
ORIGINAL RESEARCH
published: 21 April 2015

doi: 10.3389/fncom.2015.00046

Frontiers in Computational Neuroscience | www.frontiersin.org 1 April 2015 | Volume 9 | Article 46

Edited by:

Misha Tsodyks,

Weizmann Institute of Science, Israel

Reviewed by:

Stefano Fusi,

Columbia University, USA

Srdjan Ostojic,

Ecole Normale Superieure, France

*Correspondence:

Pavel Sountsov,

MS 008 Brandeis University,

415 South Street,

PO Box 549110 Waltham,

MA 02454-9110, USA

sl157@brandeis.edu

Received: 18 October 2014

Accepted: 03 April 2015

Published: 21 April 2015

Citation:

Sountsov P and Miller P (2015)

Spiking neuron network Helmholtz

machine.

Front. Comput. Neurosci. 9:46.

doi: 10.3389/fncom.2015.00046

Spiking neuron network Helmholtz
machine
Pavel Sountsov 1, 2* and Paul Miller 2, 3

1Neuroscience Graduate Program, Brandeis University, Waltham, MA, USA, 2 Volen National Center for Complex Systems,

Brandeis University, Waltham, MA, USA, 3Department of Biology, Brandeis University, Waltham, MA, USA

An increasing amount of behavioral and neurophysiological data suggests that the brain

performs optimal (or near-optimal) probabilistic inference and learning during perception

and other tasks. Although many machine learning algorithms exist that perform inference

and learning in an optimal way, the complete description of how one of those algorithms

(or a novel algorithm) can be implemented in the brain is currently incomplete. There have

been many proposed solutions that address how neurons can perform optimal inference

but the question of how synaptic plasticity can implement optimal learning is rarely

addressed. This paper aims to unify the two fields of probabilistic inference and synaptic

plasticity by using a neuronal network of realistic model spiking neurons to implement a

well-studied computational model called the Helmholtz Machine. The Helmholtz Machine

is amenable to neural implementation as the algorithm it uses to learn its parameters,

called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron

network implements both the delta rule and a small example of a Helmholtz machine.

This neuronal network can learn an internal model of continuous-valued training data

sets without supervision. The network can also perform inference on the learned

internal models. We show how various biophysical features of the neural implementation

constrain the parameters of the wake-sleep algorithm, such as the duration of the

wake and sleep phases of learning and the minimal sample duration. We examine the

deviations from optimal performance and tie them to the properties of the synaptic

plasticity rule.

Keywords: spiking neural network, Bayesian inference, synaptic plasticity, unsupervised learning, sleep

1. Introduction

Humans and other animals live in a predictable and structured environment where they are
required to make rapid and effective decisions in order to procure food, escape predators, and find
mates. These sensory inputs, however, provide only a limited and often corrupted snapshot of the
environment around the animal. Although decisions are made using this imperfect information,
they must reflect the actual nature of the environment, as it is that which determines the effect of
an animal’s action.

Bayesian inference provides the mathematical description of how to make optimal decisions
given this limited and corrupted information about the environment (Bishop, 2006; Griffiths et al.,
2010). There is ample experimental data showing that humans and other animals behave in a
way consistent with Bayesian inference in probabilistic tasks such as cue combination (van Beers
et al., 1999; Atkins et al., 2001; Ernst and Banks, 2002; Alais and Burr, 2004; Burge et al., 2010),

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fncom.2015.00046
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:sl157@brandeis.edu
http://dx.doi.org/10.3389/fncom.2015.00046
http://journal.frontiersin.org/article/10.3389/fncom.2015.00046/abstract
http://community.frontiersin.org/people/u/29160
http://community.frontiersin.org/people/u/2756

Sountsov and Miller Spiking neuron network Helmholtz machine

combination of uncertain evidence with prior knowledge
(Tassinari et al., 2006), sensory-motor learning (Körding and
Wolpert, 2004), motion illusions (Weiss et al., 2002), and causal
reasoning (Blaisdell et al., 2006). Optimal learning on lifetime
(Griffiths and Tenenbaum, 2006) and experimental (Orbán et al.,
2008; Chalk et al., 2010) timescales has also been observed. Anal-
ysis of neural recordings during perception of natural scenes
throughout development is also broadly consistent with optimal
inference (Berkes et al., 2011). This evidence motivates the search
for an implementation of Bayesian inference in the brain.

In this framework the brain holds a probabilistic model of
the physical laws which translate the makeup of the environment
(e.g., the objects that are in front of the animal) into the (cor-
rupted) sensory information that enters the brain (Figure 1A,
bottom). As originally posed by Helmholtz (1925) the brain
then inverts this probabilistic model, also called the genera-
tive model, to create a recognition model, that converts that

A

B

FIGURE 1 | General layout of the Helmholtz Machine. (A) The putative

Helmholtz Machine in the brain consists of two separate models, the

recognition model and the generative model. The recognition model

transforms the neural activity in the early sensory cortices (set up by the

objects in the outside world) to set up neural activity in the higher cortices,

which represents the inferred structure of the outside world. The generative

model goes in reverse, transforming the neural activity in the higher cortices

(set up by top-down connections from even higher cortices) into neural activity

in the sensory cortices, which represents the reconstructed sensory stimulus

that corresponds to the world fantasized by the higher cortex. (B) The

Helmholtz Machine in this paper consists of two input nodes and two hidden

nodes. The model learns the recognition weights, WR, and biases, BR, as well

as the generative weights, WG, and biases, BG.

corrupted information into an optimal estimate of the makeup
of the environment that the brain can then make decisions about
(Figure 1A, top). Learning in this framework involves adjusting
the parameters of the generative model (and thus its inverse,
the recognition model) to match the statistics of the environ-
ment. As exact Bayesian inference is typically intractable (Bishop,
2006), an approximate recognition model is often required.
This approximation would manifest itself in the animal’s behav-
ior in the form of specific behavioral biases (Sanborn et al.,
2010).

We are interested in examining Bayesian inference at the level
of neural implementation. This has two benefits. First, the neu-
ral substrate adds an additional level of approximation and bias
which may aid the interpretation of behavioral data, as above.
Secondly, a neural specification of an algorithm will specify the
type of data that should be looked for in neural recordings. There
have been multiple proposals of how to implement Bayesian
inference in neuronal networks (Lee, 2002; Friston and Kiebel,
2009; Moran et al., 2013) and some have advanced to using spik-
ing neurons (Rao, 2005; Ma et al., 2006, 2008; Shi and Grif-
fiths, 2009; Buesing et al., 2011; Pecevski et al., 2011). Most
of these past attempts did not address the question of learn-
ing. More recently, proposals to implement both inference and
learning in model neurons with both a stochastic (Brea et al.,
2011; Rezende et al., 2011; Nessler et al., 2013) and determin-
istic (Deneve, 2008a,b) spiking mechanism have been devel-
oped. We propose an alternative formulation (detailed below)
based on neurons with deterministic dynamics with the required
stochasticity originating from stochastic release of in synaptic
vesicles.

In this paper we will explore the questions of both inference
and learning by providing a spiking neuron model implemen-
tation of a particular algorithmic model of Bayesian inference
called the Helmholtz machine. The Helmholtz machine (Dayan
et al., 1995; Hinton et al., 1995; Hinton and Dayan, 1996; Neal
and Dayan, 1997; Dayan, 1999, 2000) provides a method of
performing both approximate inference and learning in a way
that is amenable to biological implementation, because unlike
similarly powerful models, connection-strength changes depend
only upon local correlations. In addition to the recognition
model common to all implementations of Bayesian inference, the
Helmholtz machine posits the existence of an explicit generative
model in the brain (Figure 1A). This generativemodel is not used
during inference, but is critical for learning the parameters of
the recognition model (the recognition model, in turn, is used
to train the parameters of the internal generative model). The
original Helmholtz machine was successfully tested as a model
of handwritten digit recognition (Hinton et al., 1995) and fac-
tor analysis (Neal and Dayan, 1997). The details of biological
implementation of these ideas have hitherto been incomplete,
with the issue of how to implement its learning rule, the delta
rule, being particularly vexing. The proposed model will show
how a microcircuit combined with a experimentally observed
synaptic plasticity rule can implement the required computa-
tions to bridge the gap between the algorithm and the neural
substrate.

Frontiers in Computational Neuroscience | www.frontiersin.org 2 April 2015 | Volume 9 | Article 46

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Sountsov and Miller Spiking neuron network Helmholtz machine

2. Materials and Methods

2.1. Computational Helmholtz Machine Model
2.1.1. Model Description
The generative model that we will be implementing and using to
model (simulated) observed data is a mixture model of truncated
gaussians:

P(x, y) = N (y;WGx+ BGβ,6)P(x), (1)

where x is the activity of the units in the hidden layer and y is the
activity of the units in the observed layer. A truncated gaussian is
given by the following probability distribution function:

N (z;µ,6) =
1

Z
H(z)Normal(z;µ,6), (2)

for some mean µ, covariance matrix 6 and normalizing coeffi-
cient Z.H(z) is a multivariate Heaviside function:

H(z) =
∏

i

H(zi), (3)

where H(·) is the usual Heaviside function (with H(0) = 1) and
the product is taken over all components of z.

The goal of perception as formulated in the Bayesian frame-
work is to invert this generative model, i.e., to find P(x|y). This
is intractable in the general case, so an approximate recognition
model is used. In this case the approximate recognition model is
also a mixture of truncated gaussians:

Q(x; y) = N (x;WRy+ BRβ,6). (4)

Both model share a fixed bias activity β and the variance matrix
6. The remaining parameters, namely the generative weights
WG, biases BG, recognition weights WR, and biases BR are
learned by the model using the wake-sleep algorithm. The values
of the fixed parameters as well as the initial values of the learned
parameters are detailed in Table S1. Since the variance parameters
are not learned, the exact functional form of the mixture compo-
nents does not significantly matter (e.g., a Poisson distribution
would result in an identical neural implementation) as long as its
mean depends linearly on the weights and biases. We choose a
truncated gaussian for mathematical convenience.

2.1.2. Learning Rules
It is possible to derive the exact wake-sleep learning rules for
truncated gaussian units by following a standard procedure (see
Supplementary Information). During the wake phase of the algo-
rithm the generative model is adapted to the environment by first
estimating the hidden layer activities x(n) given an observation
y(n) from the environment using the approximate recognition
model and then adjusting the generative weights and biases as
follows:

1WGij = ηx
(n)
j

(

y
(n)
i −

(

WGx
(n) + BGβ

))

(5)

1BGi = ηb
(

y
(n)
i −

(

WGx
(n) + BGβ

))

, (6)

where η is the learning rate. During the sleep phase the approxi-
mate recognition model is adapted to better invert the generative
model by first generating a sample {x(n), y(n)} from the generative
model and then adjusting the recognition weights and biases:

1WRij = ηy
(n)
j

(

x
(n)
i −

(

WRy
(n) + BRβ

))

(7)

1BRi = ηb
(

x
(n)
i −

(

WRy
(n) + BRβ

))

. (8)

During learning we constrain BR and BG to be positive whileWG

andWR are not constrained.
Our neuronal network model will implement the above learn-

ing rules by approximating them using biologically plausible
synaptic plasticity rules (Figure 2). To focus our analysis on
the difference between the computational implementation and
the implementation using the neural substrate we also use an
approximate learning rule in the computational model (i.e.,
we do not use Equations 5–8). Given a target activity T, an
input activity I and an output activity O, let the error signal be
M = max(T − O,−θ). The weight is then adjusted as follows:

1w = ηIM(M + θ), (9)

where θ is some threshold activity. Equations (5, 6), for example,
are approximated by

1WGij = ηx
(n)
j M(M + θ)

1BGi = ηbM(M + θ)

M = max
(

y
(n)
i −

(

WGx
(n) + BGβ

)

,−θ

)

.

This approximation can be derived by assuming that the unit
activity is encoded using Poisson spike trains and that the con-
nection weights are adjusted using realistic synaptic plastic-
ity rules (see Supplementary Information). The quality of this
approximation is verified empirically.

2.2. Neuronal Network Delta Rule Model
2.2.1. Neural Model and Synaptic Currents
To simulate spiking neurons we use a two variable model spiking
neuron introduced by Izhikevich (2003). The model is described
by two coupled ordinary differential equations and a single
threshold condition:

dV

dt
= 0.04V2 + 5V + 140− u+ Ie + Ii + Ir (10)

du

dt
= a(bV − u) (11)

if V > 0mV →

{

V 7→ c

u 7→ u+ d
, (12)

where V is the membrane potential (measured in mV), u is an
adaptation current, a, b, c, d are the parameters that determine
the dynamics of the neural firing. We use two sets of parameters
tomodel excitatory (regular spiking—RS) neurons and inhibitory
(fast spiking—FS) neurons (Table S2).

Frontiers in Computational Neuroscience | www.frontiersin.org 3 April 2015 | Volume 9 | Article 46

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Sountsov and Miller Spiking neuron network Helmholtz machine

A B

C

FIGURE 2 | Spiking neuronal network implementation of the delta

rule. (A) The microcircuit implementing the delta rule consists of

interconnected pools of neurons (circles). Numbers in the circles signify

the number of neurons in each pool. Numbers next to the connections

indicate maximum total conductance through that pathway in nS. The

connections have a sparsity of s = 0.3. Not shown are the non-specific

external connections made to each neuron in pools M and O. Each

individual post-synaptic neuron in those pools gets its own Poisson

spike train with rate rǫ = 100Hz that excites it through an excitatory

synapse with conductances of 0.42 nS and 0.6 nS, respectively. (B)

The spiking plasticity rule at the plastic inhibitory synapses implements a

form of the BCM rule. Synapses depress (dashed red lines) or potentiate

(solid green lines) depending on whether the post-synaptic firing rate,

rM, is respectively less than (or greater than) some threshold rate rθ

(thick line). By controlling rM to be below rθ when the delta rule (thin

line) predicts depression, and vice versa when the delta rule predicts

potentiation, this microcircuit approximates the delta rule. (C) Responses

of the model neurons to DC current injection. Once the neurons exceed

a certain threshold current, their firing rate is approximately linear, which

leads to an overall linearity of this microcircuit.

Ie models the excitatory current flowing through AMPA and
NMDA receptors:

Ie = (ge1 + ge2NMDA(V))(Ee − V),

where ge1 and ge2 are the summed dynamic conductances (mea-
sured in nS) of all excitatory synapses onto a neuron. NMDA(V)
describes the membrane potential dependence of the NMDA
current (Jahr and Stevens, 1990):

NMDA(V) =
1

1+
[Mg++]ext

3.57 exp(−0.062V)
.

Ii models the inhibitory current flowing through GABAA

channels:

Ii = gi(Ei − V),

where gi is the summed dynamic conductance (measured in nS)
of all inhibitory synapses onto a neuron.

Ir is a current coming from excitatory synapses (modeled as
AMPA currents) that are external to the network:

Ir = gr(Ee − V),

where gr is the dynamic conductance (measured in nS) of of these
external synapses.

Whenever a non-external pre-synaptic neuron fires, after a
certain delay 1, the conductance of the corresponding synapse
type gets adjusted by a random amount:

gsyn 7→ gsyn + wmax(f , 0),

wherew is the synaptic weight (measured in nS) and f is the num-
ber of vesicles released during the event. The distribution of f is
modeled by a binomial distribution (Castillo and Katz, 1954) with
a fixed number of vesicles, Nv, and the probability of release, Pv
(Table S2). For computational convenience, we approximate this
binomial distribution by a normal distribution with mean NvPv
and variance NvPv(1− Pv) truncated at 0.

The external synapses are modeled as a Poisson process with
rate rr Hz. Whenever an external “neuron” fires, the conductance
gr gets adjusted by a fixed amount wr .

Between spiking events all of the aforementioned
conductances evolve as ordinary first order differential
equations:

τe1
dge1

dt
= −ge1

τe2
dge2

dt
= −ge2

τi
dgi

dt
= −gi

Frontiers in Computational Neuroscience | www.frontiersin.org 4 April 2015 | Volume 9 | Article 46

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Sountsov and Miller Spiking neuron network Helmholtz machine

τe1
dgr

dt
= −gr.

2.2.2. Network Connectivity
The delta rule networks are subdivided into homogeneous pools
of neurons, identified by labels (Table S3, Figure 2). Each net-
work has an input pool E, an output pool O and a target pool
T which are used to provide inputs to and read outputs from
the network. Additionally, there are intermediate poolsM and D
used by the network to perform computation and learning (see
Results). Pairs of neuronal pools are connected with directed,
sparse connections (Table S4). Each neuron in the source pool
is connected with the same fraction of neurons in the destination
pool. The total conductance of synapses made by a pre-synaptic
neuron is fixed, with each synapse getting an equal portion of that
total. The connection sparsity, s, is the same across all inter-pool
connections.

2.2.3. Synaptic Plasticity
The Spiking BCM synaptic plasticity rule estimates the post-
synaptic spike rate r̂post (measured in Hz) by filtering the post-
synaptic spike train using an exponential kernel:

κ(t) =

{

0 if t < 0
1
τ
exp

(

− t
τ

)

if t ≥ 0

r̂post(t) =
∑

j

κ(t − tj),

where tj is the time of j’th post-synaptic spike. During every pre-
synaptic event (that happens at time ti for i’th pre-synaptic spike)
the synaptic weight gets adjusted as follows:

w 7→ w+ Ar̂post(ti)(r̂post(ti)− rθ).

The STDPi synaptic plasticity rule computes an estimate of
both the pre-synaptic spike rate r̂pre and the post-synaptic
spike rate r̂post (both measured in Hz) by filtering the pre-
and post-synaptic spike trains respectively using a difference-of-
exponentials kernel:

κ(t) =

{

0 if t < 0
1

τ1 − τ2

(

exp
(

− t
τ1

)

− exp
(

− t
τ2

))

if t ≥ 0

r̂pre(t) =
∑

i

κ(t − ti)

r̂post(t) =
∑

j

κ(t − tj),

where ti is the time of i’th pre-synaptic spike and tj is the time
of j’th post-synaptic spike. During each pre-synaptic event the
synaptic weight gets adjusted as follows:

w 7→ w− Amr̂post(ti) (13)

During each post-synaptic event the synaptic weight gets adjusted
as follows:

w 7→ w+ Apr̂pre(tj)r̂post(tj). (14)

The plastic weights are restricted to be non-negative.
To examine the properties of the two plasticity rules we con-

struct two artificial spike trains. The pre-synaptic spike train
is created using a homogeneous Poisson process with a con-
stant rate rpre. The post-synaptic spike train is created using an
inhomogeneous Poisson process with a post-synaptic spike rate
rpost(t):

rpost(t) = max
(

0, rbase + 1r
∑

s(t − ti)
)

s(t) =

{

0 if t < 0

exp
(

− t
τr

)

if t ≥ 0
,

where ti is the time of the i’th pre-synaptic spike. When plot-
ting, we use rpost , which is the mean across time of rpost(t). We
vary rbase to produce the necessary rpost . These parameters are
listed in Table S1.

2.2.4. Training and Testing Protocol
To set the target and input rates we vary rr for neurons inside the
pools T and E, respectively. We keep the rate constant through-
out the training and testing periods. The output rate is computed
by averaging the firing rate of all neurons inside output pool O
during the testing duration. During the testing period the plastic-
ity is turned off (e.g., by setting the appropriate plasticity change
amplitudes to 0).

2.3. Neuronal Network Helmholtz Machine Model
2.3.1. Network Connectivity
The neuronal network implementation of the Helmholtz
Machine is constructed out of four units, arranged in two lay-
ers. These units correspond exactly to the computational model
units x and y. Each unit has the same connectivity as the delta
rule network except that pool E is removed and pool R and the
variable labeled output pools X1, X2, Y1, Y2 are added (Table S3).
Additionally, pool I is now associated with the source pool and
not with the destination pool (although connectivity is the same).
These subunits are interconnected by making excitatory projec-
tions from the output pool and inhibitory projections from pool
I of a unit on one layer to pool M of a unit in a different layer
(Table S4).

2.3.2. Training and Testing Protocol
The inputs into the network come entirely through setting the rr

variable of pool T to rT . During the wake phase, rT is set to y
(n)
1

and y
(n)
2 for units y1 and y2 and to rns for units x1 and x2 . Dur-

ing sleep phase the inverse happens: rT is set to x
(n)
1 and x

(n)
2 for

units x1 and x2 and to rns for units y1 and y2. Additionally, the
connectivity between units changes between phases, as detailed
in Table S4.

The probability distributions over the output rates are com-
puted by computing a histogram of samples collected from the
network. A sample is computed by averaging the rate of all neu-
rons in the relevant output pool for the duration of the sample,
Tsample.

Frontiers in Computational Neuroscience | www.frontiersin.org 5 April 2015 | Volume 9 | Article 46

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Sountsov and Miller Spiking neuron network Helmholtz machine

2.4. Prior Distributions
The generative tests and the reward test use priors coming from
two families of unimodal and bimodal priors:

Pu(x) = N (x;µu, 6u) (15)

Pb(x) = r1N (x;µb1, 6b)+ r2N (x;µb2, 6b). (16)

The parameters used for these prior distributions are listed in
Table S5.

The decoding test uses a uniform line prior:

Pd(x) =

∫ ∞

0
δ(x1, 15+ 30l)δ(x2, 15+ 30l)P(l) dl, (17)

P(l) = U(l; 0, 1)

where U(z; a, b) is the uniform distribution sampling z from
[a, b] and δ(·, ·) is the Kronecker delta. When plotting, we collect
Ntest samples from each distribution.

2.5. Training Data Sets
The computational model and the neuronal network are trained
on a set of 10 data sets, with the first eight used for the generative
model tests and the last two for the decoding test and the reward
test respectively. The data sets are generated prior to training
(and are reused for all models) by drawing Ntest samples from
the probability distributions. We chose the training distributions
such that they avoided low firing rates where our learning rules
have the most inaccuracy.

During training the data points are taken successively and
in the same order for all trials (restarting from the beginning
when the data set is exhausted). The unimodal data sets a . . . e
are drawn from a truncated gaussian distribution:

Pa...e(x) = N

(

x; (22.5, 22.5),R(θ)6(ρu, 1)R(θ)
T
)

6(ρ1, ρ2) =

(

ρ2
1 0

0 ρ2
2

)

(18)

R(θ) =

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

. (19)

The bimodal data sets f . . . i are drawn from a mixture of two
truncated gaussians:

Pf ...i(x) =
1

2
N

(

x; (22.5, 22.5)+ R(θ)d;6(5, 5)
)

+

+
1

2
N

(

x; (22.5, 22.5)− R(θ)d;6(5, 5)
)

d =

(

10
0

)

,

where 6(ρ1, ρ2) and R(θ) are defined in Equations (18, 19). The
parameters for these distributions are detailed in Table S6.

The data set, o, for the decoding task is drawn from a uniform
line distribution with added truncated gaussian noise:

P(C) = U(C; 0, 1)

Po(x) =

∫ 1

0
N (x;µ(C), 6(0.5, 1.5))P(C) dC

µ(l) =

(

40
40

)

+ C

(

30
15

)

,

where U(z; a, b) is the uniform distribution sampling z from
[a, b] and 6(ρ1, ρ2) is defined in Equation (18). The data points
are labeled by the value of the variable C used to generate them.

The data set, r, for the reward task is drawn from a uniform
line distribution:

P(C) = U(C;−1, 1)

Pr(x) =

∫ 1

−1
δ(x1, 22.5+ 12.5C)δ(x1, 22.5− 12.5C)P(C) dC,

where δ(·, ·) is the Kronecker delta. The data points are labeled
by the value of the variable C that was used to generate them.

2.6. Generative Model Test
We compute the similarity between two probability distributions
P(x) and Q(x) using the Jensen-Shannon divergence (Lin, 1991):

D(P ‖ Q) =
1

2
DKL(P ‖ M)+

1

2
DKL(Q ‖ M)

M(x) =
P(x)+ Q(x)

2
,

where DKL is the Kullback–Leibler divergence (Kullback and
Leibler, 1951):

DKL(P ‖ Q) =

∫ ∞

−∞

P(x) log2

(

P(x)

Q(x)

)

dx.

We use base 2 for the logarithm so that D ranges from 0 to 1.
Since we, in most cases, do not have access to the complete prob-
ability distributions, we estimate D by computing it between two
2D histograms. The histograms are 40 bins on each side (total of
1600 bins) and range from 0Hz to 60Hz. This method of com-
putingD is biased (Treves and Panzeri, 1995), but it is sufficiently
accurate for the purposes of this paper.

2.7. Decoding Test
Given a sample x(n) from the computationalmodel or from a neu-
ronal network we decode the represented value Ĉ(n) by projecting
that sample onto the line formed by the prior:

Ĉ(n) =
(x

(n)
1 − 15)+ (x

(n)
2 − 15)

30
.

We can then compute the mean deviation like so:

MeanDev =

√

∑

(Ĉ(n) − C(n))2

Ntest
,

where C(n) is the label associated with y(n) which was drawn from
the data set and that generated x(n).

Frontiers in Computational Neuroscience | www.frontiersin.org 6 April 2015 | Volume 9 | Article 46

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Sountsov and Miller Spiking neuron network Helmholtz machine

2.8. Reward Test
We decode the represented value Ĉ(n) using a method similar to
that for the decoding test (except with a different prior):

Ĉ(n) =
−x

(n)
1 + x

(n)
2

25
.

We then compute the response probability, P
(

Ĉ(n) > 0|C(n)
)

, of

the model and fit it with a logistic function:

P
(

Ĉ(n) > 0|C(n)
)

=
1

1+ exp
(

−
C(n)−µ

s

) . (20)

We interpretµ as the decision threshold and s as a measure of the
internal system noise.

We compute the reward attained by the model as follows:

R =
1

Ntest

∑

r1S
(

Ĉ(n) > 0,C(n) > 0
)

+ r2S
(

Ĉ(n) < 0,C(n) < 0
)

S(a, b) =

{

1 if a = True, b = True

0 otherwise
,

where r1 and r2 are the rewards associated with the two choices.
Since there is a symmetry in the Helmholtz Machine, we flip x1
and x2 so as to switch the interpretation of all trials, if such a flip
increases the computed reward.

If we assume that the system noise is distributed as a logis-
tic distribution, then given the decision threshold µ and internal
system noise scale s the reward attained by a noisy decoder is:

Rlogistic(µ, s) =
1

2
r1

∫ 1

0

∫ ∞

µ

Logistic(m;C, s) dmdC

+
1

2
r2

∫ 0

−1

∫ µ

−∞

Logistic(m;C, s) dmdC. (21)

The optimal threshold µopt is obtained by maximizing Rlogistic:

µopt = argmax
µ

Rlogistic(µ, s)

Rmax(s) = Rlogistic(µopt, s),

where the noise scale is estimated from the model for trials where
r1 = r2. The minimal reward that can be obtained given our
scoring methodology is:

Rmin =
max(r1, r2)

2
,

which can also be obtained by computing the appropriate limit of
Equation (21).

This task is particularly prone to convergence issues so we dis-
carded models which had decision thresholds outside the range
[Q1 − 1.5IQR,Q3 + 1.5IQR], where Q1 and Q3 are the first and
third quartiles and IQR = Q3− Q1.

2.9. Computer Simulations
The computational model was simulated using custom code writ-
ten in the D programming language (Alexandrescu, 2010) and
run on the authors’ personal computer. The neuronal networks
were simulated using a neural simulator written in the D pro-
gramming language by the authors. The simulator uses OpenCL
(Stone et al., 2010) to run on both GPGPU resources (AMD
Radeon HD 5830 on the authors’ personal computer) and CPU
resources (High Performance Computing Cluster at Brandeis
University). Source code for all of the models is available on
author’s webpage.

Model fitting for the reward test was done using the SciPy
package (Jones et al., 2001) and the Python programming lan-
guage (van Rossum and Drake, 2001).

3. Results

3.1. Computational Helmholtz Machine Model
The specific Helmholtz Machine implemented in this paper con-
sists of two observed units y and two hidden units x (Figure 1B).
Here, “observed” means that this unit directly receives sensory
data from the environment (thus observing the environment)
while “hidden” means that it does so indirectly (i.e., the environ-
ment is hidden from it). In practical terms the observed units can
model the early sensory areas of the brain, while hidden units can
model later sensory areas. Each unit codes for a single continuous
non-negative quantity. The generative model and the approxi-
mate recognition model are parameterized by generative weights,
generative biases, recognition weights, and recognition biases.

Weights and biases are learned using an unsupervised learning
algorithm called the wake-sleep algorithm (Hinton et al., 1995).
It consists of two quasi-symmetrical phases: wake and sleep. Dur-
ing the wake phase, samples y(n) are taken from the training data
set and are used to generate samples x(n) from the approximate
recognition model. The generative weights and biases are then
used to reconstruct the training data, with the error in recon-
struction used to adjust the generative weights. In our model, the
rule used for this purpose is the delta rule:

1w = ηzI(zT − zO), (22)

where zI is the value of the input unit (in this case one of the
hidden units), zO is the value of the output unit (in this case the
reconstructed training data for one of the observed units) and zT
is the target value (in this case the true value of the training data).
w can either be a weight between two units in the different layers
(in this case the top-down generative weight) or a bias weight, in
which case the value of the input unit is taken to be β . During
the sleep phase samples x(n) are taken from the prior distribution
(equivalently they are taken from the distribution on the hidden
units conditioned on the activity of higher brain areas). These are
then run through the internal generative model to generate sam-
ples y(n). The recognition weights and biases are then adjusted
using the same kind of rule (see Equations 5–8 in Methods).

3.1.1. Delta Rule Network
Each unit in the computational Helmholtz machine is imple-
mented using amicrocircuit of spiking neurons (Figure 2A). This

Frontiers in Computational Neuroscience | www.frontiersin.org 7 April 2015 | Volume 9 | Article 46

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Sountsov and Miller Spiking neuron network Helmholtz machine

network is composed of small pools (10–20 neurons each) mak-
ing sparse but specific connections (see Table S4 for the connec-
tivity parameters) to each other. The network interacts with other
units through an input pool (labeled E), an output pool (labeled
O) and a target pool (labeled T). We interpret the mean firing
rates of neurons in these pools (averaged across the individual
neurons) as the input, output and target activities of the unit
this neural network implements. The input and target pools are
implemented as generators of Poisson spike trains, while the rest
of the neurons in the network follow the dynamics described in
Equation (10). On a short time scale, the network implements
the unit’s conditional distribution (Equations 1, 4); that is, the
output rate rO stochastically samples from the a distribution that
is a function of the input rate rE and internally encoded weights
(the encoding is discussed below). On a longer time scale, the net-
work, through synaptic plasticity, adjusts the mean rO (averaged
across that longer timescale) to match rT in accordance with the
delta rule (Equation 22).

These two behaviors are implemented through the use of the
remaining pools in the network, labeled I, M, and D. The over-
all architecture of the network is driven by the constraint that rO
is independent (to maximum extent possible) of rT on a short
timescale (as the conditional distribution the network is imple-
menting has no such short-term dependency) despite rT making
connections into the microcircuit for the purposes of implement-
ing the delta rule (in our model, neurons communicate solely
using spikes). This is accomplished by having pool T make an
excitatory connection onto pools M and O, while having pool
M connect to pool O through an intermediate inhibitory pool D.
This arrangement is aided by the approximately linear FI curves
of the component neuron types (Figure 2C). The overall effect
of this connectivity is that if the net connectivity strength from
pool E onto pool M is excitatory, then increasing rE will lead to
a decrease in rO. The opposite happens if the net connectivity
is inhibitory. Thus, this balance between feed-forward excitation
and inhibition implements the weights of the computational unit
that this network corresponds to.

Pools I and M are responsible for adjusting that balance in a
way consistent with the delta rule. The synaptic strength of con-
nections made by neurons in pool I onto pool M is governed
by a spike-based plasticity rule that implements (under appro-
priate conditions) a certain form of the rate-based BCM rule
(Bienenstock et al., 1982). This rule adjusts the synaptic strength
based on the pre-synaptic firing rate (rI) and post-synaptic firing
rate (rM):

dw

dt
= ηrIrM(rM − rθ) (23)

In the classical BCM rule formulation rθ would depend on the
average of rM across a long timescale, but in our model it is held
constant. The microcircuit implements the delta rule by enforc-
ing the following two constraints. First, when rT ≥ rO, then that
implies that rM ≥ rθ . Second, when rT < rO, then that implies
that rM < rθ . Given these rate relationship identities, the sign
of the weight change that arises from the BCM synaptic plas-
ticity rule (Equation 23) given a certain rI , rO and rT matches

that arising from the delta rule (Equation 22). The network thus
approximates the linear form of the delta rule (Figure 2B, thin
line) with the non-linear form of the BCM rule (Figure 2B, thick
line). Aside from preserving the sign, this is quite a gross approx-
imation, and verification will be required to see if it still func-
tions correctly in the tasks where it is meant to replace the delta
rule. We wish to stress that this approximation will be used well-
outside the approximately linear region near rθ ; i.e., we are not
linearizing the BCM rule around rθ . Aside from these plastic
connections, the remaining synaptic connections are fixed, hav-
ing been optimized in order to implement the aforementioned
constraints.

3.1.2. Spiking Plasticity Rules
To fully specify the spiking neuronal network in Figure 2A it is
necessary to clarify what is meant by rate (as it has no model
independent definition for spiking neurons) and the exact nature
of the spike-based synaptic plasticity rule that implements the
rate-based BCM rule necessary for the microcircuit’s operation
described above.

In this paper we will contrast two spike-based rules that both
implement the BCM rule for certain classes of pre- and post-
synaptic spike trains. The first is a minimal, but unrealistic,
implementation that we term the Spiking BCM rule. The second is
a simplified version of the Triplet Spike-Timing Dependent Plas-
ticity which is already known to be able to implement the BCM
rule (Pfister and Gerstner, 2006). We term this reduced version
the Spike-Timing Dependent Plasticity of Inhibition, or STDPi.

The Spiking BCM rule estimates the post-synaptic rate r̂post
by filtering the post-synaptic spike train using an exponentially
decaying kernel (Figure 3A, left). At the time of every pre-
synaptic spike, the synaptic weight is potentiated or depressed
depending on the instantaneous value of r̂post (Figure 3C, left).
The synaptic weight is not adjusted in any way during the
post-synaptic spikes.

The STDPi rule filters both the pre-synaptic spike train and
the post-synaptic spike train with a difference-of-exponentials
kernel (Figure 3A, right) to estimate both the pre- and post-
synaptic rates (r̂pre and r̂post , respectively). During pre-synaptic
spikes the weight is depressed in proportion to the instantaneous
value of r̂post . During post-synaptic spikes the weight is potenti-
ated in proportion to the product of instantaneous values of r̂post
and r̂pre. This is unlike the Spiking BCM rule where potentia-
tion and depression occur only during pre-synaptic spikes. In this
sense, STDPi more accurately resembles the experimental plas-
ticity curves (Haas et al., 2006). This rule is analogous to the sim-
plified triplet-STDP rule explored by Pfister and Gerstner (2006)
with the difference being the shape of the kernel (their work used
an exponential kernel as we do in the Spiking BCM rule) and the
fact that only a single trace is used to estimate the post-synaptic
rate (as opposed to two in their work).

If we take two uncorrelated, Poisson distributed pre- and post-
synaptic spike trains and run them through these two rules, we

observe that they yield identical values for dw
dt

as a function of the
rates of those spike trains (Figure 3D). This equivalency depends
only on the values of A, Am and Ap and τ , but not the time con-
stants of the STDPi kernels. Additionally, it can be seen that the

Frontiers in Computational Neuroscience | www.frontiersin.org 8 April 2015 | Volume 9 | Article 46

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Sountsov and Miller Spiking neuron network Helmholtz machine

A

B

C

D

FIGURE 3 | Spike-based plasticity rules that implement the rate-based

BCM rule. (A) Kernels used to estimate the pre-synaptic (STDPi only) and

post-synaptic (both rules) rates. The kernel for Spiking BCM is an exponential

kick-and-decay with a single time constant, while the kernel for STDPi is a

difference of two exponentials. Both kernels equal zero for t < 0. (B,C)

Schematic diagram of the operation of the two rules given a pre-synaptic spike

train (B) and a post-synaptic spike train (C). Circumscribed magenta triangles

signify when the Spiking BCM adjusts the synaptic weight (both in positive and

negative directions). Circumscribed green pluses and red minuses signify when

STDPi respectively potentiates and depresses the synaptic weight. (D) dw
dt

as

a function of uncorrelated, Poisson distributed pre- and post-synaptic rates.

pre-synaptic rate only affects the magnitude of dw
dt

and not its
sign, just like it does in the BCM rule (Equation 23). In fact, for
Poisson distributed spike trains both rules implement Equation
23 exactly. See Supplementary Information for the full derivation
of these facts.

3.1.3. Neuronal Helmholtz Machine
To implement the Helmholtz Machine (Figure 1B) we arrange
four delta rule networks, or units as we will now call them,
(Figure 4, only three units are shown for clarity) into two lay-
ers and make connections between the units of different layers.
Two of those units correspond to the variable y (the sensory
layer) and the other two correspond to the variable x (the hid-
den layer). As the delta rule network operates on the firing rates
of pools of neurons, the neuronal network implementation of the
Helmholtz Machine encodes the values of those variables via rate
coding. In this network the mean rates (during a 500ms win-
dow) of pools X0, X1, Y0, and Y1 (collectively, the output pools)

represent the realizations of the random variables x0, x1, y0, and
y1, respectively. The probability distribution over those variables
is modeled through the stochastic variability of those rates arising
from both the rate variations of non-specific external inputs to
the delta rule network poolsM andO (see caption of Figure 2 and
Methods) as well as the stochastic synaptic vesicle release within
the synapses of the network. By construction, the output pools
sample (see Figure S1) from the probability distribution condi-
tioned on the rate of the input pools (i.e., the output pools of
other units) weighted by the synaptic strength of the connections
they make onto the pool M of every unit. Additionally, there are
also pools that make plastic connections on the input pools that
are active non-specifically. These connections model the biases in
the computational model. See Table S4 for connectivity param-
eters. The computational weights and biases (namely WG, WR,
BG, and BR) correspond to the overall effect of the outputs of
units on the output rate of a unit that they connect to. In terms
of the neuronal network implementation, this corresponds to the
balance between feed-forward inhibition and excitation.

The specific external connections are made through the pool
T of each unit (collectively the external input pools). These are
modeled as spike trains with Poisson statistics. In this case, the
rate of these processes are held constant for each 500ms interval,
and then a new rate is chosen from the probability distribution in
question (the outside world, or the priors).

The neuronal network uses an adapted wake-sleep algorithm
(Figure 5 Training). To support the two phases of the learning
algorithm in this network, we introduced two sets of switchable
connections. The first set involves connections in each unit that
go from pool T to the output pool. The second set involves con-
nections in each unit that go from pool O to the output pool.
These connections control what specifies the realizations of the
random variables: the rates rX0, rX1, rY0, rY1 in this network.
In the computational model, the realization of y0, for example,
can be taken from the environment or from the internal gen-
erative model. In sensory units in the neuronal network, for
example, this is determined by whether the active connection
to the output pool is made from the external input pool, or
from the pool O. Along the same lines these connections can
be thought of as determining whether or not the unit generates
a sample from its conditional probability distribution. During
the wake phase, for example, to adjust the generative weights we
compute WGx

(n) + BGb (Equation 6), but we do not then use
that reconstructed mean to generate a sample from the inter-
nal generative model. In the neuronal network, during the wake
phase, for example, the connection between pool O of the sen-
sory unit and the output pool is broken, to prevent that sam-
ple from being sent out to the hidden units. See Discussion for
thoughts about the nature of these switching processes in the
brain.

Additionally, the connection strengths to the sensory units
(corresponding to the generative weightsWG and biasesBG) only
get modified during the wake phase, and the connection weights
to the hidden units (corresponding to the generative weightsWR

and biases BR) are only modified during the sleep phase. The
sensory input and the input from higher areas during sleep and
wake phases respectively are set to a steady 40Hz.

Frontiers in Computational Neuroscience | www.frontiersin.org 9 April 2015 | Volume 9 | Article 46

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Sountsov and Miller Spiking neuron network Helmholtz machine

FIGURE 4 | Configurations of the spiking neuronal network

implementation of the Helmholtz Machine during the wake and sleep

phases of learning. Four delta rule networks (Figure 2A), referred to as

units within the context of this network, are wired up together to form the

Helmholtz Machine, with two handling the sensory layer computation and

two handling the hidden layer computation (only one is shown in this figure

for clarity). See Figure 2 caption for explanation of the symbols used. To

support the two phases of the wake-sleep algorithm some connections (red

crosses) are inactivated to control what determines the firing rate of the

output pools of each unit (pools X0, X1, Y0 in this figure). In the wake phase

(top) the outputs of the sensory units are determined by the sensory input,

while the outputs of the hidden units are determined by the firing rates and

the corresponding connection strengths of the outputs of the sensory units.

In the sleep phase the outputs of the sensory units are determined by the

firing rates and the corresponding connection strengths of the outputs of the

hidden units, while the outputs of the hidden units are driven by the input

from higher areas. Additionally, in accordance with the wake-sleep algorithm,

the plastic connection strengths to the sensory units only get modified during

the wake phase, and vice versa for the connection strengths to the hidden

units. The non-specific external inputs within each unit are not shown. Also

not shown are plastic inputs onto the pool M of each unit that implement the

bias activity and weights. These are modeled as a Poisson spike train with

rate rb = 25Hz. These plastic inputs form the same type of plastic inhibitory

synapse as all the other plastic connections shown on the figure.

Unlike the computational model, each wake and sleep phase
consists of multiple consecutive samples per phase. This is done
in order to minimize the effect of the rate transients that happen
when the network switches between sleep and wake phases. For
example when the network switches from the wake phase to the
sleep phase, the rate of theM pool in the hidden units (Figure 4)

switches from operating on samples taken from the environment
to operating on samples produced by the generative model. Even
though the plasticity is turned off in those units during the wake
phase, the kernels that estimate the rate of the neurons in those
pools (Figure 3) still function. This means that initially during
the first sample of the sleep phase that follows the wake phase, the

Frontiers in Computational Neuroscience | www.frontiersin.org 10 April 2015 | Volume 9 | Article 46

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Sountsov and Miller Spiking neuron network Helmholtz machine

FIGURE 5 | Training and testing protocols for the neuronal

network implementation of the Helmholtz Machine. The network

is trained for 5000 s using alternating wake and sleep phases. Each

phase of wake and sleep consists of 10 samples, 500ms each.

During the generative test 2000 samples are collected from the

generative model.

estimated rate is incorrect, causing errors in learning. A similar
issue affects adjacent samples within the wake phase and adja-
cent samples within the sleep phase, but since the rates are taken
from the same distributions (from the environment and from
the prior respectively) this is a less severe problem. These issues
constrain the temporal scale of the dynamics of neurons, the plas-
ticity rules and the active sensation mechanisms (e.g., saccades).
If the environment changes more quickly during the wake phase
(or the higher brain regions fluctuate in activitymore rapidly dur-
ing the sleep phase) than the rate estimationmechanism can keep
up with, the learning will be adversely affected.

This issue means that the choice of the number of samples
per phase can be of critical importance for successful learning.
In practice we find that this choice depends on the complexity
of the data and prior distributions. Complex tasks (bimodal data
sets and priors) require larger batch sizes. We use a batch size
of 10 for most tasks, increasing it to 50 for the more compli-
cated recognition tests. Our tests show that once the batch size
exceeds a certain amount, the network performance plateaus for
small (≤ 50) numbers of samples per phase.

3.2. Delta Rule Network Results
To test the functionality of the delta rule neuronal network, we
took 121 separate but structurally identical networks for each
plasticity rule. Each network received a different target rate rT
and different initial mean weight of the plastic connections wstart .
All other parameters were kept the same, with rE being set at
20Hz. We then simulated each network in these conditions and
recorded the rO . Before training, rO increased with increasing
wstart (Figure 6A, left). The variation in rO as a function of rT
before training comes from the imperfect linearity of the net-
work. After 50 s of training, rO now follows rT when the network
used the Spiking BCM rule and when it used STDPi (Figure 6A,
middle, right). Note that if we change rT on the short time scale,
rO will remain unaffected (modulo the imperfections mentioned
above): the pattern of variation in rO comes from rI affecting it
differently based on the trained weights. To examine more clearly
how well rO matches the training rT we simulate 50 instantiations

of the random connectivity for each of the 121 networks above
and average across the starting weights. For the Spiking BCM rule
we note that the deviation between rT and rO is approximately
constant for all rT (Figure 6B, red line) while for STDPi this devi-
ation increases for higher rT (Figure 6B, blue dashed line). If we
look at the changes in weight given wstart = 1 (Figure 6C), it
can be seen that this is because the STDPi does not increase the
synaptic weight quite as much as Spiking BCM does in those con-
ditions. This is not an issue of convergence, as looking at the total
weight change over time for one trial averaged across 50 networks
it is clear that both weights converge for both rules during the
training (Figure 6D). Despite these imperfections, at least in this
simple task, the use of the approximate delta rule and the imple-
mentation of it using the spiking plasticity rules does not lead to
catastrophic degradation of performance and we can move on to
try using this network as part of the Helmholtz Machine.

3.3. Generative Model Results
3.3.1. Training Protocol
First we test the computational model and the neuronal net-
work in the generative mode. That is, we examine how well the
model matches the probability distribution over the input units
on which it was trained. This is most applicable to matching
spontaneous in vivo neural activity in the early cortical areas (e.g.,
early sensory cortices Berkes et al., 2011). The computational
model and the neuronal network are trained on nine data sets
(labeled a through i). Data sets a through e consist of skewed and
unskewed unimodal bivariate truncated gaussians, while data sets
f through i are bimodal mixtures of unskewed bivariate gaus-
sians. For the unimodal data sets we use a unimodal prior dis-
tribution (Equation 15) while for bimodal data sets we use a
bimodal prior distribution (Equation 16). In the neuronal net-
works, the different prior distributions are implemented by alter-
ing the firing rate distribution of the pool T in the hidden units
during the sleep phase. Such a manual task-dependent choice of
priors is necessary because our model contains only a single hid-
den layer; the power of the Helmholtz Machine is in its ability
to be implemented in a hierarchical structure, so that the type of

Frontiers in Computational Neuroscience | www.frontiersin.org 11 April 2015 | Volume 9 | Article 46

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Sountsov and Miller Spiking neuron network Helmholtz machine

A

B C D

FIGURE 6 | Performance of the delta rule neuronal network. (A) For

each plasticity rule, 121 structurally identical networks were given different

rT and initial weights wstart. The networks were then simulated for 50 s.

Before training rO follows wstart and is largely independent of rT . After

training rO follows rT (more accurately, it follows w which has been

trained by rT as rO is largely independent of rT on short time scales). (B)

Averaging across 50 instantiations of the above 121 delta rule networks

and collapsing along the wstart axis, the deviation from rT is nearly

constant for all values of rT when Spiking BCM is used (red solid), but it

is non-constant when STDPi is used (blue dashed). (C) Networks that

use STDPi have trouble attaining high weights. (D) Change in weight over

time for one trial of 50 networks. For both plasticity rules the weights

approach a certain steady state, but for STDPi this final weight value is

lower than it is for Spiking BCM. The error bars are SEM.

prior would be learned as the connection strengths for the second
hidden layer in a larger model.

The models are trained and tested following the protocol
depicted in Figure 5, Generative Test. Each session starts with
a training period with a total duration of 5000 s (for a total 500
wake phases and 500 sleep phases, where each phase comprises
10 samples) for the neuronal network. The computational model
is trained for 250,000 wake and sleep phases (with one sample
per phase). We use a relatively faster learning rate for the neu-
ronal network for the sake of computational efficiency. At the
same time, however, it is 90% slower than it was in the delta
rule network because the weights do not converge correctly if the
learning rate is too fast. This was not an issue in the delta rule
network due to the steady inputs it received during training. The
presentation order of the data was random for each session (see
Materials and Methods). Each session, after training, we examine
the generative model of both the neuronal network and the com-
putational model by collecting 2000 samples from it.We examine
50 separate networks, each having a different instantiation of the
random connectivity, in order to examine the effect of the con-
nectivity issues discussed above. We record one such session per
network.

3.3.2. Unimodal Training Data Sets
We first examine how the neuronal networks perform when
trained on unimodal data sets (Figure 7A, first column) with a
unimodal prior (Figure 7B). To have a point of comparison, we
also examine the histograms of the generative models obtained

from the computational model trained on the same data sets
and with the same prior (Figure 7A, second column). Despite
using an approximate learning rule (Equation 9) the computa-
tional model manages to accurately learn the generative models.
We quantify this by computing the similarity between the gener-
ative models and all the training data sets. We measure similarity
using the Jensen-Shannon divergence (Lin, 1991), which ranges
from 0 for perfectly identical probability distributions to 1 for dis-
tributions with no overlap. We look at Dnet which is the average
divergence across the data sets, andDpop which is the averageDnet

across all random instantiations of the model.
Once we compute the similarity matrix we look at the data set

that is most similar to the generative model and, if it matches the
data set that was used for training, we state that the model has
correctly learned the data set. By this metric the computational
model learned all the presented data sets (Dnet = Dpop = 0.19).
For the neuronal network implementation we examine the two
plasticity rules separately. We generate 50 separate networks,
each with a different instantiation of random connectivity and
examine performance across these network realizations. Starting
with networks that used the Spiking BCM rule, the generative
models of the best network (i.e., of the one that made the most
matches) are plotted in Figure 7A, third column (Dnet = 0.35).
In all instantiations, the neural implementation failed to match
the data set e (Dpop = 0.39± 0.012 SEM).

Data set e presents a challenge to the neuronal network
because it requires the components of y to be anti-correlated,
something that in this model can only be achieved with negative

Frontiers in Computational Neuroscience | www.frontiersin.org 12 April 2015 | Volume 9 | Article 46

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Sountsov and Miller Spiking neuron network Helmholtz machine

A

a

b

c

d

e

B

C

D

FIGURE 7 | Performance of the neuronal network implementation of

the Helmholtz Machine with the Spiking BCM rule and unimodal

data sets. (A) The computational model and 50 instantiations of the

neuronal networks were trained on five unimodal data sets shown in the

first column. The axes range from 0 to 60Hz on both components of rY.

The resultant generative models from the computational model are shown

in the second column. The generative models of the best performing (in

terms of matching the training data distributions with the learned

generative models) neuronal network are shown in the third column. The

fourth column depicts the population means of the generative models of

the neuronal networks. (B) Prior distribution used for the generative

models. The axes range from 0 to 60Hz on both components of rX. (C)

Confusion matrix obtained by matching the generative models of

individual networks with the average (computed across all networks for a

given data set) generative distributions. (D) Histogram of the number of

correct matches by each neuronal network.

generative weights. The delta rule network is capable of repre-
senting negative weights by adjusting the balance between the
excitatory and inhibitory feed-forward input connections. The
range of weights that it can represent is not symmetric about
zero, however, making it impossible to produce the very nega-
tive weights required tomodel some distributions. The reason for
such asymmetry stems from the fact that only inhibitory connec-
tions are plastic in our network. A strong negative weight requires
strong feed-forward excitation, which is difficult to counteract
with plastic inhibition when non-negative weights are required.
Therefore, a relatively weak feed-forward excitation is used,
which leads to a limited ability to represent negative weights.
This issue can be resolved through the use of a more sophisti-
cated population coding method (see Discussion). Thus, we do
not foresee this to be an actual problem in the brain.

Since the networks produced quite different generative mod-
els from the data sets they were trained on, it is more informative
to compute the similarity matrix with respect to the probability
distributions obtained by averaging the generative models of all

networks trained on a particular data set (Figure 7A, forth col-
umn). This analysis will show whether the generative models
learned by the networks are different for different data sets. If the
networks do this task perfectly, then the data set of the average
distribution that a network’s generative model is most similar to
will match the data set the network was trained on. We can plot
this using a confusionmatrix (Figure 7C) for all of the neural net-
works. We can see that for the first four data sets most networks
produce generative models that match the average distribution
well, but fail when trying to match the average distribution of the
data set e. A performance histogram showing the number of cor-
rect matches per network (Figure 7D) reveals that no network
matches all five data sets, with most networks matching only two.

Next we examine how neural Helmholtz machines with the
STDPi plasticity rule perform on the same unimodal data sets.
When this rule was used in the isolated delta rule networks, devia-
tions in performance from the Spiking BCM rule could already be
seen, so we also expected differing performance in this task. One
of the results from the investigation of the delta rule network was

Frontiers in Computational Neuroscience | www.frontiersin.org 13 April 2015 | Volume 9 | Article 46

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Sountsov and Miller Spiking neuron network Helmholtz machine

that when it used the STDPi rule, it could not match high target
rates (Figure 6B). To compensate for this, we multiplied by three
all of the prior rates used in both the computational model and
the network with the spiking BCM plasticity rule (the training
data sets were kept the same). An unfortunate side effect of this
is that the detailed behavior of the network obtained using this
rule can only be compared in a qualitative way to that produced
by the Spiking BCM rule.

Figure 8A shows the data sets (first column), the generative
models of the best network (second column) and the average dis-
tributions (third column). The prior used is shown in Figure 8B.
Dnet of the best network is 0.47 and Dpop = 0.53 ± 0.13 SEM.
It is clear that networks that use the STDPi have trouble match-
ing the data even qualitatively (the best network only matches
the first three data sets correctly). The networks tend to produce
positively correlated probability distributions regardless of the
training data, although the level of correlation is modulated in
the correct direction. As before, we also examine how distinct are
the generative models that are trained on different data sets by
computing a confusion matrix (Figure 8C) and a corresponding

match performance histogram (Figure 8D). Despite the relatively
poor performance in matching the data distributions, the net-
works do learn distributions that are different when trained on
different data sets. Five (10%) networks matched all five data sets,
although, as with the Spiking BCM rule, most matched only two.

3.3.3. Bimodal Training Data Sets
Figures 7, 8 is performed with the bimodal data sets (Figure 9A,
first column) and prior (Figure 9B). Again, the computational
model has no trouble with these data sets (Figure 9A, second
column), leading to a close qualitative and quantitative match
(perfect match performance when using the match test, Dnet =

Dpop = 0.30). Starting with the Spiking BCM plasticity rule,
the generative models from the best performing neuronal net-
work (Figure 9A, third column) resemble qualitatively the data
sets they were trained on, and while the matching performance is
perfect, the Dnet is a relatively poor 0.62 (Dpop = 0.58 ± 0.0075
SEM). Examining the average distributions it is clear that most
networks do not perform well with data set g. The reasons for
this are similar to the reasons the neuronal networks perform

A B

C

D

a

b

c

d

e

FIGURE 8 | Performance of the neuronal network implementation of the Helmholtz Machine with the STDPi rule and unimodal data sets. See Figure 7

for explanation of the panels. The parameters for the STDPi kernels are, τ1 = 50ms, τ2 = 20ms.

Frontiers in Computational Neuroscience | www.frontiersin.org 14 April 2015 | Volume 9 | Article 46

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Sountsov and Miller Spiking neuron network Helmholtz machine

A B

C

D

f

g

h

i

FIGURE 9 | Performance of the neuronal network implementation of the Helmholtz Machine with the Spiking BCM rule and bimodal data sets. See

Figure 7 for explanation of the panels.

poorly with data set e, namely the need for strong negative
connections. Doing the matching test on the average distribu-
tions yields a confusion matrix (Figure 9C) and a performance
histogram (Figure 9D). Seven (14%) networks match all four
average distributions.

The networks using the STDPi rule fare better with the
bimodal data sets (Figure 10A, first column) and a bimodal prior
(Figure 10B). The generative models of the best network look
qualitatively similar to the data sets (Figure 10A), second col-
umn) although the Dnet is a high 0.53 (Dpop = 0.59 ± 0.0082
SEM). One exception is the data set g, which is difficult to learn
as it relies on a good representation of negative weights. Look-
ing at the confusion matrix (Figure 10C) and the match perfor-
mance histogram (Figure 10D) we see how remarkably different
the learned distributions stemming from training on different
data sets are. Twenty-two (44%) of the networks match all the
average distributions (Figure 10A, third column) correctly.

Overall, it appears that going from the computational model
to the neural implementation affects the performance in non-
trivial ways. Despite both the neuronal network implementation
and the computational model using an approximate learning
rule, the neuronal networks do quantitatively worse by every
metric shown here. This reduced performance is a combina-
tion of the imperfections already shown in the delta rule net-
work results (Figure 6) combined with the previously mentioned
effects of cross-talk between learning phases and the imperfection
of the switching connectivity. Additionally, fundamental issues
of weight representation affect some classes of data distributions
and not others.

3.3.4. The Effect of Pre- and Post-Synaptic Spike

Correlations on the STDPi Rule
STDPi and BCM plasticity rules are identical for certain classes
of pre- and post-synaptic spike trains and, when used in a more
complicated and realistic environment of the delta rule network,
they also show relatively small quantitative differences. In the
more sophisticated setting of the neural Helmholtz Machine,
however, these minor quantitative differences are amplified into
qualitative effects. The STDPi rule does relatively poorly when
networks that use it are required to learn a probability distribu-
tion, and even provision of a more favorable prior distribution
does not resolve all of the issues.

The explanation for the discrepancy in the apparent similar-
ity between Spiking BCM and STDPi rules shown in Figure 3C

and their dissimilarity in performance in the delta rule network
and the Helmholtz Machine lies in the short-term correlations
between pre- and post-synaptic spike trains due to inhibitory
synapses (the relevant excitatory synapses are relatively weak in
this model). It is possible to make the kernels used to estimate
the rates less sensitive to these correlations by decreasing the
contribution of the parts of the kernels most affected by those
correlations. Specifically, we adjust the kernel shape such that
the interval just after the pre-synaptic spike contributes less to
the rate estimate. We do this by altering τ2, which governs the
width of the initial dip of the STDPi kernel (Figure 3A). To
show the general effect this parameter has on the behavior of
the rule we examine two extreme values of τ2, 1ms, and 30ms.
The kernels for these values of τ2 are shown in Figure 11A. For
symmetry we use the same kernel to estimate both the pre- and

Frontiers in Computational Neuroscience | www.frontiersin.org 15 April 2015 | Volume 9 | Article 46

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Sountsov and Miller Spiking neuron network Helmholtz machine

A

f

g

h

i

B

C

D

FIGURE 10 | Performance of the neuronal network implementation of the Helmholtz Machine with the STDPi rule and bimodal data sets. See Figure 7

for explanation of the panels. The parameters for the STDPi kernels are, τ1 = 50ms, τ2 = 20ms.

post-synaptic rates, although the post-synaptic kernel shape is
largely irrelevant for this analysis. First, we verify that STDPi
using both kernels produces the same behavior as shown by the
original STDPi kernel (with τ2 = 20ms) as shown in Figure 3B

when the spike trains are uncorrelated. Figure 11B shows that as
we vary the pre- and post-synaptic rate we get the same behav-
ior across the two kernel shapes. Next, we generate spike trains
with short-term negative correlations. The spikes are generated
from the rate expressions using a Poisson process (homoge-
neous in the pre-synaptic case and inhomogeneous in the post-
synaptic case, seeMaterials andMethods).When we apply STDPi
using the two different kernels on such correlated spike trains,
we find, as expected, that the correlations do indeed alter the
net synaptic plasticity as a function of mean pre- and post-
synaptic rates. In particular, the biggest change is the increase
in the post-synaptic rate for which the synaptic weight is sta-
tionary over time (Figure 11C, black line—uncorrelated, purple
dashed line—correlated). This happens because the pre-synaptic
rate is underestimated, which causes the synaptic weights to get
less potentiated. Importantly, we see the benefit of the larger τ2
(Figure 11C, right panel), which ameliorates not only the net
underestimation of the pre-synaptic rate—and hence the mean
shift in post-synaptic rate at which synapses no longer change
strength—but also the dependence of the location of the null-
cline on the pre-synaptic rate. The latter is important as to
reproduce a perfect delta rule, the steady state post-synaptic rate

should be the only factor affecting the direction of change of this
synapse.

As described previously, results produced by these artificial
examples do not necessarily predict performance in actual net-
works. Therefore, we test how both the delta rule network and
the neural implementation of the Helmholtz Machine depend on
the choice of τ2.

For the delta rule network we quantify the performance by
looking at the average deviation of the output rate after training
from the target rate. We vary τ2 and look at the mean devia-
tion across 50 networks (differentiated by the instantiations of the
random connectivity). We see that the deviation decreases with
the increasing τ2 (Figure 12A). When τ2 = 30ms the mean devi-
ation across different networks is 12.50±0.26 (SEM)Hz, which is
just shy of the mean deviation of 10.98±0.25 (SEM)Hz obtained
when using the Spiking BCM rule.

For the neural implementation of the Helmholtz Machine we
focus on the matching test performed in panel D of Figures 8, 10.
We look at both the unimodal and bimodal data sets and we nor-
malize the network performance by the number of data sets in
that group (i.e., instead of ranging from 0 to 5 for the unimodal
data sets, it now ranges from 0 to 1). We examine performance
across 50 instantiations of the Helmholtz Machine neuronal net-
works while varying τ2 as before. While match performance
increases for both data sets when τ2 is increased, it increases
much more dramatically for the bimodal data sets (going from

Frontiers in Computational Neuroscience | www.frontiersin.org 16 April 2015 | Volume 9 | Article 46

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Sountsov and Miller Spiking neuron network Helmholtz machine

A

B

C

FIGURE 11 | Effect of kernel shape on the behavior of the STDPi

plasticity rule. (A) The two kernel shapes that are considered in this figure.

The same kernel is used for both pre- and post-synaptic rate estimation. (B)
dw
dt

as a function of uncorrelated, Poisson distributed pre- and post-synaptic

rates for the kernel with τ2 = 1ms (left) and τ2 = 30ms (right). (C) The dw
dt

= 0

nullcline for uncorrelated Poisson distributed pre- and post-synaptic spike

trains (black) and negatively correlated, Poisson distributed pre-synaptic and

inhomogeneous-Poisson post-synaptic spike trains (purple). The kernels used

have τ2 = 1ms (left) and τ2 = 30ms (right). All other contour lines have been

omitted for clarity.

matching an average of 1.26 data sets to 3.40 data sets). This is, in
part, because the networks that use poor kernels tend to not learn
weights that produce bimodal generative models. As soon as the
kernels get good enough (τ2 > 10ms) to separate the two modes,
performance increases dramatically.

3.4. Recognition Model Results
So far we only tested our Helmholtz Machine implementation in
the generative mode. During behavior and perception, however,
the animals will likely use the recognitionmodel to perform infer-
ence. Thus, we will now explore how well the neuronal networks
function in recognition mode. This mode is most applicable to
matching neural data in the higher cortices, as well as behav-
ioral data. We focus on behavioral tasks in this section as the
behavioral data is more readily obtainable.

3.4.1. Linear Decoding and Sleep Improvement
The first test we perform is a simple linear decoding test. The
models are trained using a uniform line data set (Figure 13A,
data set o), and prior (Figure 13B). During testing, the models
have to determine where a presented data point is on the line

A

B

FIGURE 12 | Effect of kernel shape on the performance of the delta

rule network and the neural implementation of the Helmholtz Machine.

(A) Mean deviation (across 50 instantiations of the network) between the

output rate after training and the target rate across 50 instantiations of the

delta rule network. The error bars are SEM, but are too small to be seen in this

plot. (B) Mean matching performance for unimodal and bimodal data sets

across 50 instantiations of the neural implementations of Helmholtz Machine.

The error bars are SEM. Note that the performance is normalized by the

number of data sets (e.g., a performance of 1.0 means all 5 mean distributions

were matched in the unimodal data set category).

(position in this case is a 1-dimensional quality ranging from−1
to 1). This is achieved by looking at where the activity of the hid-
den units lies on the prior (which is also the line). The critical
point here is that the decoding strategy used to score the model is
explicitly specified by the prior distribution, whichmeans that the
transformation from the data distribution to the distribution of
decoded positions is entirely learned by the model (see Materials
and Methods for details of the decoding procedure). The models
are trained and tested following the protocol depicted in Figure 5,
Recognition Test. During each session the computational model
is trained for 50,000 phases (25,000 wake and 25,000 sleep phases)
while the neuronal networks were trained for 5000 s (500 wake
and 500 sleep phases with 10 samples per phase). To examine
the performance of the computational model, it is simulated 50
times (with separate instantiations of the temporal stochastic-
ity). For the neuronal network we generate 50 networks with
different instantiations of the random connectivity per plastic-
ity rule. Each network is tested using one session as described
above.

Figure 13C shows the performance of the computational
model and two instantiations of the neuronal network models,
one using the Spiking BCM plasticity rule and one using the
STDPi plasticity rule. The computational model performs the
decoding without any appreciable bias, while the neuronal net-
works show bias and inability to decode the entire dynamic range
of the data. We can quantify the performance by computing the
mean deviation (defined as the square root of the mean squared
error, averaged across trials) between the true positions of the
data points and the decoded positions. The computational model

Frontiers in Computational Neuroscience | www.frontiersin.org 17 April 2015 | Volume 9 | Article 46

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Sountsov and Miller Spiking neuron network Helmholtz machine

FIGURE 13 | Performance of the computational and neuronal

network models on a decoding task. (A) Data set o that the

models are trained on for this task. Each data point is labeled with a

label C signifying its position on the line. The position ranges along

[0,1]. The models have to recover this position given only the data.

(B) Prior distribution used during training. (C) Decoding performance of

three example model instances. C is the true value used to generate

a data point, while Ĉ is the value that the model estimated from the

data. (D) If the training is stopped before the weights have

converged, additional samples in the sleep phase without further data

presentation can lead to improvement in performance. Error bars have

been omitted for clarity.

does the best at 0.15. The neuronal networks using the Spiking
BCM rule do worse with a mean deviation of 0.22. Networks with
the STDPi rule do a little worse still at 0.24.

This decoding test is a good way to illustrate a prediction
arising from the means by which any implementation of the
Helmholtz Machine learns the recognition weights. Since the
task performance solely depends on recognition weights, and the
recognition weights are learned during the sleep phase, we may
observe improvement in performance across a sleep phase with-
out presenting any additional training data. This is trivially true
for the short sleep phases used during training, because without
any improvement we would not observe the overall improve-
ment in performance throughout the entirety of the wake-sleep
training. However, this is not obviously true for longer sleep
phases with many more samples. Early on in the training pro-
longed sleep would produce a converged recognition model that
inverts an incompletely converged generative model, and there
is no guarantee that this recognition model is any better than an
unconverged recognition model of the same generative model.

To examine this effect we first track the mean deviation for
the models during training (Figure 13D, black curve). The ini-
tial weights for all models were chosen to be small so the initial
mean deviation is correspondingly large.We use relatively slower
learning rates for all models to visualize the improvement in per-
formance over time, as this test is very easy and the models would
learn it too quickly otherwise. At certain intervals we stop the
presentation of data, and repeatedly sample in the sleep phase

until the recognition weights converge. Examining the mean
deviation of the models (Figure 13D, blue curve) shows that
there is a distinct reduction in mean deviation brought about by
sleep, without any new presentation of data. The green curve in
Figure 13D shows the magnitude of this improvement at various
times during the training. Not surprisingly the biggest improve-
ment is produced early in the training, while late in the training
little is gained by such prolonged sleep phases.

3.4.2. Biased Reward
The second test we perform is a two-alternative forced choice task
with unequal rewards for the two choices. We use a training data
set that is a uniform line data set (Figure 14A, data set r) and
a bimodal prior (e.g., Figure 14B shows a distribution used for
neuronal networks that use the STDPi rule). We call the posi-
tion along the data line C (for coherence; see Discussion and
Figure 15 for a behavioral task interpretation of this test) rang-
ing from −1 to 1. During testing, the models have to determine
whetherC is less than or greater than 0. This is achieved by noting
which of the two hidden units has greater activity (i.e., whether
y1 ≥ y2 or y1 < y2). The models thus can only report if C was
greater than or less than 0. When the model indicates correctly
that C > 0, it gets rewarded with a reward value of r1, whereas if
it indicates correctly that C < 0, it gets rewarded with a different
reward value of r2. The two reward values are constrained to sum
to 1, so a perfect, noiseless decoder applied to noiseless data (as
it is in this case) would receive a total reward of 0.5 on average.

Frontiers in Computational Neuroscience | www.frontiersin.org 18 April 2015 | Volume 9 | Article 46

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Sountsov and Miller Spiking neuron network Helmholtz machine

A C

D

E

B

FIGURE 14 | Performance of the computational and neuronal network

models on a reward task. (A) Data set r that the models are trained on for

this task. Each data point is labeled with a label C signifying its position on

the line. The position ranges along [−1,1]. The models have to determine

whether this position is positive or not, with the two alternative choices being

rewarded by different amounts. (B) The bimodal prior for this task encodes

the reward ratio r1/r2 of the two alternative choices by modulating the

weightings of the two gaussian blobs. The gaussian blob positions and sizes

are the same as in Figures 9, 10. Depicted is the prior used for the neuronal

networks using the STDPi plasticity rule when r1/r2 = 4. (C) Response

probability of three example model instances for r1/r2 = 1. The probability

data (crosses) is fit with a logistic function (red line) to determine the model’s

internal noise and decision threshold. Note that the two neuronal networks

show a decision threshold bias. (D) Model decision threshold (black)

compared with the optimal threshold (green) given the model noise level

(estimated from trials where r1/r2 = 1). Error bars are standard deviation. N

is the number of models that were used for a plot. (E) Model attained reward

(black) compared with the maximum that an optimal decoder with matched

noise level would get (green) and the minimum possible given the scoring

procedure (blue). A noiseless optimal decoder would attain a reward of 0.5

across all conditions. Error bars are SEM. N is the number of models that

were used for the plotted data points.

The reward does not impact the plasticity rules—the Helmholtz
Machine uses an unsupervised learning algorithm—but it does
affect the prior distribution (in the brain the prior distribution,
in this case, would be modified by reward-dependent plasticity).
The two truncated gaussians that are mixed to produce the prior
distribution aremixed in proportion r1/r2 (Figure 14B shows the
prior distribution with r1/r2 = 4). The activity of the hidden
units, therefore, represents the reward levels associated with the
observed unit activities. This task is difficult for the neuronal net-
works when the reward ratio is high (i.e., one mode is a lot larger
than the other), so we train the networks for longer periods of
time (7500 s) and use larger batches of samples (50) in each wake
and sleep phase. As before, we simulate the computational model
50 times. For the neuronal network we generate 50 networks with
different instantiations of the random connectivity and then test
each one on the whole training data set.

We first quantify the performance of the models by examin-
ing how the response probability [P(Ĉ > 0|C)] depends on the
true value of C. Figure 14C shows this data for a single run of
the computational model and two realizations of the neuronal
networks, one using the Spiking BCM rule and another using the

STDPi rule. For these three plots the reward ratio is set at unity.
We fit the data with a logistic function that is parameterized by
its location µ, which we term the decision threshold, and its scale
s which measures the internal noise of the system:

P(Ĉ > 0|C) =
1

1+ exp
(

−
C−µ
s

) .

The first observation is that both neural and computational mod-
els are noisy and therefore cannot reach the theoretical maximal
reward of a noiseless decoder. This also means that the deci-
sion threshold will vary with the reward ratio: an optimal noisy
decoder will bias the decision threshold away from the choice
that has the greater reward (see Materials and Methods for a
derivation of this fact). Another observation is that the deci-
sion thresholds of the neuronal networks are not zero even when
the rewards for each of the two choices are equal (the optimal
threshold is 0 in this case). This is caused by the random connec-
tivity within the neuronal networks. We plot how this decision
threshold varies as a function of reward ratio (that is, the prior

Frontiers in Computational Neuroscience | www.frontiersin.org 19 April 2015 | Volume 9 | Article 46

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Sountsov and Miller Spiking neuron network Helmholtz machine

A

B

FIGURE 15 | Possible behavioral tasks that implement the recognition

tests. (A) A possible behavioral task to test the sleep improvement

prediction. Subjects are first shown moving dot displays of varying

coherence. After training the subjects are allowed to rest. During subsequent

testing the subjects are again shown moving dot displays of varying

coherence, but now they are asked to report the coherence. If the brain uses

a Helmholtz Machine to learn recognition weights then rest will result in

improved performance relative to a lack of a rest period between training and

testing (Figure 13D). (B) A possible behavioral task to examine the effect of

reward bias on decision thresholds. Subjects are shown moving dots

displays of varying coherence and one of two directions. At the same time

they are asked which direction they perceive the dots to be moving and are

rewarded differentially based on the true direction of movement. If the brain

uses a Helmholtz Machine to learn the recognition weights for this task then

the subject’s decision thresholds will be over-shifted relative to the optimal

thresholds.

distribution which reflects this ratio) and compare it to the opti-
mal shift given the noise within the model (Figure 14D). The
noise is estimated from trials with reward ratio set at unity. The
computational model adjusts its threshold nearly optimally, but
the neuronal networks over-shift the threshold significantly, i.e.,
the more highly rewarded choice is selected even more often
than is optimal. This phenomenon has been observed in exper-
iments with monkeys (Feng et al., 2009). We also look at the
actual average total reward the models obtain (Figure 14E, black
curves). We can compare the obtained reward to the theoret-
ical minimum and maximum rewards (green and blue curves
on Figure 14E, respectively). The maximum reward is obtained
using the optimal threshold placement and thus is model specific.
The minimum reward is obtained if we select the threshold so
that the model always responds with the most rewarded choice.
The computational model essentially gets the maximum reward
possible given its internal noise level. Neuronal networks do not
perform as well. The poor performance of the neuronal networks
in part stems from the fact that the extremely simplistic decoder
we use to extract decisions from the neuronal networks does not
take into account the bias arising from the random connectivity.
These results, therefore, represent the lower bound on perfor-
mance. This lower bound could be improved with some sim-
ple modifications to the decoder (adding homeostatic synaptic
scaling (Turrigiano and Nelson, 2004), for example).

4. Discussion

Wehave presented a network of spiking neurons that implements
the Helmholtz Machine and its associated unsupervised learning
algorithm, the wake-sleep algorithm. In order to produce such a
model, we also developed a smaller circuit that implements the
delta rule, an error-correcting rule that underlies the learning in
the wake-sleep algorithm. We have shown that this model can

learn a generativemodel that models the probability distributions
of data sets that the network was trained on. Additionally, we
have shown that it can perform approximate probabilistic infer-
ence in two recognition tasks. Throughout this work we have
contrasted two synaptic plasticity rules, Spiking BCM and STDPi,
as putative mechanisms to implement the delta rule and produce
the required learning in the Helmholtz Machine. While STDPi
is based on biological observation, it leads to performance that
matches that of the less biologically constrained Spiking BCM
rule in many, but not all, tasks.

The generative tests that we have performed can be used to
explain data that shows similarity between stimulus-evoked neu-
ral activity and spontaneous neural activity (Han et al., 2008;
Berkes et al., 2011; Okun et al., 2012), as well as providing
a normative explanation for the sleep replay of neural activ-
ity (Sutherland and McNaughton, 2000). The two recognition
tests can be applied to behavioral experiments in which subjects
have to observe a stimulus and then make decisions based on
their inferred percept. Figure 15 shows two possible experiments
which utilize moving dot displays that would address the results
of the recognition tests. Figure 15A shows a decoding experi-
ment which would explore the effect of rest (additional post-
training samples in the sleep phase) on decoding performance.
Figure 15B shows a biased reward experiment that would explore
the suboptimal decision threshold shifts predicted by our model.
Notably, experiments (with a slightly different task) that show
suboptimal shifts of decision thresholds in monkeys already exist
(Feng et al., 2009).

The neuronal network we propose is not the first that imple-
ments the delta rule, although to the best of our knowledge it is
the first that fulfills the requirements brought about by our neu-
ronal network implementation (using spiking neurons with rate
as a continuous variable and avoiding temporal acausality) of the
Helmholtz Machine. By carefully controlling the post-synaptic

Frontiers in Computational Neuroscience | www.frontiersin.org 20 April 2015 | Volume 9 | Article 46

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Sountsov and Miller Spiking neuron network Helmholtz machine

activity of a synaptic connection, the strength of which is oth-
erwise adjusted by a BCM-like rule, Hancock et al. (1991) imple-
mented a partial delta rule for binary units. This implementation
is inadequate for this Helmholtz Machine because it uses contin-
uous valued units. More recently, by combining spike frequency
adaptation and spike-timing dependent plasticity (D’Souza et al.,
2010) implemented the delta rule for temporally separated, but
otherwise continuous units. The nature of the temporal sepa-
ration requires the target activity to appear after the network’s
activity. Such a temporal separation would require a breaking
of causality in any neural implementation of the Helmholtz
Machine because in reality target activity appears before the activ-
ity produced by the network. For example, during the wake
phase, the target activity is set up by the stimulus while the net-
work’s current activity arises from the top down connections that
are excited by the stimulus. It is possible that delay lines or post-
inhibitory rebound spiking could produce the necessary order-
ing of activity, but we chose to follow an approach that did not
require such additional complications.

As part of the choice of implementing theHelmholtzMachine,
we also simultaneously chose to represent probability distribu-
tions using samples. This approach has been previously explored
by others (Fiser et al., 2010; Buesing et al., 2011; Pecevski et al.,
2011; Nessler et al., 2013) and has multiple interesting theoreti-
cal properties (see Fiser et al., 2010; Lochmann and Deneve, 2011
for a review), as well as being directly amenable to implement-
ing biologically plausible learning algorithms (Nessler et al., 2013
and this work). A popular alternative represents the probabil-
ity distributions using probabilistic population codes (Rao, 2005;
Ma et al., 2006, 2008). This framework has broad experimental
support, although no biologically plausible learning algorithm
has been proposed in this framework yet. Yet another alterna-
tive for encoding a probability distribution would be predictive
spike coding (Deneve, 2008a,b), which supports both inference
and learning on a level of individual neurons, but does not extend
naturally to representing continuous variables.

The Helmholtz Machine implemented in this paper is very
simple, consisting of only one input layer and one hidden layer
with two linear units each. As a result, many of the functions
achieved by this particular instantiation and presented in this
paper can be performed by simpler models without the need for
complicated circuits and the wake-sleep algorithm. The power of
the Helmholtz Machine, however, lies in its ability to be extended
with multiple layers and multiple units, as well as with different
conditional probability distributions (Hinton and Dayan, 1996).
We chose to restrict ourselves to a very impoverished model to
clarify how and why its performance is affected by the neural
implementation. Additionally, there are more powerful exten-
sions of the Helmholtz Machine with intra-layer connectivity
(Hinton and Dayan, 1996; Dayan, 1999) which still utilize the
wake-sleep algorithm. Future implementation of these ideas will
allow the proposed connectivity of the neuronal networks to be
more consistent with the available neurophysiological data.

Connections between layers in our network are imple-
mented using feed-forward excitatory and inhibitory synapses,
of which only the inhibitory ones are plastic. This, however,
is not an essential requirement. The same functionality can be

implemented even if both types of synapses are plastic or only the
excitatory synapses are plastic, for reasons outlined below. The
key constraint on the synaptic plasticity rules within a connection
is that the net connection weight (resulting from the combina-
tion of the average inhibitory and excitatory conductances within
a connection) is adjusted as predicted by the rate-based BCM
rule (Equation 23). In the delta rule network this means that
when the post-synaptic rate is near rθ (Figure 2B) and the net
connection weight increases, the synaptic rules should produce
a net decrease in this weight. This does not preclude the excita-
tory synapses from being potentiated, but it does mean that the
inhibitory synapses should be potentiated more. In this sense we
say that net plasticity will be anti-Hebbian. We restricted our-
selves to only using only one type of plastic synapse to mini-
mize the number of parameters. The evidence for anti-Hebbian
rules is sparse for excitatory synapses (although see Sjöström
and Häusser, 2006 and Letzkus et al., 2006), but is present for
inhibitory synapses (Haas et al., 2006). Additionally, prior the-
oretical work concerning probabilistic inference also suggests
the use of anti-Hebbian plasticity in excitatory and inhibitory
synapses (Rezende et al., 2011). Unlike that work, however, our
model predicts anti-Hebbian plasticity in both top-down and
bottom-up connections.

Consistent with the ideas presented in this work, the kernels
in the inhibitory synaptic plasticity rule found in the Entorhi-
nal cortex of the rat by Haas et al. (2006) show a pronounced
dip for near-coincident pre- and post-synaptic spikes. The STDPi
rule proposed in this paper goes beyond the experimental data
as it posits a BCM-like quadratic post-synaptic rate dependence
(Figure 2B), something that was not explored in the experiments.
The experimental plasticity rule also has time constants that are
shorter than the well-performing STDPi kernels require, but this
may be explained by the biological neurons in the experiments
having cell dynamics that operate on a faster time scale than those
of our model neurons. We predict that brain areas which imple-
ment the rate-based wake-sleep algorithm that we presented here
will have adaptations (in the form of kernel shape or the tim-
ing of the weight changes) to reduce the bias introduced by spike
correlations.

While our formalism is based on connections with net anti-
Hebbian plasticity, our model does not require that all connec-
tions in the brain should be net anti-Hebbian. Non-hierarchical
generative models such as those with lateral connections within
a layer may require alternate plasticity rules to learn those con-
nection weights (Dayan, 1999). Alternatively, not every part of
the brain may require an explicit generative model, and thus be
better described by other, non-Helmholtz Machine, frameworks
(Brea et al., 2011; Nessler et al., 2013). Overall, our proposal is
compatible with the abundance of knownHebbian plasticity rules
in the cortex and Hippocampus.

The wake-sleep algorithm is implemented in our model by
rewiring the network for each phase. Such rewiring, however,
need not be implemented in the brain via explicit silencing
or shunting of synapses. For example, the connection between
pool O and the output pool X1 depicted on Figure 4 could be
“turned off” by strongly inhibiting the cells in pool O with-
out any reconfiguration of connectivity. This inhibition can be

Frontiers in Computational Neuroscience | www.frontiersin.org 21 April 2015 | Volume 9 | Article 46

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Sountsov and Miller Spiking neuron network Helmholtz machine

periodic, which is consistent with the abundance of rhythms in
the cortex (Buzsáki and Draguhn, 2004), although such clock-
like periodicity is not required for the wake-sleep algorithm to
function.

The wake and sleep phasesmay correspond to the actual wake-
fulness and sleep of an animal. There is evidence of circadian
fluctuation of modulators that affect learning (Steriade, 2004;
Welberg, 2013) and corresponding changes in the observed fir-
ing patterns of neurons (Sherman, 2001) and overall functional
connectivity (Massimini et al., 2005). Alternatively, rapid per-
ceptual learning can happen without intervening sleep (Hawkey
et al., 2004; Alain et al., 2007), which suggests that the wake and
sleep phases may correspond to the state of the network when
a relevant stimulus is present (and attended to), while the sleep
phase represents the spontaneous state of the network (or a state
of inattention). The required connectivity switches would then be
caused by the different dynamics of the network in states with dif-
fering levels of attentiveness. Such attention dependent dynamics
have been observed in a number of sensory cortices (Fontanini
and Katz, 2006, 2008).

Our networks utilize sparse random connections between
pools, but include no homeostatic and structural plasticity mech-
anisms to adjust the non-plastic connections to counteract unfa-
vorable realizations of random connectivity. In the worst case
scenarios, a neuron may be entirely disconnected from upstream
neurons, or be tonically active. This contributes to the great
variability in performance between different network realiza-
tions, and an overall suboptimal performance compared to the
computational Hemlholtz machine. We believe the, in contrast,
near-optimal animal behavior stems from the brain utilizing
such mechanisms (Holtmaat and Svoboda, 2009; Vitureira et al.,
2012), which, if added to our models, would likely serve to close
the apparent gap in average performance of our networks and
experiments.

Our model uses a very simplistic coding strategy to repre-
sent continuous variables, with the mean rate of a population
of neurons exactly interpretable as the value of a variable. One
consequence of this is that the variance of the encoded probabil-
ity distribution of a variable depends inversely on the number of
neurons used to code it. By using relatively small neuronal pools,
we assure a high amount of variance. When this is detrimental to
a task (e.g., Figure 13) we expect the brain to pool the activities
of multiple unit networks in order to decrease the variance in the
decision output.

One further issue that arises from our encoding strategy is
its difficulty in representing negative weights, which caused the
neuronal networks to have trouble modeling probability distri-
butions with negative correlations. Rather than a one-to-one

correspondence between firing rates and stimulus variables, the
use of a more sophisticated coding strategy (e.g., using ideas from
Eliasmith and Anderson, 2003) within the Helmholtz Machine
framework is a natural extension of our work that would resolve
such issues.

Throughout the paper we have represented samples from
the probability distribution as being the mean rate of a pool
of neurons over 500ms. This is inconsistent with data that
shows that correlations between the activity of different neu-
rons decay over 20–40ms (Berkes et al., 2011) and that per-
ceptual decisions can be made on a similarly short timescale
(Stanford et al., 2010). The duration of each sample necessary
for successful learning in our implementation depends critically
on the timescale that the synaptic plasticity rules use to esti-
mate the relevant rates. In our preliminary modeling we have
observed (data not shown) that the learning performance of the
networks drops markedly when the samples are reduced in dura-
tion (the shortest sample duration we tested was 100ms long).
The reduction was more pronounced for the STDPi rule than
the Spiking BCM rule, consistent with the overall reduced perfor-
mance of the former shown in this paper. These issues, however,
should only arise during training. Outside of training shorter
samples can be used, thus allowing the framework to model fast
inferences.

Overall, we think that the approach taken in this paper to
implement the Helmholtz Machine in a neuronal network is
promising and improvements to the model along the possible
directions discussed above may provide a unified explanation for
how probabilistic inference is performed in the brain.

Author Contributions

PS and PM designed the experiments and models. PS wrote
the manuscript, performed the simulations, collected data and
conducted the analyses.

Funding

This work has been funded by Computational Neuroscience
Training Grant (T90 DA032435) and IGERT Theory grant
(DGE106820).

Supplementary Material

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fncom.
2015.00046/abstract

References

Alain, C., Snyder, J. S., He, Y., and Reinke, K. S. (2007). Changes in auditory

cortex parallel rapid perceptual learning. Cereb. Cortex 17, 1074–1084. doi:

10.1093/cercor/bhl018

Alais, D., and Burr, D. (2004). The ventriloquist effect results from near-

optimal bimodal integration. Curr. Biol. 14, 257–262. doi: 10.1016/j.cub.2004.

01.029

Alexandrescu, A. (2010). The D Programming Language. Boston, MA: Addison-

Wesley Professional.

Atkins, J. E., Fiser, J., and Jacobs, R. A. (2001). Experience-dependent visual cue

integration based on consistencies between visual and haptic percepts. Vis. Res.

41, 449–461. doi: 10.1016/S0042-6989(00)00254-6

Berkes, P., Orbán, G., Lengyel, M., and Fiser, J. (2011). Spontaneous cortical activ-

ity reveals hallmarks of an optimal internal model of the environment. Science

331, 83–87. doi: 10.1126/science.1195870

Frontiers in Computational Neuroscience | www.frontiersin.org 22 April 2015 | Volume 9 | Article 46

http://journal.frontiersin.org/article/10.3389/fncom.2015.00046/abstract
http://journal.frontiersin.org/article/10.3389/fncom.2015.00046/abstract
http://journal.frontiersin.org/article/10.3389/fncom.2015.00046/abstract
http://journal.frontiersin.org/article/10.3389/fncom.2015.00046/abstract
http://journal.frontiersin.org/article/10.3389/fncom.2015.00046/abstract
http://journal.frontiersin.org/article/10.3389/fncom.2015.00046/abstract
http://journal.frontiersin.org/article/10.3389/fncom.2015.00046/abstract
http://journal.frontiersin.org/article/10.3389/fncom.2015.00046/abstract
http://journal.frontiersin.org/article/10.3389/fncom.2015.00046/abstract
http://journal.frontiersin.org/article/10.3389/fncom.2015.00046/abstract
http://journal.frontiersin.org/article/10.3389/fncom.2015.00046/abstract
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Sountsov and Miller Spiking neuron network Helmholtz machine

Bienenstock, E. L., Cooper, L. N., and Munro, P. W. (1982). Theory for the devel-

opment of neuron selectivity: orientation specificity and binocular interaction

in visual cortex. J. Neurosci. 2, 32–48.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York, NY:

Springer.

Blaisdell, A. P., Sawa, K., Leising, K. J., and Waldmann, M. R. (2006).

Causal reasoning in rats. Science 311, 1020–1022. doi: 10.1126/science.11

21872

Brea, J., Senn, W., and Pfister, J. (2011). Sequence learning with hidden units in

spiking neural networks. Adv. Neural Inf. Process. Syst. 24, 1422–1430.

Buesing, L., Bill, J., Nessler, B., andMaass,W. (2011). Neural dynamics as sampling:

a model for stochastic computation in recurrent networks of spiking neurons.

PLoS Comput. Biol. 7:e1002211. doi: 10.1371/journal.pcbi.1002211

Burge, J., Girshick, A. R., and Banks, M. S. (2010). Visual-haptic adapta-

tion is determined by relative reliability. J. Neurosci. 30, 7714–7721. doi:

10.1523/JNEUROSCI.6427-09.2010

Buzsáki, G., and Draguhn, A. (2004). Neuronal oscillations in cortical networks.

Science 304, 1926–1929. doi: 10.1126/science.1099745

Castillo, J. D., and Katz, B. (1954). Quantal components of the end-plate potential.

J. Physiol. 108, 783–794.

Chalk, M., Seitz, A., and Seriès, P. (2010). Rapidly learned stimulus expectations

alter perception of motion. J. Vis. 10, 1–18. doi: 10.1167/10.8.2.Introduction

Dayan, P., Hinton, G. E., Neal, R. M., and Zemel, R. S. (1995). The Helmholtz

machine. Neural Comput. 7, 889–904.

Dayan, P. (1999). Recurrent sampling models for the Helmholtz machine. Neural

Comput. 11, 653–677.

Dayan, P. (2000). “Helmholtz machines and wake-sleep learning,” in Hand-

book of Brain Theory and Neural Network, ed M. Arbib (Cambridge, MA: MIT

Press), 44.

Deneve, S. (2008a). Bayesian spiking neurons I: inference. Neural Comput. 20,

91–117. doi: 10.1162/neco.2008.20.1.91

Deneve, S. (2008b). Bayesian spiking neurons II: learning. Neural Comput. 20,

118–145. doi: 10.1162/neco.2008.20.1.118

D’Souza, P., Liu, S.-C., and Hahnloser, R. H. R. (2010). Perceptron learning rule

derived from spike-frequency adaptation and spike-time-dependent plasticity.

Proc. Natl. Acad. Sci. U.S.A. 107, 4722–4727. doi: 10.1073/pnas.0909394107

Eliasmith, C., and Anderson, C. H. (2003). Neural Engineering: Computation, Rep-

resentation, and Dynamics in Neurobiological Systems, Vol. 15 ofComputational

Neuroscience. Cambridge, MA: MIT Press.

Ernst, M. O., and Banks, M. S. (2002). Humans integrate visual and hap-

tic information in a statistically optimal fashion. Nature 415, 429–433. doi:

10.1038/415429a

Feng, S., Holmes, P., Rorie, A., and Newsome, W. T. (2009). Can monkeys choose

optimally when faced with noisy stimuli and unequal rewards? PLoS Comput.

Biol. 5:e1000284. doi: 10.1371/journal.pcbi.1000284

Fiser, J., Berkes, P., Orbán, G., and Lengyel, M. (2010). Statistically optimal percep-

tion and learning: from behavior to neural representations. Trends Cogn. Sci.

14, 119–130. doi: 10.1016/j.tics.2010.01.003

Fontanini, A., and Katz, D. B. (2006). State-dependent modulation of time-varying

gustatory responses. J. Neurophysiol. 96, 3183–3193. doi: 10.1152/jn.00804.2006

Fontanini, A., and Katz, D. B. (2008). Behavioral states, network states,

and sensory response variability. J. Neurophysiol. 100, 1160–1168. doi:

10.1152/jn.90592.2008

Friston, K., and Kiebel, S. (2009). Cortical circuits for perceptual inference. Neural

Netw. 22, 1093–1104. doi: 10.1016/j.neunet.2009.07.023

Griffiths, T. L., and Tenenbaum, J. B. (2006). Optimal predictions in everyday

cognition. Psychol. Sci. 17, 767–773. doi: 10.1111/j.1467-9280.2006.01780.x

Griffiths, T. L., Chater, N., Kemp, C., Perfors, A., and Tenenbaum, J. B. (2010).

Probabilistic models of cognition: exploring representations and inductive

biases. Trends Cogn. Sci. 14, 357–364. doi: 10.1016/j.tics.2010.05.004

Haas, J. S., Nowotny, T., and Abarbanel, H. D. I. (2006). Spike-timing-dependent

plasticity of inhibitory synapses in the entorhinal cortex. J. Neurophysiol. 96,

3305–3313. doi: 10.1152/jn.00551.2006

Han, F., Caporale, N., and Dan, Y. (2008). Reverberation of recent visual

experience in spontaneous cortical waves. Neuron 60, 321–327. doi:

10.1016/j.neuron.2008.08.026

Hancock, P. J. B., Smith, L. S., and Phillips, W. A. (1991). A biologically supported

error-correcting learning rule. Neural Comput. 3, 201–212.

Hawkey, D. J. C., Amitay, S., and Moore, D. R. (2004). Early and rapid perceptual

learning. Nat. Neurosci. 7, 1055–1056. doi: 10.1038/nn1315

Helmholtz, H. (1925). Treatise on Physiological Optics, 3rd Edn. Rochester, NY:

The Optical Society of America.

Hinton, G. E., and Dayan, P. (1996). Varieties of Helmholtz machine. Neural Netw.

9, 1385–1403.

Hinton, G. E., Dayan, P., Frey, B. J., and Neal, R. M. (1995). The “wake-sleep”

algorithm for unsupervised neural networks. Science 268, 1158–1161.

Holtmaat, A., and Svoboda, K. (2009). Experience-dependent structural synap-

tic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647–658. doi:

10.1038/nrn2699

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural

Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Jahr, C., and Stevens, C. (1990). Voltage dependence of NMDA-activated macro-

scopic conductances predicted by single-channel kinetics. J. Neurosci. 10,

3178–3182.

Jones, E., Oliphant, T., and Peterson, P. (2001). SciPy: Open Source Scientific

Tools for Python. Available online at: http://www.scipy.org/scipylib/citing.html

(Accessed October 23, 2013).

Körding, K. P., and Wolpert, D. M. (2004). Bayesian integration in sensorimotor

learning. Nature 427, 244–247. doi: 10.1038/nature02169

Kullback, S., and Leibler, R. A. (1951). On information and sufficiency. Ann. Math.

Stat. 22, 79–86.

Lee, T. S. (2002). Top-down influence in early visual processing: a Bayesian

perspective. Physiol. Behav. 77, 645–650. doi: 10.1016/S0031-9384(02)00903-4

Letzkus, J. J., Kampa, B. M., and Stuart, G. J. (2006). Learning rules for spike

timing-dependent plasticity depend on dendritic synapse location. J. Neurosci.

26, 10420–10429. doi: 10.1523/JNEUROSCI.2650-06.2006

Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Trans.

Inform. Theory 37, 145–151.

Lochmann, T., and Deneve, S. (2011). Neural processing as causal inference. Curr.

Opin. Neurobiol. 21, 774–781. doi: 10.1016/j.conb.2011.05.018

Ma, W. J., Beck, J. M., Latham, P. E., and Pouget, A. (2006). Bayesian infer-

ence with probabilistic population codes. Nat. Neurosci. 9, 1432–1438. doi:

10.1038/nn1790

Ma, W. J., Beck, J. M., and Pouget, A. (2008). Spiking networks for

Bayesian inference and choice. Curr. Opin. Neurobiol. 18, 217–222. doi:

10.1016/j.conb.2008.07.004

Massimini, M., Ferrarelli, F., Huber, R., Esser, S. K., Singh, H., and Tononi, G.

(2005). Breakdown of cortical effective connectivity during sleep. Science 309,

2228–2232. doi: 10.1126/science.1117256

Moran, R. J., Campo, P., Symmonds, M., Stephan, K. E., Dolan, R. J., and Friston,

K. J. (2013). Free energy, precision and learning: the role of cholinergic neu-

romodulation. J. Neurosci. 33, 8227–8236. doi: 10.1523/JNEUROSCI.4255-

12.2013

Neal, R. M., and Dayan, P. (1997). Factor analysis using delta-rule wake-sleep

learning. Neural Comput. 9, 1781–1803.

Nessler, B., Pfeiffer, M., Buesing, L., and Maass, W. (2013). Bayesian computa-

tion emerges in generic cortical microcircuits through spike-timing-dependent

plasticity. PLoS Comput. Biol. 9:e1003037. doi: 10.1371/journal.pcbi.10

03037

Okun,M., Yger, P., Marguet, S. L., Gerard-Mercier, F., Benucci, A., Katzner, S., et al.

(2012). Population rate dynamics and multiNeuron firing patterns in sensory

cortex. J. Neurosci. 32, 17108–17119. doi: 10.1523/JNEUROSCI.1831-12

Orbán, G., Fiser, J., Aslin, R. N. R., and Lengyel, M. (2008). Bayesian learning of

visual chunks by human observers. Proc. Natl. Acad. Sci. U.S.A. 105, 2745–2750.

doi: 10.1073/pnas.0708424105

Pecevski, D., Buesing, L., and Maass, W. (2011). Probabilistic inference in

general graphical models through sampling in stochastic networks of spik-

ing Neurons. PLoS Comput. Biol. 7:e1002294. doi: 10.1371/journal.pcbi.10

02294

Pfister, J.-P., and Gerstner, W. (2006). Triplets of spikes in a model

of spike timing-dependent plasticity. J. Neurosci. 26, 9673–9682. doi:

10.1523/JNEUROSCI.1425-06.2006

Rao, R. (2005). Hierarchical Bayesian Inference in Networks of Spiking Neurons,

Vol. 17. Cambridge, MA: MIT Press.

Rezende, D., Wierstra, D., and Gerstner, W. (2011). Variational learning for

recurrent spiking networks. Adv. Neural Inf. Process. Syst. 24, 136–144.

Frontiers in Computational Neuroscience | www.frontiersin.org 23 April 2015 | Volume 9 | Article 46

http://www.scipy.org/scipylib/citing.html
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Sountsov and Miller Spiking neuron network Helmholtz machine

Sanborn, A. N., Griffiths, T. L., and Navarro, D. J. (2010). Rational approximations

to rational models: alternative algorithms for category learning. Psychol. Rev.

117, 1144–1167. doi: 10.1037/a0020511

Sherman, S. M. (2001). Tonic and burst firing: dual modes of thalamo-

cortical relay. Trends Neurosci. 24, 122–126. doi: 10.1016/S0166-2236(00)

01714-8

Shi, L., and Griffiths, T. (2009). Neural implementation of hierarchical Bayesian

inference by importance sampling. Adv. Neural Inf. Process. Syst. 22,

1669–1677.

Sjöström, P. J., andHäusser, M. (2006). A cooperative switch determines the sign of

synaptic plasticity in distal dendrites of neocortical pyramidal Neurons. Neuron

51, 227–238. doi: 10.1016/j.neuron.2006

Stanford, T. R., Shankar, S., Massoglia, D. P., Costello, M. G., and Salinas, E. (2010).

Perceptual decision making in less than 30 milliseconds. Nat. Neurosci. 13,

379–385. doi: 10.1038/nn.2485

Steriade, M. (2004). Acetylcholine systems and rhythmic activities during the

waking–sleep cycle. Prog. Brain Res. 145, 179–196. doi: 10.1016/S0079-

6123(03)45013-9

Stone, J., Gohara, D., and Shi, G. (2010). OpenCL: a parallel programming stan-

dard for heterogeneous computing systems. Comput. Sci. Eng. 12, 66–72. doi:

10.1109/MCSE.2010.69

Sutherland, G. R., and McNaughton, B. (2000). Memory trace reac-

tivation in hippocampal and neocortical neuronal ensembles.

Curr. Opin. Neurobiol. 10, 180–186. doi: 10.1016/S0959-4388(00)

00079-9

Tassinari, H., Hudson, T. E., and Landy, M. S. (2006). Combining priors and

noisy visual cues in a rapid pointing task. J. Neurosci. 26, 10154–10163. doi:

10.1523/JNEUROSCI.2779-06

Treves, A., and Panzeri, S. (1995). The upward bias in measures of informa-

tion derived from limited data samples. Neural Comput. 7, 399–407. doi:

10.1162/neco.1995.7.2.399

Turrigiano, G. G., and Nelson, S. B. (2004). Homeostatic plasticity in the develop-

ing nervous system. Nat. Rev. Neurosci. 5, 97–107. doi: 10.1038/nrn1327

van Beers, R. J., Sittig, A. C., and Gon, J. J. (1999). Integration of propriocep-

tive and visual position-information: an experimentally supported model. J.

Neurophysiol. 81, 1355–1364.

van Rossum, G., and Drake, F. L. (2001). Python Reference Manual. Pythonlabs.

Available online at: http://www.python.org

Vitureira, N., Letellier, M., and Goda, Y. (2012). Homeostatic synaptic plasticity:

from single synapses to neural circuits. Curr. Opin. Neurobiol. 22, 516–521. doi:

10.1016/j.conb.2011.09.006

Weiss, Y., Simoncelli, E. P., and Adelson, E. H. (2002). Motion illusions as optimal

percepts. Nat. Neurosci. 5, 598–604. doi: 10.1038/nn0602-858

Welberg, L. (2013). Learning and memory: learning with peaks and troughs. Nat.

Rev. Neurosci. 14, 380–381. doi: 10.1038/nrn3515

Conflict of Interest Statement: The authors declare that the research was con-

ducted in the absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Copyright © 2015 Sountsov and Miller. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this jour-

nal is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 24 April 2015 | Volume 9 | Article 46

http://www.python.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Spiking neuron network Helmholtz machine
	1. Introduction
	2. Materials and Methods
	2.1. Computational Helmholtz Machine Model
	2.1.1. Model Description
	2.1.2. Learning Rules

	2.2. Neuronal Network Delta Rule Model
	2.2.1. Neural Model and Synaptic Currents
	2.2.2. Network Connectivity
	2.2.3. Synaptic Plasticity
	2.2.4. Training and Testing Protocol

	2.3. Neuronal Network Helmholtz Machine Model
	2.3.1. Network Connectivity
	2.3.2. Training and Testing Protocol

	2.4. Prior Distributions
	2.5. Training Data Sets
	2.6. Generative Model Test
	2.7. Decoding Test
	2.8. Reward Test
	2.9. Computer Simulations

	3. Results
	3.1. Computational Helmholtz Machine Model
	3.1.1. Delta Rule Network
	3.1.2. Spiking Plasticity Rules
	3.1.3. Neuronal Helmholtz Machine

	3.2. Delta Rule Network Results
	3.3. Generative Model Results
	3.3.1. Training Protocol
	3.3.2. Unimodal Training Data Sets
	3.3.3. Bimodal Training Data Sets
	3.3.4. The Effect of Pre- and Post-Synaptic Spike Correlations on the STDPi Rule

	3.4. Recognition Model Results
	3.4.1. Linear Decoding and Sleep Improvement
	3.4.2. Biased Reward

	4. Discussion
	Author Contributions
	Funding
	Supplementary Material
	References

