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Numerous findings indicate that spatial phase bears an important cognitive information.

Distortion of phase affects topology of edge structures and makes images

unrecognizable. In turn, appropriately phase-structured patterns give rise to various

illusions of virtual image content and apparent motion. Despite a large body of

phenomenological evidence not much is known yet about the role of phase information

in neural mechanisms of visual perception and cognition. Here, we are concerned with

analysis of the role of spatial phase in computational and biological vision, emergence of

visual illusions and pattern recognition. We hypothesize that fundamental importance of

phase information for invariant retrieval of structural image features and motion detection

promoted development of phase-based mechanisms of neural image processing in

course of evolution of biological vision. Using an extension of Fourier phase correlation

technique, we show that the core functions of visual system such as motion detection

and pattern recognition can be facilitated by the same basic mechanism. Our analysis

suggests that emergence of visual illusions can be attributed to presence of coherently

phase-shifted repetitive patterns as well as the effects of acuity compensation by

saccadic eye movements. We speculate that biological vision relies on perceptual

mechanisms effectively similar to phase correlation, and predict neural features of visual

pattern (dis)similarity that can be used for experimental validation of our hypothesis of

“cognition by phase correlation.”

Keywords: vision research, visual illusions, motion detection, pattern recognition, saccades, acuity, phase

correlation, association cortex

1. Introduction

Continuous evolution of biological systems implicates a common origin of different func-
tions and mechanisms that emerged as a result of successive modification of one particularly
advantageous basic principle. Electrophysiological findings (Hubel and Wiesel, 1968) and psy-
chophysical experiments (Campbell and Robson, 1968) indicate that visual system relies on
the basic principle of frequency domain transformation of the retinal image in visual cortex
which was initially believed to resemble a crude Fourier transformation (Graham, 1981). Even
though, more recent mathematical models of sparse image coding revised the assumption of
global Fourier transformation in favor of locally supported Gabor- (Marcelja, 1980), Wavelet-
Mallat, 1989, Wedge-, Ridge- or Curvelet-functions (Donoho and Flesia, 2001), the concept of
neural image representation in the frequency domain by phase and amplitude remained valid.
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Since pioneering works of Hubel and Wiesel (1962, 1968),
Campbell and Robson (1968), Blakemore and Campbell (1969),
Blakemore et al. (1969), and Thomas et al. (1969) it is known
that different groups of neurons in the visual cortex show selec-
tive response to spatial-temporal characteristics of visual stimuli
and operate as spatially organized filters (receptive fields) that
extract particular image features (i.e., spatial frequency, orien-
tation) within a certain range (bandwidth) of their sensitivity.
Numerous subsequent studies dealt with experimental investi-
gation and theoretical modeling of visual receptive fields and
analysis of their amplitude-transfer (ATF) and phase-transfer
functions (PTF). The existing body of evidence resulting from
four decades of research on this field includes

• existence of frequency-selective V1 neurons operating as
bandpass filters (Graham, 1989; De Valois and De Valois,
1990),

• coding of phase information using quadrature pairs of band-
pass filters (Pollen and Ronner, 1983),

• odd-/even-symmetric filters in visual cortex (Morrone and
Owens, 1987),

• linear ATF and PTF of simple striatic neurons (Hamilton et al.,
1989),

• computation of complex-valued products in V1 neurons
(Ohzawa et al., 1990),

• computation of magnitudes (energies) in complex V1 cells as
a sum of squared responses of simple V1 cells (Adelson and
Bergen, 1985),

• divisive normalization of neuronal filter responses (Heeger,
1992; Schwartz and Simoncelli, 2001),

• motion detection (Fleet and Jepson, 1990; Nishida, 2011),
• edge detection (Kovesi, 2000; Henriksson et al., 2009),
• stereoscopic vision (Fleet, 1994; Fleet et al., 1996; Ohzawa et al.,

1997),
• 3D shape perception (Thaler et al., 2007),
• assessment of pattern similarity (Sampat et al., 2009; Zhang

et al., 2014),
• triggering of diverse visual illusions (Popple and Levi, 2000;

Backus and Oru, 2005).

Altogether, these findings support the concept of neural trans-
formation of retinal images into frequency domain characteris-
tics (i.e., phase and amplitude) that, in turn, serve as an input
for subsequent higher-order mechanisms and functions of visual
perception and cognition.

Despite recent advances in understanding of the overall
topology and hierarchy of visual cortex (Riesenhuber, 2005; Pog-
gio and Ullman, 2013), little is known yet about the underly-
ing wiring schemes of phase/amplitude information processing
in visual cortex. In particular, the observation that small
cells of V1 show phase-sensitivity (Pollen and Ronner, 1981)
while complex cells do not (De Valois et al., 1982) lead to
controversial discussion about the role of spatial phase in
visual information processing (Morgan et al., 1991; Bex and
Makous, 2002; Shams and Malsburg, 2002; Hietanen et al.,
2013).

In what follows we aim to address the following basic
questions:

• What are the driving forces behind the evolutionary
development of biological vision?

• What properties of spatial phase (further in this manuscript
denoted as phase) make it an important feature for visual
information processing?

• What is the origin of various phase-related visual phenom-
ena including illusions of apparent motion, stereograms and
virtual image context?

• How can phase information be used for motion detection and
(dis)similarity cognition, and how can theoretical models be
evaluated experimentally?

Our manuscript is organized as follows. First, we recapitulate the
role of environmental constraints in development of biological
vision in course of evolution. We review theoretical properties
of phase using an extension of the Fourier phase correlation
technique and demonstrate how phase information can be used
for edge enhancement, motion detection, and pattern recogni-
tion. We show that saccadic strategy of image sampling naturally
emerges within this concept as an algorithmic solution which
improves the confidence of visual pattern discrimination and
recognition. Further, we apply the concept of phase shift and
correlation to analysis of different visual illusions and hypothe-
size about involvement of phase-basedmechanisms in perception
of motion and visual pattern (dis)similarity. In conclusion, we
make suggestions for experimental evaluation of our theoretical
predictions.

2. Invariants of Ecological Environment
and Evolution of Vision

The evolutionary principle implies that remarkable abilities of
biological vision result from adaptation of species to the envi-
ronmental constraints that ancestors had to cope with in the
past. It is generally recognized that progressive sophistication of
vision is driven toward more efficient representation, processing
and, probably, also modeling of the physical reality which stands
behind the retinal images (Walls, 1962; Marr, 1982; Hyvärinen
and Hoyer, 2001; Graham and Field, 2006). In addition to the
basic optosensory function, the core tasks of visual perception in
macroscopic organisms include orientation in the physical envi-
ronment, which premises ability to detect obstacles and relative
motion, as well as recognition of essential patterns related to
food, threat and communication. Further, we recollect that bio-
logical organisms are composed of condensed matter and have
to mainly take care about the objects of the physical world that
also have rigid constitution and conservative shape. In contrast,
highly deformable media such as gasses and liquids are biologi-
cally neutral which implicates that perception of non-rigid trans-
formations did not fall under the early evolutionary pressure.
Important is the notion that visual perception of rigid bodies
with a preserved shape has to be independent on relative spa-
tial position and orientation which means that it has to rely on
some invariants (Ito et al., 1995; Booth and Rolls, 1998; Palmeri
and Gauthier, 2004; Lindeberg, 2013) that are not given per se
but have to be derived by subsequent processing of the raw reti-
nal image. As a dimensionless quantity, phase bears topological
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information independently on the level of illuminance and con-
trast. Affine transformations in the image domain do not change
the relative phase structure, but merely shift it as a whole. These
properties of phase are of advantage for survival of the fittest
and can be assumed to be “discovered” in course of the evolu-
tion of biological vision. Different features of visual perception
emerge at evolutionarily distant time points and, thus, rely on
different intrinsic invariances. Early forms of life are originated
in the marine environment where movements are slowed down
by viscosity of water, effects of gravitation are diminished and
changes in the relative spatial position and orientation are more
probable as it is the case in terrestrial environment with its sta-
ble gravitational axis and unresisting atmosphere. The ability to
recognize abstract shapes (i.e., animal silhouettes) independently
on their relative motion, orientation, and distance was essen-
tial to survival of species and probably originated already with
the first marine animals. However, the translation-, rotation-,
scaling-independent (i.e., TRS-invariant) perception of abstract
shapes (Gladilin, 2004) does not apply to all kinds of visual stim-
uli. A prominent example of dependency of visual perception
on changing environmental constraints is the Thatcher-Illusion,
which consists in poor recognition of upside-down faces (Psalta
et al., 2014). Comparative experiments with different primates
demonstrate that perception of facial expression is a relatively
new feature in biological vision (Weldon et al., 2013). Sensi-
tivity of human face perception to rotations has obviously to
do with the fact that the neuronal machinery of face recogni-
tion is relatively new cognitive feature which emerged in the
terrestrial environment where primates encountered each other
predominantly in the upright posture. In general, visual illu-
sions can be attributed to optical stimuli that mislead evolu-
tionarily conservedmechanisms of visual information processing
based on a built-in knowledge of properties of the physical
world (Ramachandran and Anstis, 1986). The ability to irritate
or escape common cognitive schemes is, in turn, of evolution-
ary advantage. The fact that many animals use camouflage pat-
terning, swarm motion or body morphing as a reliable survival
strategy indicates that repetitive patterns and non-TRS trans-
formations represent a principle challenge for biological vision
which is evolutionarily predetermined to rely on TRS-invariants
of the condensed matter world, see Figure 1.

3. The Role of Phase from the Viewpoint of
Computer Vision

In this section, we elucidate the role of phase information for
detection of image motion and pattern recognition from the

viewpoint of computer vision. Readers who are not familiar with
Fourier analysis may skip over math-intensive parts that will be
concluded subsequently.

3.1. Image Representation in Spatial and
Frequency Domains
In spatial domain, 2D images are represented by a matrix Ax,y

of N × M scalar intensity values on an Euclidian image raster
(x ∈ [0,N − 1], y ∈ [0,M − 1]). Complex Fourier transfor-
mation maps an image Ax,y onto the complex frequency domain
αu,v:

αu,v = F(Ax,y) = Re(αu,v)+ i Im(αu,v) (1)

or in a more explicit form for a discrete 2D case:

αu,v =
1

√
MN

N− 1
∑

x= 0

M− 1
∑

y= 0

Ax,y e
−2π i( uxN + vy

M ). (2)

The inverse Fourier transformationmapping αu,v onto the spatial
domain is given by

Ax,y = F
−1(αu,v) =

1
√
MN

N−1
∑

u= 0

M− 1
∑

v= 0

αu,v e
2π i( xuN + yv

M ). (3)

Further, we recollect that the complex conjugate of αu,v is
defined as α∗u,v = Re(αu,v)− i Im(αu,v).

3.2. Importance of Phase and Amplitude:
Theoretical Perspective
The relative importance of Fourier phase and amplitude for
retrieval of structural image features has been debated in sev-
eral previous works (Oppenheim and Lim, 1981; Lohmann et al.,
1997; Ni and Huo, 2007). The basic notion is that the phase bears
topological information about image edges whereas amplitude
encodes image intensity. To demonstrate the effect of amplitude
and phase distortion, we perform reconstruction of the origi-
nal image from amplitude-only and phase-only of its Fourier
transform, see Figure 2. Here, the amplitude-only reconstruc-
tion (Figure 2 (middle)) is computed as the Fourier inverse
of the following amplitude-preserving and phase-eliminating
transformation:

Re(αu,v) →
(

Re(αu,v)
2 + Im(αu,v)

2
)1/2

,

Im(αu,v) → 0 ,

(4)

FIGURE 1 | Repetitive patterns, swarm motion, and body morphing disrupt detection of unique invariant features (i.e., rigid animal silhouettes).

Examples of natural images are acquired from public Creative Commons sources (http://search.creativecommons.org/).
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FIGURE 2 | Comparison of the effects of amplitude and phase distortion on image reconstruction. From left to right: the original Lenna image vs.

amplitude-only and phase-only image transforms. The phase-only transformation works as an edge-enhancing filter resembling the Marr’s Primal Sketch (Marr, 1982).

and the phase-only reconstruction (Figure 2 (right)) is calcu-
lated as the Fourier inverse of the following phase-preserving and
amplitude-normalizing transformation:

Re(αu,v) → Re(αu,v)

(Re(αu,v)2+Im(αu,v)2)
1/2 ,

Im(αu,v) → Im(αu,v)

(Re(αu,v)2+Im(αu,v)2)
1/2 .

(5)

This example demonstrates that the relative phase appears to be
more significant for retrieval of cognitive image features (i.e.,
edges) that get completely lost in the amplitude-only transforma-
tion. Remarkably, the amplitude-normalizing phase-only recon-
struction seem to effectively work as an edge-enhancing filter
which generates a feature-preserving image sketch resembling
the Marr’s concept of the Primal Sketch generation in visual
cortex (Marr, 1982).

3.3. Detection of Uniform Image Motion using
Phase Correlation
The Fourier phase correlation (PC) is a powerful technique which
has been originally developed for detection of affine image trans-
formations such as uniform translational motion, rotation and/or
scaling (De Castro and Morandi, 1987; Reddy and Chatterji,
1996). Phase correlation between two images Ax,y and Bx,y, is
computed as a Fourier inverse of the normalized cross-power
spectrum (CPS):

PCx,y = F
−1(CPSu,v) , (6)

where

CPSu,v =
αu,v β

∗
u,v

|αu,v β∗u,v|
(7)

and

αu,v = F(Ax,y)

βu,v = F(Bx,y)
(8)

are the complex Fourier transforms of the images Ax,y and Bx,y,
respectively. According to the Fourier shift theorem, relative
displacement (1x,1y) between two identical images, i.e.,

Bx,y = Ax−1x,y−1y , (9)

corresponds to phase-shift in the frequency domain

βu,v = e−2π iϕ αu,v , (10)

where ϕ = ( u1x
N + v1y

N ). Consequently, the cross power spectrum
between two identical images shifted with respect to each other in
the spatial domain describes the phase-shifts of the entire Fourier
spectrum in the frequency domain:

CPSu,v =
αu,v e

2π iϕα∗u,v
|αu,v e2π iϕα∗u,v|

= e2π iϕ . (11)

For two identical images with the relative spatial shift (1x,1y),
the inverse Fourier integral of Equation (11), i.e., the phase cor-
relation Equation (6), exhibits a single singularity at the point
(x = 1x, y = 1y) and is given by

PCx,y = δ(x−1x, y−1y) . (12)

Thus, phase correlation of two identical images has a sin-
gle maximum-peak which coordinates in the spatial domain
yield the relative image translation1 (x = 1x, y = 1y), see
Figure 3A.

3.4. Phase Correlation in the Presence of Noise
In the presence of additive statistical or structural noise, the
cross power spectrum between two non-identical images takes
the form:

CPSu,v = e2π iϕ + εu,v , (13)

where εu,v is a frequency-dependent perturbation-term whose
properties depend on particular type of image differences. Con-
sequently, the inverse Fourier integral of Equation (13), i.e., the
phase correlation between two non-identical images, becomes
different from the Dirac delta peak of the identical image shift
Equation (12):

PCx,y = F
−1

(

e2π iϕ + εu,v
)

6= δ(x−1x, y−1y) , (14)

1Reformulation of phase correlation in polar coordinates results in detection of the

image scaling and rotation (Reddy and Chatterji, 1996).
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FIGURE 3 | Examples of phase correlation (right column) between the

source (left column) and the target image (middle column). Target

images (A2-E.2) represent the following transformations of the source

image: (A2) uniform displacement, (B2) uniform displacement superimposed

with 70% statistical noise, (C2) uniform displacement superimposed with

70% statistical and structural noise, (D2) uniform displacement

superimposed with 20-pixel Y-motion-blur, (E2) superposition of four different

uniform displacements (i.e., 4× fold repetition). (F) shows phase correlation

between two significantly different images. Arrows point to the location of the

absolute maximum peak of the PC. Visualization of the entire PC is

performed using the following grayscale mapping:

PCx,y → 255(PCx,y − MIN(PCx,y ))/(MAX(PCx,y ) − MIN(PCx,y )).

which manifests in flattening of the maximum peak and over-
all more noisy PC, see Figures 3B,C. However, as long as the
target pattern do not exhibit similarities with the background
structures, phase correlation between two images remains a
single-peak distribution. Remarkably, even a significant struc-
tural distortion does not affect the detection of the target pat-
tern within the noisy visual scene, see Figure 3C. This example
demonstrates that the height of maxima and the overall shape
of the PC distribution can serve as quantitative characteristics of
image (dis)similarity, i.e., the more sharp (Dirac-like) is the PC
distribution, the more similar are the structures in the underly-
ing images. An increasingly dispersed PC distribution indicates
lower image similarity.

In the case of non-affine image transformations, phase corre-
lation loses its exceptional properties and becomes a multi-peak
distribution. Figure 3D shows the phase correlation of the orig-
inal image with its blurred and displaced copy. Uncertainty of
the 20-pixel Y-motion-blur applied in this example reflects in
the horizontal line of peaks in PC that correspond to possible
alignments between the original image with its transformed copy.

If the target pattern is multi-present or exhibits structural sim-
ilarity with the surrounding structures, multiple peaks occur in
PC. Figure 3E shows phase correlation between the target pat-
tern and the image containing its four displaced copies. Finding
the right correspondence in such visual scene becomes difficult

or impossible. Camouflage textures and behavioral strategies of
swarm animals generate repetitive patterns that irritate cogni-
tive mechanisms of predators based on detection of unique target
features, see Figure 1.

With increasing structural differences between each two
images, PC becomes a random distribution with the significantly
lower maximum peaks, see Figure 3F.

3.5. Phase Correlation in the Case of
Non-Uniform Image Motion
Non-uniform motion means that displacements of image pix-
els differ in directions and/or magnitude. Consider time-series of
images Ax,y(t) that are composed of two non-uniformly moving
regions:

Ax,y(t) = Px,y(t)+ Bx,y(t) , (15)

where Px,y stands for a particular image pattern which has to
be tracked in consecutive time steps, and Bx,y is the background
region. Let Px,y and Bx,y in the subsequent time step Ax,y(t + 1)
undergo different translations:

Ax,y(t + 1) = Px,y(t + 1)+ Bx,y(t + 1) , (16)
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where

Px,y(t + 1) = Px+1xp,y+1yp (t) ,

Bx,y(t + 1) = Bx+1xb,y+1yb (t) .
(17)

Considering the linearity of Fourier transformation, one obtains
for F

(

Ax,y(t)
)

and F
(

Ax,y(t + 1)
)

αu,v(t) = ρu,v + βu,v

αu,v(t + 1) = e−2π iϕ ρu,v + e−2π iψ βu,v ,

(18)

where ϕ = (
u1xp
N + v1yp

N ) and ψ = (
u1xb
N + v1yb

N ), respec-
tively. Consequently, the cross power spectrum between Ax,y(t)
and Ax,y(t + 1) takes the form

CPSu,v =
αu,v(t)α

∗
u,v(t+1)

|αu,v(t)α∗u,v(t+1)| =
1

|αu,v(t)α∗u,v(t+1)|

(ρu,v e
2π iϕ ρ∗u,v + ρu,v e

2π iψ β∗u,v +

βu,v e
2π iϕ ρ∗u,v + βu,v e

2π iψ β∗u,v )

(19)

or in a more compact form

CPS = CPS
p
p′ + CPS

p

b′ + CPSbp′ + CPSbb′ , (20)

where CPS∗∗ denote self- and cross-correlations between the
Fourier transforms of the pattern and background regions in two
consecutive time steps, respectively. Primed indexes are intro-
duced to distinguish Fourier transforms of previous (t : p, b) and
subsequent (t + 1 : p′, b′) time steps. By applying the inverse
Fourier transformation to Equation (20), one obtains the phase
correlation between A(t) and A(t + 1):

PC = F
−1(CPS) = PC

p
p′ + PC

p

b′ + PCb
p′ + PCb

b′ . (21)

3.6. Saccades-Enhanced Phase Correlation
Phase correlation between two non-uniformly shifted image
regions Equation (21) contains four terms:

• self-correlation of the target pattern (PC
p
p′ ),

• self-correlation of the background region (PCb
b′ ) and

• two cross-correlation terms (PC
p

b′ , PC
b
p′ ).

In order to detect the shift of the target pattern P, PC
p
p′ has

to become the most dominant term of the total PC. Obviously,
this condition is not automatically fulfilled,—other terms may
have stronger weight in Equation (21). If the pattern and back-
ground regions do not exhibit similarities, i.e., if the pattern P
is uniquely present in the image, cross-correlation terms (PC

p

b′

and PCb
p′ ) should be smaller in comparison to self-correlation

terms (PC
p
p′ and PCb

b′ ). Thus, the major difficulty for detection

of the target image pattern is caused by self-correlation of the
background region (PCb

b′ ) which properties are a priori unknown.
Obviously, a single-step phase correlation between two images is
not sufficient for detection of a particular image region. In order
to maximize the weight of PC

p
p′ and, correspondingly, to mini-

mize the weight of other terms in Equation (21), one can con-
struct a cumulative phase correlation by iteratively composing PC
between the (fixed) target pattern with differently shifted back-
ground. Due to formal similarity of such strategy with back-and-
forth image sampling by saccadic eye movements (see Figure 4),
we termed this procedure saccades-enhanced phase correlation
(Gladilin and Eils, 2009). To show why this strategy appears to be
promising, we write the average phase correlation of N recom-
binations between the target pattern and non-uniformly shifted
background images:

PC =
1

N

N
∑

i= 1

PCi = PC
p
p′ + PC

p

b′ +
1

N

N
∑

i= 1

PC
bi
p′ +

1

N

N
∑

i= 1

PC
bi
b′ .

(22)
Since first two terms in Equation (22) are independent on back-
ground variations (bi), their absolute values remain unchanged.
Further, it can be shown that the last two terms decrease with
increasing N, and, thus, their weight in the average phase cor-
relation can be arbitrarily decreased after sufficiently high num-
ber of saccadic iterations N >> 1. Without providing a precise

FIGURE 4 | Examples of saccadic eye movements from Yarbus (1967). Left the eyes of the observer exhibit remarkable back-and-forth movements between

different regions of interest (i.e., eyes, mouth) and the image background. Right saccadic trajectories seem to follow the shape contours and edges.
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proof, we can give the following plausible comment: for dif-
ferent shifts of the background region, positions of maxima in
cumulative phase correlation differ as well. Consequently, the
sum over different bi remains bounded, and the average value
of the last two terms in Equation (22) decreases as N−1, i.e.,

limN→∞
(

1
N

∑N
i= 1 PC

bi
b′

)

→ 0. As a result of saccadic image

composition, self-correlation of the target pattern PC
p
p′ becomes

the most dominant term and the shift of P can be determined
from the coordinate of the absolute maximum of Equation (22).

The less structured is the target pattern and the more sim-
ilar it is to the image background, the more difficult becomes
the virtual separation of target and background regions using
saccades-enhanced phase correlation. Consequently, analysis of
poorly structured visual scenes requires more saccadic iterations
for detection and recognition of the target pattern. Remarkably,
experimental findings seem to confirm this theoretical predic-
tion: the strategy of saccades by observation of unstructured tex-
tural images exhibits increasing frequency of target-background
eye movements (He and Kowler, 1992).

3.7. Consideration of Visual Acuity
The foveal and peripheral areas of the retinal image are known
to exhibit significant differences in acuity that have to be con-
sidered by construction of Fourier transforms and phase corre-
lations of target and surrounding images. With approximately
3◦ of high-acuity foveal cone-projection (Osterberg, 1935), the
observer’s eye can sharply resolve only an area with the cross-
section dimension of D ≈ 0.1 L, where L denotes the distance
from observer to the focus plane. For a L = 50 cm far com-
puter screen, it makes a D = 5 cm wide spot. The remaining
peripheral area is progressively blurred with the distance from
the focus. Consequently, a more natural representation of the
retinal and higher-lever neural images is the composition of the
central pattern surrounded by the low-pass smoothed periph-
ery. For calculation of saccades-enhanced phase correlation this,
in turn, means that not only the position of the focus but also
spectral characteristics of the central and peripheral areas have to
be appropriately filtered anew for each saccadic fixation image.
Repetitive target-background sampling by saccades will, obvi-
ously, lead to enhancement of small details (i.e., high-frequent
components) of more frequently focused regions and low-pass
smoothing of less frequently sampled, peripheral areas. As a con-
sequence, one can expect saccadic analysis to better discriminate
images that show distinctive spectral differences between central
and peripheral areas. Visual examination of images with similar
spectral characteristics of pattern and background regions can be,
in turn, associated with intensification of back-and-forth saccadic
eye movements.

4. Psychophysical Evidence of Phase
Involvement in Visual Information
Processing

In this section, we review some psychophysical findings indicat-
ing the involvement of phase in visual information processing

and analyze them from the perspective of theoretical concepts of
phase-based motion and pattern detection.

4.1. Importance of Phase and Amplitude:
Psychophysical Perspective
From theoretical considerations in Section 3.2, phase appears
to be more essential for retrieval of structural information than
amplitude. Psychophysical findings in Freeman and Simoncelli
(2011) and Zhang et al. (2014) suggest, however, a combined
phase-amplitude mechanism of pattern perception with higher
weight of phase information near the fixation point and increas-
ing importance of amplitude on the periphery of the visual field.
On the other hand, one should consider that conscious fixa-
tions inhibit saccades which results in progressive low-pass blur-
ring of peripheral image. Unconstrained image observation is
always associated with saccadic eyemovements that acquire high-
frequency phase information from different image areas and,
thus, substantially increase the real weight of phase information
in image perception and (re)cognition.

4.2. On the Role of Phase and Saccades in Visual
Illusions
Seemingly different visual illusions have a common feature to be
triggered by coherently phase-shifted repetitive patterns. Below
we briefly review three groups of visual illusions2 that generate
effects of (i) virtual depth (Tyler and Clarke, 1990), (ii) apparent
motion (Kitaoka and Ashida, 2003), and (iii) non-local image tilt
(Popple and Levi, 2000). Tight resemblance in stimulus configu-
ration of different visual illusions has been supposed in previous
works (Kitaoka, 2006). Though, a unified concept of underlying
neural mechanisms that drive different perceptual illusions is still
missing.

4.2.1. Virtual Depth Illusions

Stereogram images such as shown in Figure 5 cause perceptual
illusions of virtual depth and hidden 3D content. Stereograms
are composed of repetitive patterns which retinal projections
in the left and right eyes exhibit a relative spatial shift in the
image domain and a corresponding phase-shift in the frequency
domain. Accordingly, two basic models of binocular disparity
based on position- and phase-shift receptive fields have been dis-
cussed in the literature in the last two decades (Arndt et al., 1995;
Fleet et al., 1996; Ohzawa et al., 1997; Parker and Cumming,
2001; Chen and Qian, 2004; Goutcher and Hibbard, 2014). Anzai
et al. (1997) conclude that “binocular disparity is mainly encoded
through phase disparity.” Fleet (1994) suggests a model of binoc-
ular disparity computation using the Local Weighted Phase Cor-
relation which combines the features of phase-shift and phase
correlation approaches. If phase correlation is, in fact, involved
in binocular disparity calculation, the underlying neural mecha-
nisms of virtual depth detection can be expected to depend on a
certain threshold of neuronal activity, i.e., the strength of phase
correlation, which, in turn, should be dependent on structural
image properties. In particular, as we have seen above one can
expect that structured (i.e., edge-rich, phase-congruent) patterns

2All examples of visual stimuli were taken from the “Illusion Pages” of A. Kitaoka

http://www.psy.ritsumei.ac.jp/akitaoka/cataloge.html.
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FIGURE 5 | Examples of virtual depth illusions (stereograms) based on structured (left) and diffuse textural (right) patterns (courtesy A. Kitaoka).

such as shown in Figure 5 (left) produce stronger phase corre-
lation signals and, thus, trigger virtual depth illusions easier re.
faster than diffuse textural pattern such as Figure 5 (right). Fur-
ther experimental investigations are required to test this pure
theoretical prediction.

4.2.2. Apparent Motion Illusions

Apparent motion illusions induce perception of dynamic image
changes while observing static visual stimuli. Notably, the inten-
sity of apparent motion illusions depends on spectral charac-
teristics (i.e., low/high frequent image content) and the relative
phase-shift of repetitive patterns.

4.2.2.1 The Rotating Snake
patterns from Kitaoka and Ashida (2003) induce a remarkably
strong illusion of apparent rotational motion, see Figures 6A,B.
The low-pass smoothed Rotating Snake in Figures 6C,D exhibit
a reduced intensity of apparent rotational motion. Backus and
Oru (2005) explain emergence of illusory motion of the Rotat-
ing Snakes by the difference in the temporal response of visual
neurons to low- and high-contrast. This difference leads to mis-
interpretation of the temporal phase-shift as a spatial phase-
shift (“phase advance”) at high contrast. The effect of low-pass
smoothing, authors attribute to reduction of differences between
high- and low-contrast regions. Recent findings indicate that sig-
nals of illusory motion in V1 and MT cortical areas can be also
triggered by update of the retinal image as a result of saccadic
eye movements or blinkers (Conway et al., 2005; Troncoso et al.,
2008; Otero-Millan et al., 2012; Martinez-Conde et al., 2013).
Consequently, conscious suppression of saccades inhibits illu-
sions of apparent motion that are based on phase-advancing con-
trast patterns. To dissect the structural principle of the Rotating
Snake in more detail, we performed its polar-to-rectangle trans-
formation into the Translating Snake, see Figures 6E–H. This
transformation changes the relative spatial orientation of repet-
itive patterns while preserving their local contrast structure. We
observe that a pair of parallel Translating Snake patterns does

not induce any significant perceptual effects, see Figures 6E,F.
In contrast, antiparallel Translating Snakes patterns generate a
weak illusion of translational motion, see Figures 6G,H. From
this observation, we conclude that phase advancement due local
contrast gradient is required but not sufficient for generation of
apparent motion illusion. The sufficient condition consists in dif-
ferent spatial orientation of repetitive motion patterns: equally
oriented motion patterns of the Translating Snake do not induce
any illusory motion, while non-uniformly organized contrast
gradients of the Rotating Snake do, see Figures 6I,J. Thus, we
conclude that apparent motion signals are triggered not only
by phase advancement at high contrast alone but by the dif-
ference in phase advancement between each two image regions
subsequently fixated by saccades.

4.2.2.2 The Anomalous Motion
from Kitaoka (2006) is another example of apparent motion
illusion which is induced by contrarily oriented contrast-
gradient patterns, see Figure 7 (left). In Figure 7 (right), cen-
tral and peripheral contrast-gradient patterns were aligned in
the same direction. As a result, the illusion of apparent motion
disappears. Only the combination of patterns with contrarily ori-
ented contrast-gradients (i.e., the relative phase shift) is capa-
ble to generate a stable illusion of apparent relative motion, see
Figure 7 (left). Similar to the Rotation Snake, the Anomalous
Motion illusion requires saccadic eye movements. Suppression of
saccades by conscious point fixation stops the illusion of apparent
motion.

4.2.3. Non-Local Tilt Illusion.

Figure 8 shows the virtual tilt illusion from Popple and Levi
(2000) and Popple and Sagi (2000) which seems to be triggered
without local cues. The particularity of this stimulus consists in a
way it is constructed by horizontal lines of patterns that exhibit
a relative vertical phase-shift. Consequently, the horizontal lines
appear to have a vertical tilt which direction depends on the
sign of the phase-shift. Based on our previous analysis of motion
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FIGURE 6 | Apparent motion illusions. (A,B) A pair of the Rotating Snake

patterns from Kitaoka and Ashida (2003). (C,D) The low-pass filtered Rotating

Snakes exhibit slower rotation. (E,F) Parallel patterns of the polar-to-rectangle

transformation of the Rotating Snake, i.e., the Translating Snake, does not

produce any motion illusions. (G,H) Antiparallel patterns of the Translating

Snake generates a weak illusion of apparent translational motion. (I,J)

Visualization of the Rotating and Translating Snake pattern shows that motion

elements of the Rotating Snake exhibit a relative phase-shift to each other,

while the Translating Snake elements are parallel and do not have any relative

phase shift.

illusions, we presume that also the virtual tilt illusion is driven by
saccadic eye motions along the horizontal lines of patterns. Con-
sequently, the virtual tilt illusion is, nevertheless, based on local
cues that are established by successive saccadic fixations.

Another puzzling property of this stimulus is the dependency
of the tilt intensity on spectral image characteristics. Remarkably,
the low-pass smoothed stimulus seems to exhibit stronger tilt as
the unsmoothed version with high-frequent components. One

possible explanation for this observation is that phase correlation
of low-pass smoothed patterns results in a wide and blurry shift
signal, cf. Figure 3. Another hypothetic assumption is that the
strategy of saccadic eyemovements differs for low-pass smoothed
and unsmoothed stimuli. If, for instance, saccadic sampling of
blurry images turns out to be associated with faster and/or
more distant jumps,—this can effectively lead to stronger shift
perception in comparison to unsmoothed stimuli.

5. Pattern Recognition using Phase
Correlation

As we have seen above, pattern recognition and motion detec-
tion are closely related tasks in the frequency domain. In fact,
detection of pattern motion using phase correlation premises the
knowledge of complete spectral characteristics of a pattern, i.e.,
pattern recognition. The tight relationship between pattern’s cog-
nitive characteristics and motion can be seen as an exclusive fea-
ture of frequency domain techniques such as phase correlation,
which differs them, for example, from gradient-based optical flow
methods (Barron et al., 1994). The existing body of neurophys-
iological and psychophysical evidence do not allow to make a
conclusion about the nature of neural mechanisms of pattern
recognition. However, from the literature it is known that (i)
the retinal images are frequency-coded, filtered and processed in
visual cortex by several layers of specialized cells in a hierarchi-
cally organized manner (Mesulam, 1998; Kruger et al., 2013), (ii)
recognition takes place in higher levels of this hierarchy, i.e., the
association cortex, where high confidence pattern recognition has
been related to activity of single cells (Quiroga et al., 2005), and
(iii) saccades are involved in acquisition of the information for
rapid scene recognition (Kirchner and Thorpe, 2006). By putting
these findings together with our theoretical and experimental
investigations, we hypothesize here that phase correlation (or an
effectively similar mechanism) is involved in neural machinery of
pattern recognition. The basic statements of this hypothesis are as
follows:

• Images are coded in the neural network by their frequency
domain features (i.e., phases and amplitudes).

• Phase correlation between neural images is performed by
a special layer of cells [further termed as association layer
neurons (ALN)].

• Similarity between each two visual stimuli is sensed by the
spatial-temporal pattern of ALN activity in analogy to PC of
two images, cf. Figure 3.

Figure 9 depicts the principle scheme of this hypothetic mecha-
nism which postulates integration (phase correlation) of source
and target images in association cortex and predicts the neural
activity patterns related to perception of image (dis)similarity.
According to this hypothesis, the physiological expression of
high-confidence recognition of a visual stimulus is a coherent and
persistent activity of a relatively small number of ALN (theoreti-
cally, even one single neuron as it has been observed in Quiroga
et al. (2005)). In contrast, low similarity between visual stimuli
would result in a diffuse and uncorrelated pattern of ALN activity.
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FIGURE 7 | The Anomalous Motion (courtesy A. Kitaoka) induces an illusion of apparent translational motion (left). Manipulated equidirectional stimulus

(right) do not trigger any significant motion illusions.

FIGURE 8 | Dependence of the non-local tilt illusion on low/high-frequent image content. From left to right: the low-pass filtered vs. unfiltered Popple illusion

(courtesy A. Kitaoka).

FIGURE 9 | Scheme of the hypothetic mechanisms of visual

pattern recognition. Persistent activity of a small number of neurons in

association cortex is a feature of high image similarity. In the ideal case,

similarity is detected by a single neuron. In contrast, a more disperse

and stochastic pattern of neural activity indicates a low degree of image

similarity.
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FIGURE 10 | Example of pattern recognition using phase correlation.

From left to right: (i) the target smiley, (ii) multi-smiley image, phase correlation

between (i) and (ii). The green frame indicates the correct location of the target

pattern in the image, the red frame shows the wrong match which

corresponds to the absolute maximum of the noisy phase correlation.

Consideration of visual acuity improves the recognition score. Phase

correlation between the target smiley and the images with three different acuity

foci peaks out the right pattern location with the maximum height of PC =
7.93E+3.

Furthermore, missing similarity between images can be expected
to provoke intensification of saccadic eye movements.

An example of repetitive pattern discrimination/recognition
using phase correlation is shown in Figure 10. The task consists
in finding a particular smiley within a group of similar patterns.
Since phase correlation of noise-free images will immediately
match the right location of the target smiley, the search is com-
plicated by adding a large amount of high-frequency noise which
substantially corrupts small image features (such as smiley’s
eyes). Single-step phase correlation between substantially noised
images results in selection of the wrong pattern location (see yel-
low framed smiley in Figure 10). Due to high-level of noise, the
peak of phase correlation corresponding to the correct pattern
(green framed smiley) has the lower height. Remarkably, consid-
eration of visual acuity (i.e., peripheral blurring) helps to improve
the recognition score. Phase correlation between the target smiley
and three images with different visual foci manages to peak out
the right pattern location which corresponds to the highest peak
of PC = 7.93E+ 3.

Another example of remarkable features of phase correlation
as a pattern recognition tool is detection of the virtual image
content in visual completion illusions. Figure 11 demonstrates
detection of virtual geometrical patterns (i.e., triangle, circle)
in the completion illusions from Idesawa (1991) and Kanizsa
(1995). The correct location of the virtual figures corresponds
to the absolute maximum of phase correlation. This examples

demonstrate that phase correlation is capable to retrieve even
extremely subtle pattern correspondences.

6. Discussion

Here, we merge existing phenomenological findings, compu-
tational analysis and theoretical hypotheses to dissect the role
of image phase in diverse phenomena of visual information
processing, illusion and cognition. We argue that fundamental
importance of phase for detection of structural image features
and transformations is of clear evolutionary advantage for sur-
vival of species and can be assumed to promote the develop-
ment of phase-based mechanisms of neural image processing. A
large body of neurophysiological and psychophysical evidence
seems to confirm the assumption that biological vision relies
on frequency domain transformation, filtering and higher-order
processing of retinal images in the visual cortex. Hence, the emer-
gence of efficient phase-based neural mechanisms in course of
evolution appears to be plausible. We show that the concepts
of phase shift, amplitude-normalizing phase-only transforma-
tion and phase correlation provide a qualitative description for
a number of puzzling visual phenomena including

• preservation of cognitive features in the image sketch (in the
sense of the Marr’s Primal Sketch),

• robustness of pattern detection with respect to substantial level
of noise and structural distortion,

• “eye exhaustion” by observation of repetitive and blurry
scenes,

• advantages of saccadic strategy of iterative target-background
sampling for pattern discrimination,

• dependency of saccadic eye movements on structural image
properties (i.e., target-background similarity and spectral
characteristics),

• advantages of differences in foveal and peripheral acuity for
visual pattern recognition,

• dependency of the delay time by perception of virtual depth
illusions on phase properties of stimuli,

• coherent phase shifts in contrast-gradient patterns of apparent
motion illusions,

• driving role of saccades in apparent motion and tilt illusions,
• recognition of virtual patterns in completion illusions using

phase correlation.
• singular pattern of neural activity in the association cortex by

recognition of similar visual stimuli.

Although, straightforward projections of theoretical concepts
onto biological systems can, in general, lead to too far-reaching
extrapolations, some of our hypothetic predictions, such as
dependency of saccades strategy on structural image properties
and singular response of association cortex to structurally similar
visual stimuli, can be, on principle, tested in experiment.

There is a tight resemblance between the concepts of
amplitude-normalizing phase-only transformation and phase
correlation we used in our work and energy models (Morrone
and Owens, 1987; Morrone and Burr, 1988; Fleet et al., 1996)
re. phase congruency detectors (Morrone et al., 1986; Kovesi,
2000). Both concepts take advantage of two basic principles:
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FIGURE 11 | Detection of the virtual image content using phase

correlation. From left to right: (i) hidden patterns of illusion stimuli (i.e.,

triangle, circle), (ii) visual completion illusion from Kanizsa (1995) (top row)

and Idesawa (1991) (bottom row), (iii) phase correlations between (i) and (ii)

(maximum is indicated by the arrow), registration of (i) onto (ii) according to

the maximum of (iii).

(i) amplitude-normalization, which effectively performs edge
enhancement (i.e., image sketchification) and makes scene anal-
ysis independent of the level of illuminance and contrast, and
(ii) calculation of the cognitive checksum by building an inte-
gral over the entire frequency spectrum, which, on one hand,
makes the cognition extremely robust with respect to noise and,
on the other hand, allows distributed storage of information in
neural networks. Otherwise, there is a basic difference between
these two concepts: phase congruency can be seen as an extended
amplitude-normalizing, edge-enhancing filter, while phase corre-
lation is constructed to detect the relative transformation and/or

structural (dis)similarity between each two images. Furthermore,
phase congruency is presumably performed by V1 neurons, while

phase correlation can be expected to take place in a higher level
of visual cortex hierarchy, i.e., association cortex. Finally, taking

into consideration potential redeployment of the brain areas
(Anderson, 2007), one can expect that the suggested principle

of pattern recognition by phase correlation is not restricted to
the visual system and could also play a role in other cognitive

functions.
Within the general framework of recent hierarchical bottom-

up top-down models of visual cortex (Lee and Mumford, 2003;
Epshtein et al., 2008; Poggio and Ullman, 2013), our find-
ings provide a theoretical explanation for what Marr called

“early non-attentive vision” (Marr, 1976, 1982). In particular,

our above results suggest that phase-only transformation in V1

with subsequent phase correlation in association cortex represent
bottom-up neural mechanisms of Primal Sketch generation and
perception, respectively. However, differently from the canonical
edge operators that are based on derivatives (i.e., edge-mask con-
volution) of the image intensity function, edge information in the
frequency domain is given implicitly by the relative phase struc-
ture and can be assessed for the entire image in a non-iterative

and non-local manner. The ability of phase correlation to capture
global structural information “on-the-fly” makes it to an ultimate
tool for rapid bottom-up processing of the focused image con-
tent. The temporal focus of the observer is, in turn, controlled
by higher-order cortical centers that integrate bottom-up streams
and define conscious and unconscious strategies of visual scene
sampling.

While the focus of our present work is on the role of image
phase in visual information processing, it should be stated that
phase does not exclusively bear cognitive features of visual stim-
uli. Findings in Freeman and Simoncelli (2011) and Zhang et al.
(2014) suggest that amplitude information is also involved in
visual (re)cognition and can be even overweight in peripheral
vision or by perception of textural images. It is a subject of
future research to reveal how phase and amplitude are weighted
and merged to an integrated whole in association cortex upon
structural properties of visual stimuli.
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