb to achieve naturalistic mobility and
dexterity by controlling a prosthetic replacement in the same way
they would control their own body. This increases the training
time to use such neuroprosthetics (up to 2 years) and results in a
low adoption rate after training.

We hypothesize that natural hand movements performed “in-
the-wild,” outside artificially construed and highly controlled
laboratory tasks contain correlation information that can be used
for prediction and reconstruction in the context of prosthetics.
We asked subjects to perform everyday tasks such as opening
the door, eating, using the phone, etc. The data consists of 15-
dimensional time series representing the angles of all the major
joints of all the fingers. Advances in experimental methods have
increased the availability, amount and quality of high-resolution
behavioral data for both humans and animals that can be col-
lected. However, most behavioral studies lack adequate quanti-
tative methods to model behavior and its variability in a natural
manner. Here, we take the view that motor behavior can be under-
stood by identifying simplicity in the structure of the data, which
may reflect upon the underlying control mechanisms. Yet, the
analysis of movements and specifically hand movements is com-
plicated by the highly variable nature of behavior (Faisal et al.,
2008). To extract the structure of hand configuration variabil-
ity data stream we used a probabilistic generative latent variable
model (PPCA) of hand configurations for each task.

Part of these results was previously published in the form of
abstracts (Belić and Faisal, 2011, 2014).

MATERIALS AND METHODS
SUBJECTS
Seven adults (two women and five men, average age 24 ± 2
years) with no known history of neurological or musculoskeletal
problems, participated in this study following approved ethical
guidelines. All subjects were right-handed as determined by the
Edinburgh Handedness Inventory (Oldfield, 1971). The experi-
mental procedure used in this experiment was approved by the
local ethics committee.

EXPERIMENTS AND DATA ACQUISITION
We asked subjects to perform 17 different everyday tasks
(Figure 1), while capturing their hand movements by using resis-
tive sensors embedded in a previously calibrated CyberGlove I
(CyberGlove System LLC, CA, USA). The data glove is made
of thin cloth, and its sensors are correlated with corresponding
joints of the human hand (Figure 2A). The CyberGlove we used
in this study is associated with 18 DOF of the hand. We used data
from 15 sensors that consisted of metacarpalphalangeal (MCP)
and proximal interphalangeal (PIP) sensors for the four fingers,
three stretch sensors between the four fingers, three sensors for
the thumb (the carpometacarpal (CMC), MCP and interpha-
langeal (IP) sensors), and the stretch sensor between the thumb
and the palm of the hand. Sensors were sampled continuously
at 80 Hz at a resolution of eight bits per sensor. Subjects com-
pleted 10 repetitions for each of the activities, and they always
started trials from the same initial position (the hand was placed
on the interface device attached to the subject’s belt with the fin-
gers composed together and thumb oriented parallel to the palm).
The beginning of each trial was indicated with a sound. The tri-
als were self-paced and the purpose of activities was explained to
subjects orally, but they were not instructed about any desired
movements for the upcoming trials. After performing the task,
the subject then returned his/her hand to the initial position. All
programs for data acquisition, visualization and calibration were
purpose-developed in C++.

CALIBRATION
The output of each CyberGlove sensor is voltage value (raw value)
which is dependent on the bending applied to that specific sensor.
In order to obtain the outputs in degrees (Figure 2B), it is nec-
essary to determine conversion factor gain and a constant term
offset for each of the sensors. This process is called calibration
of the CyberGlove. Once the gain and offset are set, output in
degrees of the corresponding sensor is given by the following
equation:

angle = gain ∗ (
RawValue − offset

)
.

To calculate the gain and offset we need two different pre-defined
angles for each of the sensors and raw values that correspond to
them (RawValue1 and RawValue2). Gain and offset are calculated
by the following formulas:
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FIGURE 1 | Subjects were involved in 17 different everyday activities.

(A) Opening and closing a drawer. (B) Removing a bottle cap (unwinding
and winding). (C) Turning the pages of a newspaper (one page in each
trial). (D) Picking up a plate, putting it on the marked location, and
returning it to the starting position. (E) Eating an apple (subject takes one

bite of the apple) and returning the apple to the starting position. (F)

Manipulating a mouse in a pre-defined way. (G) Handshaking for a duration
of 5 s. (H) Dialling pre-defined numbers on telephone. (I) Typing

pre-defined text on a keyboard. (J) Manipulating a plug and returning it to
the starting position. (K) Opening a door using a key and returning the key
to the starting position. (L) Picking up and putting down an object using a
fork. (M) Opening and closing a door using the knob. (N) Picking up a
telephone handle. (O) Picking up a plastic bottle, simulating drinking, and
returning the bottle to the starting position. (P) Picking up and putting
down a bag. (Q) Picking up a glass with a handle, simulating drinking, and
returning the glass to the starting position.

FIGURE 2 | Data acquisition. (A) CyberGlove sensor locations. (B) Calibrated output signals from the CyberGlove for one of the activities.
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Belić and Faisal Decoding of human hand actions

gain =
(
angle1−angle2

)
(RowValue1−RowValue2)

,

offset = RowValue1−angle1

gain
.

The glove was calibrated for each subject using a five-step proce-
dure that allowed us to determine two different angles (angle1 and
angle2) for each of the sensors (Figure 3):

The first position corresponded to 0◦ for all glove sensors
(Figure 3A).
The second position defined an angle of 90◦ for all MCP
sensors except for the thumb (Figure 3B).
The third position determined the abduction angles of 30◦
between the middle and index finger and between the little and
ring finger, an angle of 20◦ between the ring and middle finger,
and an angle of 90◦ between the index and thumb finger.
The fourth position defined an angle of 90◦ for all PIP sensors
except for the thumb.
The fifth position corresponded to the angles for the thumb
sensors: CMC (90◦), MCP (45◦), and IP (90◦) sensor.

The calibration procedure was further improved using an online
visualization system. In our study, a virtual human hand was ren-
dered in OpenGL. The virtual hand was animated in real-time by
data from the glove (Figure 3F). Visualization of data was of great
help during both calibration and data acquisition processes. In the
case of visually observed deviation between the 3D model and the
actual position of the hand, gain and offset were re-determined
only for the sensors where deviation was observed. Calibration
parameters for each of the subjects had been stored in a separate
file and loaded before the experiments started. We also asked sub-
jects, after completing the calibration procedure, to again place
their hand in the first position, so we could additionally check
eventual discrepancies. The average error across the sensors was 5
± 2 degrees.

COMPUTATIONAL LATENT VARIABLE MODELING OF REAL-LIFE
MOVEMENTS
Collected data from the 15 sensors for each subject and each trial
were stored to disk for offline analysis using MatLab [MathWorks,
Natick (MA)]. Before further analysis, the data is smoothed using
a second-order Savitzky-Golay filter with a running window of
five data points to remove discontinuities induced by the A/D
converter.

Our data space potentially extends over a 15-dimensional
space. We performed Principle Component Analysis (PCA) on
joint angles in order to estimate real dimensionality of the finger
movements during daily activities. PCA reduces the set of cor-
related variables to a set of non-correlated variables (principle
components) (Semmlow, 2001; Bishop, 2006). The first princi-
pal component contains as much of the variability (as quantified
by the variance) in the data as possible, as does each succeed-
ing component for the remaining variability. Therefore, here we
used the PCA method to determine the complexity of the finger
movements, by measuring how many principal components can
explain most of the variability in the data (Faisal et al., 2010). For
example, dimensionality reduction techniques can be illustrated
by considering the index finger, which has three joints controlled
by five muscles. Describing the flexing behavior of this finger
requires a priori three values (“dimensions”). For example, in spe-
cific movements like making a fist, as we flex one joint of the index
finger, we flex the other two joints at the same time in a highly
coordinated manner. Thus, we would require in principle a sin-
gle dimension to describe the configuration of the finger. PCA
ignores the temporal structure of movements (in fact the results
of PCA will be the same if the data in each trial is randomly shuf-
fled in time). Thus, correct classification relies on the sub-space
of finger movement variability alone.

Tipping and Bishop found a probabilistic formulation of
PCA by viewing it as a latent variable problem, in which a
d-dimensional observed data vector x can be described in terms
of an m dimensional latent vector, y:

x = Wy + μ + ε,

FIGURE 3 | CyberGlove calibration procedures. (A) The position defines
angle1 for all CyberGlove sensors. (B) The position defines angle2 for sensors
that correspond to MCP joints of the four fingers. (C) The position defines
angle2 for abduction sensors. (D) The position defines angle2 for sensors that

correspond to PIP joints of the four fingers. (E) The position defines angle2 for
sensors that were used to measure the position of the thumb. (F) Examples
for real time capturing of finger movements by using a 3D hand model that
was developed to further improve accuracy of the calibration procedure.
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where W is d × m matrix, μ is the data mean and ε is an inde-
pendent Gaussian noise with a diagonal covariance matrix I. The
likelihood of observed data vector x is given as:

p ( x) = (2π)−d/2|C|−1/2e(−1/2( x−μ)T C−1( x−μ)),

and Cov is the model covariance matrix given by the following
formula:

Cov = WWT + σ2I.

W and σ are obtained by iterative maximization of log-likelihood
of p:

σ2 = 1

d−m

d∑
k = m+1

γk,

W = Um
(
Am − σ2I

) 1
2 R,

where γk are eigen values, Um is d × m matrix of eigenvectors, Am

is diagonal matrix (m × m) of eigen values, and R is an arbitrary
m × m orthogonal rotation matrix (for simplicity R is usually
equal to I).

MEASURE OF MANIPULATIVE COMPLEXITY
As a way to quantify manipulative complexity for a given num-
ber of PCs, we proposed a universally applicable measure that
allowed us to calculate and compare limb movements across dif-
ferent tasks. We refer to it as manipulative complexity C, and
define the measure by the following formula:

C = 1 − 2

N − 1

N∑
j = 1

j∑
i = 1

(Variance explained by PCi − 1/N),

where N is the total number of PCs we consider. Our data space
extends over a 15-dimensional space, so if all PCs contribute
equally that implies C = 1, and C = 0 if one PC explains all data
variability. Our complexity measure compares well-with intuitive
complexity estimates and it can be thought of as a new assessment
measure that is calculated after an objective mathematical analy-
sis. For example, a simple behavior, e.g., curling and uncurling a
hand into a fist, would reveal a single dominant principal compo-
nent as all five fingers (and each finger’s joint) move in a highly
correlated manner and therefore C would be close to 0. In con-
trast, a complex behavior, such as expert typing on a keyboard
would reflect more uniform distribution of variances explained
by principal components, as each finger moves independently
from the others, and so C would have a high value.

TASK RECOGNITION FROM MOVEMENT DATA (BAYESIAN
CLASSIFICATION)
Next, we simply predicted a task based on the one with the
highest PPCA likelihood by employing Bayesian classifier. In
Bayesian statistics there are two important quantities: unobserved
parameters �j (j = 1, . . . , 17 different activities in our study)

and observed data x (movement data). They are related in the
following way:

P(�j|x) = P(x|�j)P(�j)

P(x)
,

where P(�j| x), which is termed posterior, represents probability
that testing data x belong to activity �j. Prior, P(�j), is sim-
ply given by the relative frequency of occurrence of each class in
the training set and we can ignore it here. Therefore, probabil-
ity of each class, given testing data, is equal to likelihood P(x|�j)
(probability of seeing the data given the task) that is thoroughly
explained in Section Computational Latent Variable Modeling of
Real-life Movements.

For training and testing the classifier we used leave-
one-repetition (across all actions and all subjects)-out cross-
validation.

MISSING LIMB MOVEMENT RECONSTRUCTION (LATENT VARIABLE
DECODING)
For data reconstruction, firstly we used linear regression to fit the
data of missing joints as a function of other joints and expressed
results as the average difference between actual and predicted
values. Then, we employed the Expectation-Maximization (EM)
algorithm for PPCA in order to estimate missing values and at
the same time to determine the right subspace dimension. In
the EM approach for PPCA, we considered the latent variables
yn to be “missing” data and the “complete” data to encompass
the observations together with these latent variables (Tipping and
Bishop, 1999). The corresponding complete-data log-likelihood
is given as:

Lc =
N∑

n = 1

ln
(
p

(
xn, yn

))
,

p
(
xn, yn

) = (
2πσ2)−d/2

e

(
− ||xn−Wyn−μ||2

2σ2

)
(2π)−m/2

e− || yn||2
2 .

Then we calculated the expectation (E-step) of LC :

〈Lc〉 = −
N∑

n = 1

{
d

2
ln

(
σ 2)+1

2
tr

(〈
ynyt

n

〉)+ 1

2σ2
(xn−μ)t (xn−μ)

− 1

σ2

〈
yn

〉t
Wt (xn−μ)+ 1

2σ2
tr

(
WtW

〈
ynyt

n

〉)}
, where〈

yn

〉 = C−1W t(xn − µ),〈
ynyt

n

〉 = σ2C−1+ 〈
yn

〉 〈
yn

〉t
.

In the M-step, LC was maximized with respect to W and σ 2:

W̃ =
[∑

n

(xn − µ)
〈
yn

〉t][∑
n

〈
ynyt

n

〉]−1

σ̃2 = 1

Nd

N∑
n = 1

{
‖xn−µ‖2−2

〈
yn

〉t
W̃

t
(xn−µ) + tr

(〈
ynyt

n

〉
W̃

t
W̃

)}
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These equations were iterated until the algorithm was judged to
have converged.

RESULTS
NATURAL HAND AND FINGER JOINT KINEMATICS HAVE A
LOW-DIMENSIONAL EMBEDDING
The structure of natural hand and finger movements in daily-
life is characterized by a highly variable nature. Even in the
case of handshaking (Figure 1G), which represents one of the
most stereotypic actions, basic statistical analysis has revealed vast
diversity in angular data for MCP and PIP joints across different
subjects (Figure 4A). In this work we first exploited the correla-
tions between MCP and PIP joints for each of the four fingers and
we found that correlation coefficients were stronger for little and
ring fingers and weaker for middle and index fingers (Figure 4B).
Further, correlations between each of the four fingers were high-
est for the neighboring fingers and gradually decreased for more
distant fingers (Figure 4C). We also used Principal Component
Analysis in order to estimate dimensionality of the finger move-
ments across different complex manipulation tasks. Therefore, we
used PCA as a measure for the complexity of hand configuration,
by measuring the amount of variance in the data displayed by
each of the principal components. For example, a simple behav-
ior such as curling and uncurling the hand would reveal a single
dominant PC component, as all finger joints move in a highly cor-
related manner. In Figure 5A we show the percentage of explained

variance vs. the number of used principal components for each
of the 17 activities. PCA revealed for all tasks that hand motor
control restricted hand configurations on a low dimensional sub-
space of four to five dimensions (which explained 83–96% of the
variance in the data), in line with previous data on evolutionary
relevant hand behavior (crafting of flint stone tools, Faisal et al.,
2010) and non-annotated long-term statistics of joint velocities
(Ingram et al., 2008). These results imply a substantial reduc-
tion from the 15 degrees of freedom that were recorded. Some
of the activities required more principal components than others
to reconstruct the data. For example in Figure 5A we can see that
opening a lid on a bottle or manipulating a fork are far more com-
plex activities than hand dialling numbers on a phone. Single PC
component explained around 30% less variance in the first case
(opening a lid) than in the second (dialling numbers), while that
discrepancy was around 10% in the case when we used only the
first four PCs to explain variance.

MEASURING THE MANIPULATIVE COMPLEXITY OF ACTIVITIES IN
DAILY LIFE
We can visually observe some differences and similarities in the
manipulative complexity between the most simple hand move-
ments, during which the individual joints move in a highly cor-
related manner, and the most complex, where each finger moves
independently from the others. Here we proposed a universally
applicable measure of manipulative complexity (C) that allows us

FIGURE 4 | Basic statistics for one of the most stereotypic actions

across all subjects and analysis of correlations across all data. (A)

Mean and standard error of angular data for MCP and PIP joints in the
case of handshaking activity for a duration of 5 s. (B) Correlations

between MCP and PIP joints for each of the four fingers. (C)

Correlations between each of the four fingers. I, index finger; M, middle
finger; R, ring finger; L, little finger; MCP, metacarpalphalangeal joint; PIP,
proximal interphalangeal joint.

Frontiers in Computational Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 27 | 6

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
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FIGURE 5 | Principal component analysis (PCA) and quantitative

measure of manipulative complexity. (A) Curves show the cumulative sum
of variance (expressed in percentage) explained by increasing the numbers of
principal components separately for each of the 17 daily-life activities. The
x-axis corresponds to the number of PCs; the y-axis shows the percentage of
the variance of the finger movements explained by the respective number of
PCs. (B) Our proposed quantitative measure of manipulative complexity
(manipulative complexity is maximal (equal to 1) if all DOF contribute equally,
and minimal (equal to 0) if one DOF explains all DOF).

to measure this quantity across vastly different tasks. Our com-
plexity measure implies that C = 1 if all DOF contribute equally
(the most complex activities), and C = 0 if one DOF explains all
DOF (the most simple activities). Results produced are in line
with intuitive expectations (opening a lid on a bottle is more
complex than operating a door handle) (Figure 5B). Some of the
activities in our study also included “grasp like motions” (e.g.,
operating a door handle, grabbing a bottle or grabbing a bag)
that visually would look very similar. Our established complexity
measure appeared sensitive enough and was able to differentiate
between even those similar looking grasps.

PREDICTION OF HAND MOVEMENTS FROM INITIAL MOVEMENT DATA
Further, we wanted to see how different subspaces influence suc-
cess of classification for different tasks. To deal with this, we

FIGURE 6 | Data classification. (A) Classification performance with
reference to the number of PPCA components. (B) Classification
performance with reference to the number of data samples taken (duration
of activity). Performance by chance is marked with the red line and vertical
lines represent the average number of data samples (duration) for each of
17 activities.

used Bayesian PPCA. PPCA has been considered as a mechanism
for probabilistic dimension reduction or as a variable-complexity
predictive density model (Tipping and Bishop, 1999) and correct
classification relies on the subspace of finger movement variability
alone. Figure 6A illustrates the success of classification with refer-
ence to the number of PPCA components. Therefore, by using
only the first few PPCA components in the classification process
we can get very high classification success. For example, using
the first four PPCA components the success of classification was
89.91% (across all tasks, classification performance was 96.63%
using all 15 PPCA components). Importantly, in Figure 5 one
could see that extracted subspaces appeared to be task-dependant,
which suggests that besides simplification, synergies might have a
role in a task-optimal control as well. If specific tasks can engage
specific motor control strategies, then we should be able to make a
conclusion regarding the task by observing some early portions of
finger data. Indeed, the classification performance, presented in
Figure 6B, was a few times higher than the chance performance
(marked with red line) for only an initial portion of the finger
configuration samples of each task. Within the first 1000 ms from
the initial hand position, which was identical for every action, it
appeared that hand shape already configures itself to a specific
task and we were able to quickly predict intended action. Vertical
lines represent average duration for each of 17 activities.
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RECONSTRUCTION OF MISSING LIMBS’ MOVEMENTS BY DECODING
MOVEMENTS OF REMAINING LIMBS
Next, we investigated the predictability of a subset of joint move-
ments in respect of the movements of other joints. Or in other
words, if part of a limb is missing, how well-can we predict what
those missing parts should be doing by only observing the intact,
remaining limb parts. This is of fundamental interest in prosthetic
control. We focused particularly on cases where data had been
acquired with sensors that measure the bending around the MCP
or the PIP joints of the four missing fingers. First, we applied lin-
ear regression in the case of missing values from the MCP joints
(Figure 7A) and the PIP joints (Figure 7B) for each of the four
fingers separately. The error we got, measured as absolute dif-
ference between predicted and actual joint values and averaged
across all tasks, showed the best linear predictability for the mid-
dle and ring fingers in both examined cases. Overall predictability
rate was high regarding movement range (90 ◦) for each of the
considered joints and variability of tasks. Then, we applied an
EM algorithm for PPCA to infer the un-observed, invisible joints
in the case of missing data from the MCP sensors. Figure 7C
shows obtained results with reference to the number of PPCA

components. Here the best results were also acquired for the mid-
dle and ring fingers. The error was the highest in the case when
just one PPCA component was used and then started to decrease
(up to a number around eight PPCA). Generally, these results
could help us to improve the method of designing prosthetic
controllers that are driven by intact limb parts and support neuro-
prosthetic controllers in refining the decoding of action intention
of users.

DISCUSSION
We analyzed natural movements from the seven subjects who
were behaving spontaneously while performing 17 different
everyday activities. We have four key findings that we will discuss
individually in more detail as follows: (1) Regarding activities of
daily living, we confirmed that hand control is low-dimensional,
i.e., four to five PCs explained 80–90% of the variability in the
movement data. (2) We established a universally applicable mea-
sure of manipulative complexity that allowed us to measure this
quantity across vastly different tasks. Our findings are in line with
intuitive expectations (opening a lid on a bottle is more com-
plex than hand dialling numbers) and are sensitive enough to

FIGURE 7 | Data reconstruction. (A) Average error after linear
reconstruction in the case when data from MCP sensors of the four fingers
were missing. (B) Average error after linear reconstruction in the case when

data from PIP sensors of the four fingers were missing. (C) Results of data
reconstruction by using PPCA with reference to the different number of PC
components used.
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differentiate between similar looking interactions (e.g., operat-
ing a door handle is less complex than grabbing a bottle). (3)
We discovered that within the first 1000 ms of an action the hand
shape already configures itself to vastly different tasks, enabling
us to reliably predict the action intention. (4) We suggest how the
statistics of natural finger movements paired with Bayesian latent
variable model can be used to infer the movements of missing
limbs from the movements of the existing limbs to control for
example, a prosthetic device.

In many everyday activities we move our fingers in a highly
correlated manner. Therefore, it has been proposed that control
of human hand movements is organized in a way that comprises
coupling of several DOF into functional groups. The opinion that
motor synergies lie behind manual actions has been supported
by several studies (Santello et al., 1998, 2002; Daffertshofer et al.,
2004; d’Avella et al., 2006; Tresch et al., 2006; Ingram et al., 2008;
Faisal et al., 2010; Jarrassé et al., 2014). The most common inter-
pretation is in terms of simplifying the strategy that the central
nervous system might undertake. Studies that have investigated
hand configurations during reaching and grasping movements
(Santello et al., 1998; Mason et al., 2001) reported that 90% of
the variance in hand configurations could be explained by only
three principal components. In our study PCA analysis revealed
that in 17 daily activities hand configurations operated on low-
dimensional subspace (four to five dimensions) as well, which
is also in line with previous data on evolutionary relevant hand
behavior (crafting of flintstone tools) (Faisal et al., 2010) and non-
annotated long-term statistics of joint velocities (Ingram et al.,
2008). These finding supports the view that the motor cortex
organizes behavior in a low-dimensional manner to avoid the
curse of dimensionality in terms of computational complexity. We
also found numerical differences in the number of principle com-
ponents required to explain a given amount of variability in hand
configurations across each of the tasks. Similar conclusions were
obtained in the case of a small number of much simpler manip-
ulation tasks (Todorov and Ghahramani, 2004; Bläsing et al.,
2013).

Our manipulative complexity measure, established for the first
time, gave us a chance to quantify the complexity of the move-
ments across a high number of different activities. This was very
important in that some of the activities that look highly similar
(grasp like motions such as operating a door handle, grabbing
a bottle or grabbing a bag) apparently had different values of
complexity. Those findings demonstrated also that our complex-
ity measure is sensitive enough to differentiate between similar
looking interactions. The highest value of complexity had tasks
of opening a lid on a bottle or manipulating a fork, and the low-
est had tasks of dialling numbers on a phone or opening a door
using the door knob. Results produced are in line with intuitive
expectations regarding the fact that in the first two cases one is
expected to have high engagement of the thumb that is the most
individuated (Häger-Ross and Schieber, 2000). In the case of typ-
ing numbers, most of the subjects used their index finger while
their other fingers created some form of fist, and in case of open-
ing the door our fingers move in a highly correlated manner. Here
we compare structures of complex dynamic hand manipulations,
while some other studies (Feix et al., 2009, 2013) have presented

a successful methodology for measuring and evaluating the capa-
bility of artificial hands to produce 31 different human-like grasp
postures.

Further we employed Bayesian PPCA on the behavioral data in
order to analyze the structure of variability within it. Variability
is ubiquitous in the nervous system and it has been observed in
actions even when external conditions are kept constant (Harris
and Wolpert, 1998; Faisal et al., 2008). In this paper we take
the view that the hand configuration variability may contain
significant information about the task being performed. Our
approach yields an effective assessment of the tasks that subjects
were involved with. The Bayesian PPCA reveals that the finger
movement correlations are so structured that we can obtain very
high classification success by taking only first few principal com-
ponents. Regarding motor control, it has been suggested that
structural learning (Braun et al., 2009a,b) may reduce the dimen-
sionality of the control problem that the learning organism has
to search in order to adapt to a new task. Our results are in line
with this concept and suggest the hypothesis that the brain can
engage many sets of motor controllers, which are selected based
on specific tasks, and which also orchestrate resulting actions in
overall behavior and produce movement variability in character-
istic sub-spaces. Next we thought that, if the hypothesis is true, we
should be able to infer the task the hand is engaged in by observ-
ing some initial portion of the finger movement data. Crucially,
observing only the initial portion of hand configurations (from
our identical starting position) was sufficient to characterize the
entire hand task, and the classification performance we obtained
was a few times higher than chance performance.

A common approach in design of neuroprosthetics is to con-
struct body parts that can be controlled with the same functional-
ity as natural limbs. Using a reduced set of basic functions to con-
struct internal neural representation could be essential from an
optimal control perspective (Poggio and Bizzi, 2004) and applied
to neuroprosthetics control (Thomik et al., 2013). Our linear pre-
dictability of the missing joints based on movements of other
finger joints gave good results. The best results were achieved
for middle and ring fingers showing that they are the least indi-
viduated. This is in line with the previous research (Häger-Ross
and Schieber, 2000). Further, the PPCA algorithm for missing
data revealed that using more than eight PPCA components does
not lead to any significant improvement. In this study we per-
form action recognition and reconstruction of missing finger
trajectories using the current positions of other functional fin-
ger joints by simply requiring—in principle—the user to act out
with his functional fingers an intended task. Such finger motion
can be realized with cheap wearable wireless sensors (Gavriel
and Faisal, 2013) and we can reconstruct the natural behavior
of users without the need for expensive, training intensive, non-
invasive or invasive electrophysiological interfaces. Consequently,
unlike common approaches that require the user to learn to use
the technology, the technology interprets the natural behavior of
users (Abbott and Faisal, 2011). Thus, the neuronal and biome-
chanically imposed correlation structure of hand-finger can be
exploited to build smart, sensitive neuroprosthetics controllers
that infer the task “at hand” based on the movements of the
remaining joints.

Frontiers in Computational Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 27 | 9

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
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Dexterous object manipulation is conditioned by the contin-
uous interactions between the body and the environment and
engages multiple sensory systems. Vison can provide essential
information for controlling hand kinematics in the cases when
object are fully visible. Human manipulation involves also tac-
tile signals from different types of mechanoreceptors in the hand
that allows humans to easily hold a very wide range of objects
with different properties without crushing or dropping them
(Johansson and Flanagan, 2009). Tactile sensing provides also
critical information in avoiding slipping as crucial precondition
to successfully manipulate an object, what is most apparent in
people with impaired tactile signals. When finger contact with
the desired object is made, we start to increase the grasp force
to the optimal level, using both our prior knowledge about the
object and information from the tactile sensors of the fingers
gathered during the interaction (Johansson and Flanagan, 2008;
Romano et al., 2011). Corrective actions are applied to different
frictional conditions in order to provide an optimal grip force
that is normally 10–40% greater than the minimum required
to prevent slips (Johansson and Flanagan, 2008). Consequently,
future neuroprosthetics should provide reliable user’s intention
decoding as well as optimal sensory feedback (Berg et al., 2013;
Raspopovic et al., 2014). Therefore, looking into hand kinematics
as an important aspect of the hand capabilities represents just one
approach that forms the basis for future studies. Further inclu-
sion of other parameters that are of relevance and investigating
their influence on manipulative complexity will provide a more
complete analysis.
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Citation: Belić JJ and Faisal AA (2015) Decoding of human hand actions to handle
missing limbs in neuroprosthetics. Front. Comput. Neurosci. 9:27. doi: 10.3389/fncom.
2015.00027
This article was submitted to the journal Frontiers in Computational Neuroscience.
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