'," frontiers

in Computational Neuroscience

ORIGINAL RESEARCH
published: 15 May 2015
doi: 10.3389/fncom.2015.00049

OPEN ACCESS

Edited by:

Javier M. Buldd,

Centro de Tecnologia Biomédica,
Spain

Reviewed by:

Miguel Cornelles Soriano,
University of the Balearic Islands,
Spain

Rider Jaimes Reategui,
Guadalajara University, Mexico

*Correspondence:

Behnam Kia,

Applied Chaos Lab, Department of
Physics and Astronomy, University of
Hawai’i at Manoa, 2505 Correa Rd,
305, Honolulu, HI 96822, USA
behnam@hawaii.edu

Received: 12 March 2015
Accepted: 15 April 2015
Published: 15 May 2015

Citation:

Kia B, Lindner JF and Ditto WL (2015)
Nonlinear dynamics based digital logic
and circuits.

Front. Comput. Neurosci. 9:49.

doi: 10.3389/fncom.2015.00049

Nonlinear dynamics based digital
logic and circuits

Behnam Kia'*, John. F. Lindner™”? and William L. Ditto’

" Applied Chaos Lab, Department of Physics and Astronomy, University of Hawai’i at Manoa, Honolulu, HI, USA, 2 Physics
Department, The College of Wooster, Wooster, OH, USA

We discuss the role and importance of dynamics in the brain and biological neural
networks and argue that dynamics is one of the main missing elements in conventional
Boolean logic and circuits. We summarize a simple dynamics based computing method,
and categorize different techniques that we have introduced to realize logic, functionality,
and programmability. We discuss the role and importance of coupled dynamics in
networks of biological excitable cells, and then review our simple coupled dynamics
based method for computing. In this paper, for the first time, we show how dynamics
can be used and programmed to implement computation in any given base, including
but not limited to base two.

Keywords: Boolean logic, nonlinear dynamics, dynamics based computing, noise robustness, dynamical coupling,
chaos computing, ternary logic gate, multiple-valued logic circuits

Introduction

There are fundamental differences between how biological neural networks and human-made
computer systems perform computation. Modern computer systems are based on Boolean logic
and Boolean circuits. A Boolean circuit is an arrangement of bistable switches, where the switches
are turned on or off based on the incoming data or control inputs. As an example, in Figure 1
two different arrangements of transistors are depicted which implement two different functions,
NOR and NAND operations. In these circuits, the transistors operate as a switch, and turn on
or off depending on the incoming data. In a NAND gate, when at least one of the signals is “0,”
the corresponding PMOS transistors that are controlled by this “0” signal will switch on, and the
output will be connected to Ve, representing state “1.” Or in a NOR case, when at least one of the
signals is “1,” the correspond NMOS transistors will switch on, and the output will be connected to
the ground, representing state “0.” The conventional Boolean circuits are nothing more than such
circuits of switching transistors.

In these arrangements, there is virtually no dynamics involved, except a simple switching
process, and the entire information processing and computing are performed based on the
structural connectivity and arrangement of the switches. But in the brain and biological neural
network the information processing is not just a product of structural and anatomical connections
of neurons, but also dynamical as well (McKenna et al., 1994; Fox et al., 2005; Canolty et al., 2007;
Izhikevich, 2007; Sporns, 2011). Each neuron itself is a nonlinear dynamical system that illustrates
a broad range of dynamics such as different types of bifurcation (Izhikevich, 2007). Furthermore,
different neurons within a network are dynamically coupled together and phenomena such as
synchronization (Varela et al., 2001; Izhikevich, 2007), neuronal avalanches (Plenz and Thiagarajan,
2007), and correlation and anticorrelation (Fox et al., 2005) occur among them.

In this paper we follow this argument that dynamics is one the main missing components
in conventional logic circuits, and this lack of dynamics cripples conventional computing

Frontiers in Computational Neuroscience | www.frontiersin.org 1

May 2015 | Volume 9 | Article 49

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fncom.2015.00049
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:behnam@hawaii.edu
http://dx.doi.org/10.3389/fncom.2015.00049
http://journal.frontiersin.org/article/10.3389/fncom.2015.00049/abstract
http://community.frontiersin.org/people/u/215723
http://community.frontiersin.org/people/u/231894

Kia et al.

Nonlinear dynamics based digital logic

A

B_q _Gl

Onifgiut Output
A
A _| _I
=
Ground Ground
NOR Gate NAND Gate

FIGURE 1 | Different arrangements of transistors, acting as switches,
implementing different functions.

systems reaching the performance and robustness levels of
the brain and biological neural systems. We briefly overview
dynamics based computing, and show how dynamics (1) can
be utilized to achieve different functions and hopefully even
plasticity (2) can be used to achieve robustness against noise, (3)
can unshackle us from the hegemony of binary logic.

Nonlinear Dynamics as the Source of
Different Behaviors

A neuron, or any other excitable cell, can remain resting or can
fire different patterns of action potentials, such as regular spiking,
intrinsically bursting, subthreshold oscillations, or chaotic firing
(Izhikevich, 2003; Qi et al., 2013). Neurons, or any other excitable
cells, are nonlinear dynamical systems, and their broad range of
behaviors are attributed to their nonlinearity. Many such neural
phenomena, such as a neuron switching between rest mode and
regular spiking mode, can be modeled and explained in terms
of dynamical systems theory, such as bifurcation phenomena
(Izhikevich, 2007; Qi et al., 2013).

In conventional Boolean circuits, the systems are stripped
from their natural dynamics, and are controlled and reduced to
act as simple on/off switching circuits, as shown and explained in
Figure 1.

In dynamics based computing, we bring back dynamics to
computing (Sinha and Ditto, 1998, 1999; Munakata et al., 2002;
Sinha et al., 2002a,b; Pourshaghaghi et al., 2009; Crutchfield
et al, 2010; Kia et al., 2011a,b, 2014a). Schematic diagram of a
dynamics based computing model is depicted in Figure 2.

In this model, the aim is to implement a two-input, one-
output, combinational digital function, such as AND, OR, or
XOR gate. Two data input, I; and I, are added and mapped to an
initial condition of a dynamical system f. The dynamical system
evolves k times, and the output O is decoded from the final
state x; using a threshold mechanism. Notice that mathematically
speaking, a function is a mechanism that maps the inputs to the

L 5, @O0

N o
1/@"0 S

FIGURE 2 | A schematic model for dynamics based computing.

outputs. A dynamical system maps its current state to future
states. As a result, the dynamical system can be considered as
a realization of a function. Now the task is reduced to finding
which functions a given dynamical system can implement, and
much more importantly, how a given dynamical system can be
dynamically programed to implement different functions. This
has been the focus of many of our and others research works on
chaotic and dynamics based computing (Sinha and Ditto, 1998;
Munakata et al., 2002; Peng et al., 2008, 2011; Murali et al., 2009;
Campos-Cantdn et al,, 2010; Kia et al., 2011a,b; Li et al., 2013).

In this paper, we review three of main categories for
chaos computing, and illustrate them using simple models
and pictures. Each of these techniques introduces a systematic
method to reprogram a dynamics-based system to implement
many different types of computation. This provides the chaos-
based computing system with flexibility and variability and this
opens the door to plasticity, where each chaos-based system can
adapt through dynamical reconfiguration to different conditions.
In this paper, we do not specifically present an autonomous
adaptation method for these chaos-based systems; but the
potential is present for both plasticity and adaptation. We and
others are working to incorporate computational intelligence
mechanisms into these chaos-based systems to create adaptable
chaos-based computing systems.

Programing with Bias Values

The initial condition of the dynamical system, which is produced
from the data input, can be biased differently as a technique
to implement different functions. Nonlinear, chaotic dynamical
systems are sensitive to initial conditions; as a result these bias
values change the future evolution of the chaotic system, and
therefore new functions can be implemented. The block diagram
for this method is depicted in Figure 3. As a numerical example,
assume the nonlinear dynamical equation is famous logistic map

Xn+1 :fk [xn] = Axp(1 — xp), (1)

where X is a parameter, and x; € [0, 1]. In this example we set
A = 4, which puts the dynamical system of Equation (1) in a
chaotic regime.

Assume the incoming data inputs and control input are
encoded as the initial condition of the logistic map as

I +25

xo=E[I. L] = 7

+ B, (2)
where B is the control value that biases the initial condition.
Notice that the control value should not be too large to bias the
initial condition outside of the [0, 1] interval of the dynamical
system of Equation (1). The encoding map of Equation (2) can be

Frontiers in Computational Neuroscience | www.frontiersin.org

May 2015 | Volume 9 | Article 49

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Kia et al.

Nonlinear dynamics based digital logic

— % @0

FIGURE 3 | Control value C biases initial conditions of a nonlinear
dynamical system to program the dynamical system to implement
different digital functions.

interpreted as a simple digital to analog convertor; however, for
encoding data inputs to an initial condition we do not need an
exact digital to analog convertor. Any function that maps digital
inputs to an analog value can be used as an encoding map, but it is
more efficient if the mapped initial conditions are equally spaced.

The output O can be decoded from the final state of the
dynamical system as

0, x; <0.5,

1, 0.5 < xy. (3)

O=D[xk]={

When the nonlinear dynamical system is chaotic, noise can be
problematic. In such cases, the evolution time of the nonlinear
system should be adjusted so that it is long enough for bias values
to change the future state of the chaotic system, but not too long
so that even small noise can change the future states as well.

The resulting functions for different bias values are presented
in Figure4. To produce these results, we have assumed the
evolution time k = 8, and varied the bias value with an
incremental step size of AB = 0.002. Some intermediate bias
values may result in different functions. Notice that there are
16 different two-input, one-output digital functions, and not all
of them have well-known names such as AND, XOR gates. As
a result, here we use a simple labeling technique to name these
different functions. When different combinations of data inputs,
(0,0), (0,1), (1,0), and (1,1) are fed to the computing model of
Figure 3 and the outputs are Oy, 01, O,, and O3 respectively,
where O; € {0, 1}, then this function is called function number
Oy x 20+ O1 x 21 + O3 x 22 + O3 x 23. As a result, each
function will have a unique name between 0 and 15. For example,
a function with all 0 output would be function number 0, and a
function with all 1 output will be function number 15.

Programing with Parameters

Assume f, is a nonlinear dynamical equation, and X is a
bifurcation parameter. The behavior of a nonlinear dynamical
system qualitatively and quantitatively changes with the change
of bifurcation parameter. This feature can be utilized to
program a dynamical system to implement different digital
functions. The block diagram of this method is depicted in

Figure 5.
In this block diagram, there is an additional input, the control
value C =), to set the parameter of the dynamical system.

Different parameters can lead to the realization of different
functions. As a numerical example, assume the same nonlinear

15
13- ® ®o ® o oo
12r

11 9
1000 o o o @® o o o o o A

©
o
o
o
[e]
[e]

Function

S)t B UL N ®

L R B S B B

. .
0 0.05 0.1 0.15 02
Bias value, B

FIGURE 4 | Different functions are obtained for different bias values B.

II
>+>-»xo— £ Do
IZ
|x
C

FIGURE 5 | Parameters of a nonlinear dynamical system can be
adjusted to program the dynamical system to implement different
digital functions.

dynamical equation of Equation (1). Assume the data inputs are
encoded as the initial condition of the logistic map by

I + 25,

xo=E& L, L] = +0.123, (4)

and we use the same decoding map of Equation (3) to produce
the outputs.

Now, by changing the bifurcation parameter A, the computing
model of Figure 5 can be programmed to implement different
functions as is shown in Figure 6. To produce these results, we
have assumed k = 8, and varied the bifurcation parameter \
with an incremental step size of AX = 0.002. Notice that other
intermediate values of \ can result in different functions. There is
a rough correlation between bifurcation diagram of logistic map,
Figure 7, and the functions that can be implemented at different
bifurcation values, Figure 6. In Figure 7, lower \ values, the
dynamics of logistic map is quite simple and there is just a stable
periodic orbit. As \ increases, a period doubling bifurcation starts
and eventually it leads to the full chaotic regime. In Figure 6
we observe that for lower values of \, where there are long
bifurcation intervals, identical functions are implemented for
different values of parameter \. But as)\ increases and period
doubling bifurcation occurs at shorter intervals, nearby A values
result in different functions. And the extreme case is when we
enter into the chaotic regime, where even a slight change of the
bifurcation parameter can change the implemented function.

Frontiers in Computational Neuroscience | www.frontiersin.org

May 2015 | Volume 9 | Article 49

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Kia et al.

Nonlinear dynamics based digital logic

151 Q00000000000 o i
14 Q000000 Qoo o E
131 ¢
12- @ o E
11t @®o ® -
10 o} o
5 9 ® ® E
=
g s ® 1
= 7 Q0000 o g
é E0000000000000000000000000000 @® o
st ® o A
4 o o o
3 o ® R
o |
1 Qoo g
o ® 1
. . 1 1 .
3

. I I .
5 3.55 3.6 3.65 3.7 3.{5 38 3385 39 3.95 4

FIGURE 6 | Different functions are obtained for different bifurcation
values \.

0.0 I I I I L L 4
35 355 36 3.65 37 375 38 385 3.9 3.95 4

FIGURE 7 | Bifurcation diagram of logistic map.

II
>@->x0— f % @O0
IZ
|
C

FIGURE 8 | Evolution time of a chaotic dynamical system can be
adjusted to program the chaotic dynamical system to implement
different digital functions.

In Section Dynamical coupling and synchronization for
robust dynamics based logic we will discuss the evolution time
k and the noise effects.

Programing with Evolution Time
When a nonlinear dynamical system is in a chaotic regime,
it never repeats the same patterns. This means that a chaotic
dynamical system can produce different outputs at different
evolution times. This can be an additional method to program
a chaotic dynamical system to produce different functions. The
block diagram for this method is depicted in Figure 8.

The resulting functions for different evolution time, control
value C = k, are depicted in Figure 9. To produce these results,

15¢ oo J
14- o 1
13- o 1
12- 1
11 o o 4
10 [¢] o o o q
E 9- o o B
2
Ty 7
T °]
6- O o O 4
= o
4 o o B
3 o 1
2F o o q
1 o o o A
o- J
01234567 8 91011121314151617 1819 20 21 22 23 24 25
Evolution time
FIGURE 9 | Different functions are obtained for different evolution
time k.

we have used the dynamical system of Equation (1), set N =
4 to put the logistic map in a chaotic regime and used the
encoding and decoding maps of Equation (4) and Equation (3),
respectively.

In Sections Programing with bias values, Programing
with parameters, and Programing with evolution time, we
summarized three different methods to program a dynamical
system to implement different functions, one or any combination
of these three methods can implement and program dynamics
based computing.

Dynamical Coupling and Synchronization
for Robust Dynamics Based Logic

Gap-junctional coupling can synchronize electrically active cells,
such as brain neurons, heart pacemaker cells, or pancreatic p-cells
(Sherman and Rinzel, 1991). Different roles have been suggested
for synchronization within biological networks. Neural binding
(Engel and Singer, 2001) and selective attention (Womelsdorf
and Fries, 2007) are examples of hypothesized roles for
synchronization in neural networks.

It is also hypothesized that synchronization of biological cells,
realized by active, dynamical coupling among cells, reduces the
effects of noise and unwanted fluctuations. For example, it was
shown that cells in an islet of Langerhans, which are electrically
coupled by gap junctions, burst synchronously (Meissner, 1976;
Eddlestone et al., 1984; Sherman and Rinzel, 1991; Loppini et al.,
2014), whereas isolated cells exhibit disorganized spiking.

Similarly, in the context of neural networks, it was suggested
that collective enhancement of precision, or simply noise
reduction, is another role for synchronization (Tabareau et al.,
2010; Bouvrie and Slotine, 2011; Medvedev and Zhuravytska,
2012). For example, it is hypothesized that synchronization
may help protect interconnected neurons from the influence of
intrinsic neuronal noise (Tabareau et al., 2010).

We have shown that our dynamical logic circuits can also be
coupled together to implement a robust to noise computation.
The block diagram of this method is depicted in Figure 10.

In this block diagram, rather than a single dynamical system,
a series of dynamically coupled identical dynamical systems is

Frontiers in Computational Neuroscience | www.frontiersin.org

May 2015 | Volume 9 | Article 49

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Kia et al.

Nonlinear dynamics based digital logic

FIGURE 10 | Coupled dynamical systems, implementing robust to
noise computation.

utilized for computation. All dynamical systems in this coupled
lattice receive the same input data, which initializes all dynamical
systems to the same initial condition. The final state of one
of the dynamical systems in the lattice is used to decode the
output. This coupled lattice of dynamical system can mitigate
local noise. Local noise is a noise that is statistically independent
from one spatial location (here dynamical system) to another. We
have shown that under coupled dynamics, noise from different
nodes diffuses through the lattice and attenuate the effects of
noise in other nodes (Kia et al.,, 2014b, 2015). This is roughly
similar to hypostasis in the context of excitable cells where
the coupled dynamics enhances the precision and reduces the
noise. We have tried different coupling mechanisms, and we have
obtained similar results. More specifically, we have shown that
in a coupled map lattice of size N, when all nodes are globally
and optimally coupled according to Kaneko’s coupled map lattice
model, the noise content in the lattice reduces by a factor of
N. We have utilized this feature to implement robust-to-noise
computing based on coupled dynamics (Kia et al., 2014b), where
we simulated small sized networks. But we know that in the brain
neurons can be connected and coupled to thousands of other
neurons. In this paper, we repeat the same simulation, but for
larger network sizes. We define noise tolerance as

o =ad/d¢, (5)

where o¢ is the maximum variance of additive noise that a
single-map based chaos computing system can tolerate without
exceeding a specified error rate, and o is the maximum variance
of additive noise that a coupled dynamics-based chaos computing
system can tolerate without exceeding the same specified error
rate. We use a Monte Carlo simulation to estimate the noise
tolerance for different lattice sizes and the results are presented
in Figure 11. We observe that when 1000 dynamical systems
are coupled together, the resulting coupled dynamics-based
computing will be 1000 times more robust to noise. And this is
correct for different values of network size. The encoding and
decoding is exactly the same as Equation (2) and Equation (3).
But the difference is that now rather than having a single map of
Equation (1), we have N maps of Equation (1), globally coupled
together as

. , . .
R Zﬁjﬂxf) +ocsl,,, (6)

Noise Tolerancet

100 o J

5 100 200 300 400 500 600 700_ 800 900 1000
Network Size N

FIGURE 11 | Noise tolerance for coupled dynamics based computing
for different network sizes.

where xi] is the dynamical state of the jth node in the network
at time i, ¢ is the coupling parameter, 0% is noise variance, and
8{- 11 ~ N(0, 1) is normal Gaussian local noise with zero mean
and unit variance. We have shown analytically and in simulation
that € = (N — 1)/N is the optimal parameter value, which
results in maximum noise tolerance. More specifically, we have
calculated noise tolerance for different parameter values, and
observed that ¢ = (N — 1)/N produces the maximum noise
tolerance. Also, analytically we have calculated the variance of
evolved noise over evolution time, and shown thate = (N—1)/N
minimizes the variance of evolved noise. For decoding output,
we can choose any node from the network and decode the
output based on its final state. For further details about coupled
dynamics based computing, optimal parameter values for noise
mitigation, and the methods we have used to obtain the results of
Figure 11, please refer to our earlier work (Kia et al., 2014a).

Computation in Arbitrary Base §

Conventional digital circuits are implemented with bistable
switches that have two states: on or off. As a result, such circuits
are suitable for binary computations, where each signal has two
states, “0” or “1.”

There have been different efforts to implement digital circuits
in bases other than binary. As an example, multi-threshold
carbon nanotube field effect transistors (CNTFETs) were utilized
to design a ternary logic gate (Lin et al.,, 2011; Moaiyeri et al,,
2013). Or three-state quantum dot gate field effect transistors
(QDGFETs) were used to design ternary logic combinational
circuits (Karmakar et al., 2013).

When we utilize dynamical systems to implement digital
computation, we are not restricted to on/off switches and their
binary states. Therefore, in principal we can implement digital

Frontiers in Computational Neuroscience | www.frontiersin.org

May 2015 | Volume 9 | Article 49

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Kia et al.

Nonlinear dynamics based digital logic

1
i
+
&
0 1 B=2
0
0 12 T 1
1
—
+
3
0 1 2/ |B=3
0
0 1/3 2/3 T, 1
1
i
+
IS
8 _
0/ i1/ 12 i3] 4] i5/ 6] |B=T
0
0 1/72/73/74/75/76/7 1
Tn
FIGURE 12 | The 1-D map of Equation (7) for different g values.

functions in any base. In dynamics based computing, the final
output is the symbol that is assigned to the final state of
the dynamical system. One can always use a multi-symbol
partitioning and perform dynamics based computation at any
desired base. However, it has to be noted that even though
symbolizing a dynamical system is arbitrary, the selection of
too many partitions, or using an inefficient partitioning, can
reduce the efficiency of dynamics based computing. The main
purpose of utilizing nonlinear dynamics for computation is to
harness the rich intrinsic patterns within the nonlinear dynamics.
Symbolizing a dynamical system can reduce the number of such
intrinsic patterns, if an inefficient partitioning is used.

As an example, consider the chaotic 1-D sawtooth map, also
known as shift map,

Xn+1 = Bxn(modl) (7)

on unit interval [0, 1], where B is a parameter, as shown in
Figure 12 (top) for = 2. Selection of threshold 0.99 to partition
the state space into (0, 0.99) for symbol 0 and (0.99, 1) for symbol
1 does not preserve the entropy of the original map. A symbolic
representation of an orbit of the sawtooth map with this partition
will result in many consecutive Os sparsely separated by 1s. If an

external observer who is not aware of the exact initial condition
of this chaotic system watches the symbolic time series, he can
predict that the next symbol would be 0, and in many cases he will
be correct. This partitioning reduces the unpredictability, which
is also known as information from Shannon’s communication
point of view. Entropy is a classic measure to quantify the amount
of information in a system. A partition is called a generating
partition if it preserves the Kolmogorov-Sinai entropy of the
dynamical system (Collet and Eckmann, 2007) after symbolizing
the orbits. For 1-D maps, separating the intervals at the critical
points of the map creates optimal generating partitions (Bollt,
2003; Collet and Eckmann, 2007).

By changing the sawtooth slope parameter B, we can adjust
the cardinality of the generating partitions. If 8 is an integer
number, then cardinality of the generating partition will be S
as well. The 1-D map of Equation (7) is plotted for § = 2,3,
and 7 in Figure 12(top), (middle), and (bottom), respectively.
This enables a parametric dynamical system to be programmed
to naturally operate at different bases.

As an example, we show here how by selection of p = 3 we
can perform ternary—base three—computation. First consider
implementing ternary negation. The truth table for ternary
negation is shown in Table 1. I is the single input to the ternary
negation gate, and O is the output, and there are three symbols,
0,1,and 2.

The encoding map we use here is

1\ 142
xo=E[] = <§> +0.18 (8)

and the decoding map to produce the output is

0, x, <1/3
Or =D [x] = 1, 1/3<x.<2/3 9)
2, 2/3 < x

where k = 3. The base-three encoding map of Equation (9) is
very similar to the base-two encoding map of Equation (2), where
I/3 represents a simple digital to analog convertor, and 0.18 is the
bias value to program the dynamical system of Equation (7) to
implement a ternary negation gate of Table 1. But it differs from
the Equation (2) encoding map because of its nonlinearity. The
reason is an artifact of the strong symmetry between a linear base-
three encoding method and the dynamics of the Equation (7)
sawtooth map. This is a very special case, and it normally does
not happen in dynamics based computing, but in this specific
dynamical equation, the encoding map is basically the reverse
of the chaotic map, and therefore they cancel out each other’s
operation. But a slight nonlinearity in encoding map, resolves
the issue. Figure 13 shows a dynamics-based, base-three negation
operation, which maps “0” to “2,” “1” to “1,” and “2” to “0.”

In the next example, we show how a two-input, one-output
ternary AND operator, also known as minimum operator, can be
dynamically implemented. The encoding map we use here is

I + 3L\ '*?
xozg[h,zz]:(%) +0.291 (10)

Frontiers in Computational Neuroscience | www.frontiersin.org

May 2015 | Volume 9 | Article 49

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Kia et al.

Nonlinear dynamics based digital logic

TABLE 1 | Ternary Negation.

/ @]

T3

i
2/3 1

[

FIGURE 13 | Dynamics-based realization of a ternary negation gate.
Arrowheads lead from encoding the input (bottom magenta graph) to iterating
the nonlinear map (top right cyan graph) to decoding the output (left yellow
graph).

TABLE 2 | Ternary AND.

I

[y
o

N D=2 2 a2 O O O
N = O N = O N = O
N = O = =+ O O O O

that maps two data inputs I; and I, to an initial condition
and decodes the output using the Equation (9) decoding map.
The results are listed in Table 2, where O is the output of
computation.

By selecting any other integer values for parameter f, the
dynamical system of Equation (7) “naturally” and “faithfully”
performs computation in base .

Conclusions

Compared to the brain and biological neural networks,
dynamics is one of the main missing elements in Boolean
circuits. Dynamics plays a crucial role in the brain, whereas
in conventional Boolean circuits the dynamics is virtually
nonexistent (except as a simple switching process). In this
paper we reviewed our dynamics based computing, and
showed how dynamics can be utilized to implement logic
circuits. Noise robustness in neurons and other excitable
cells is partially attributed to synchronization and coupling
between different neurons. In parallel to these biological
observations, we showed how dynamics based computing
systems can be similarly coupled to enhance and improve
their noise robustness. Finally, for the first time, we showed
how nonlinear systems can be programmed to naturally
implement computation at different bases. We used a parametric
dynamical system, where changing the parameter qualitatively
changes the mapping between inputs and outputs, and
a different partition with a different cardinality fits the
dynamics better. As a result, changing such parameters enable
dynamical systems to naturally perform computation at different
bases.

The focus of this paper was mostly on abstract models and
ideas for dynamics based computing, and no exact physical
implementation was introduced. However, it has to be noted
that we do not need to introduce or add or construct nonlinear
dynamics, rather the nonlinear dynamics is naturally there,
and any transistor, or transistor circuit is governed with
nonlinear dynamical equations. We even argue that it is the
conventional Boolean circuits that are unnatural and abstract,
where the intrinsic nonlinear dynamics of transistors are being
controlled and suppressed, and they are reduced to simple on/off
switches.

We have introduced different proof of concept circuit
implementations for dynamics based computing, and these
ideas have been verified experimentally (Murali et al,
2003, 2005; Pourshaghaghi et al., 2009, 2010). We have
recently fabricated an integrated circuit for dynamics based
computing. In this integrated circuit, the intrinsic nonlinearity
of transistors and their rich dynamics are utilized to implement
different functions. As a result, the same circuit, which
is constructed with very few transistors, is dynamically
programmable to implement different functions. This
fabricated integrated circuit is under testing and measurement
now, and the results will be published in a future research

paper.

Acknowledgments

We gratefully acknowledge support from the Office of Naval
Research under Grant No. N000141-21-0026 and STTR grant
No. N00014-14-C-0033. JFL thanks The College of Wooster for
making possible his sabbatical at the University of Hawaii at
Manoa.

Frontiers in Computational Neuroscience | www.frontiersin.org

May 2015 | Volume 9 | Article 49

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Kia et al.

Nonlinear dynamics based digital logic

References

Bollt, E. M. (2003). Review of chaos communication by feedback control
of symbolic dynamics. Int. J. Bifurcation Chaos 13, 269-285. doi:
10.1142/50218127403006546

Bouvrie, J., and Slotine, J. J. (2011). Synchronization and redundancy: implications
for robustness of neural learning and decision making. Neural Comput. 23,
2915-2941. doi: 10.1162/NECO_a_00183

Campos-Canton, I, Pecina-Sanchez, J. A., Campos-Cantén, E., and Rosu, H. C.
(2010). A simple circuit with dynamic logic architecture of basic logic gates.
Int. J. Bifurcation Chaos 20, 2547-2551. doi: 10.1142/50218127410027179

Canolty, R. T, Soltani, M., Dalal, S. S., Edwards, E., Dronkers, N. F., Nagarajan,
S. S., et al. (2007). Spatiotemporal dynamics of word processing in the human
brain. Front. Neurosci. 1, 185-196. doi: 10.3389/neuro.01.1.1.014.2007

Collet, P., and Eckmann, J. P. (2007). Concepts and Results in Chaotic Dynamics:
A Short Course: A Short Course. New York NY: Springer Science & Business
Media.

Crutchfield, J. P., Ditto, W. L., and Sinha, S. (2010). Introduction to
focus issue: intrinsic and designed computation: information processing in
dynamical systems—beyond the digital hegemony. Chaos 20, 037101. doi:
10.1063/1.3492712

Eddlestone, G. T., Goncalves, A., Bangham, J. A., and Roja, E. (1984), Electrical
coupling between cells in islets of Langerhans in mouse. J. Membr. Biol. 77,
1-14.

Engel, A., and Singer, W. (2001). Temporal binding and the neural correlates
of sensory awareness. Trends Cogn. Sci. 5, 16-25. doi: 10.1016/S1364-
6613(00)01568-0

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C,
and Raichle, M. E. (2005). The human brain is intrinsically organized into
dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 102,
9673-9678. doi: 10.1073/pnas.0504136102

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural
Netw. 14, 1569-1572. doi: 10.1109/TNN.2003.820440

Izhikevich, E. M. (2007). Dynamical Systems in Neuroscience. London: MIT press.

Karmakar, S., Chandy, J. A., and Jain, F. C. (2013). “Design of ternary logic
combinational circuits based on quantum dot gate FETs,” in IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, Vol. 21, 793-806. doi:
10.1109/TVLSI1.2012.2198248

Kia, B., Dari, A., Ditto, W. L., and Spano, M. L. (2011a). Unstable periodic
orbits and noise in chaos computing. Chaos 21, 047520. doi: 10.1063/1.36
64349

Kia, B., Kia, S., Lindner, J. F., Sinha, S., and Ditto, W. L. (2014a). Noise tolerant
spatiotemporal chaos computing. Chaos 24, 043110. doi: 10.1063/1.4897168

Kia, B., Kia, S., Lindner, J. F,, Sinha, S., and Ditto, W. L. (2015). Coupling reduces
noise: applying dynamical coupling to reduce local white additive noise. Int. J.
Bifurcation Chaos 25, 1550040. doi: 10.1142/50218127415500406

Kia, B., Murali, K., Motlagh, M. R. J., Sinha, S., and Ditto, W. L. (2014b).
“Synthetic computation: chaos computing, logical stochastic resonance, and
adaptive computing,” in International Conference on Theory and Application
in Nonlinear Dynamics (ICAND 2012) (Seattle, WA: Springer International
Publishing), 51-65.

Kia, B., Spano, M. L., and Ditto, W. L. (2011b). Chaos computing in terms of
periodic orbits. Phys. Rev. E 84:036207. doi: 10.1103/PhysRevE.84.036207

Li, L, Yang, C., Hui, S., Yu, W,, Kurths, J., Peng, H., et al. (2013). A reconfigurable
logic cell based on a simple dynamical system. Math. Prob. Eng. 2013:735189.
doi: 10.1155/2013/735189

Lin, S., Kim, Y. B., and Lombardi, F. (2011). “CNTFET-based design of ternary
logic gates and arithmetic circuits,” in IEEE Transactions on Nanotechnology,
Vol 10, 217-225. doi: 10.1109/TNANO.2009.2036845

Loppini, A., Capolupo, A., Cherubini, C., Gizzi, A., Bertolaso, M., Filippi, S., et al.
(2014). On the coherent behavior of pancreatic beta cell clusters. Phys. Lett. A
378, 3210-3217. doi: 10.1016/j.physleta.2014.09.041

McKenna, T. M., McMullen, T. A., and Shlesinger, M. F. (1994). The brain
as a dynamic physical system. Neuroscience 60, 587-605. doi: 10.1016/0306-
4522(94)90489-8

Medvedev, G. S., and Zhuravytska, S. (2012). Shaping bursting by electrical
coupling and noise. Biol. Cyber. 106, 67-88. doi: 10.1007/s00422-012-0481-y

Meissner, H. P. (1976). Electrophysiological evidence for coupling between, B cells
of pancreatic islets. Nature (Lond.) 262, 502-504.

Moaiyeri, M. H., Mirzaee, R. F., Doostaregan, A., Navi, K., and Hashemipour,
0. (2013). A universal method for designing low-power carbon nanotube
FET-based multiple-valued logic circuits. IET Comput. Digit. Tech. 7, 167-181.
doi: 10.1049/iet-cdt.2013.0023

Munakata, T., Sinha, S., and Ditto, W. L. (2002). “Chaos computing:
implementation of fundamental logical gates by chaotic elements,” in IEEE
Transactions onCircuits and Systems I: Fundamental Theory and Applications,
Vol. 49, 1629-1633.

Murali, K., Miliotis, A., Ditto, W. L., and Sinha, S. (2009). Logic from
nonlinear dynamical evolution. Phys. Lett. A 373, 1346-1351. doi:
10.1016/j.physleta.2009.02.026

Murali, K., Sinha, S., and Ditto, W. L. (2003). Implementation of NOR gate
by a chaotic Chua’s circuit. Int. J. Bifurcation Chaos 13, 2669-2672. doi:
10.1142/50218127403008053

Murali, K., Sinha, S., and Ditto, W. L. (2005). Construction of a reconfigurable
dynamic logic cell. Pramana 64, 433-441. doi: 10.1007/BF02704569

Peng, H., Hu, G, Li, L., Yang, Y., and Xiao, J. (2011). Constructing dynamic
multiple-input multiple-output logic gates. Math. Prob. Eng. 2011:380345. doi:
10.1155/2011/380345

Peng, H., Yang, Y. Li, L., and Luo, H. (2008). Harnessing piecewise-linear
systems to construct dynamic logic architecture. Chaos 18, 033101. doi:
10.1063/1.2953494

Plenz, D., and Thiagarajan, T. C. (2007). The organizing principles of neuronal
avalanches: cell assemblies in the cortex?. Trends Neurosci. 30, 101-110. doi:
10.1016/j.tins.2007.01.005

Pourshaghaghi, H. R., Ahmadi, R., Jahed-Motlagh, M. R., and Kia, B. (2010).
Experimental realization of a reconfigurable three input, one output logic
function based on a chaotic circuit. Int. J. Bifurcation Chaos 20, 715-726. doi:
10.1142/50218127410026009

Pourshaghaghi, H. R., Kia, B., Ditto, W., and Jahed-Motlagh, M. R. (2009).
Reconfigurable logic blocks based on a chaotic Chua circuit. Chaos Solitons
Fractals 41, 233-244. doi: 10.1016/j.cha0s.2007.11.030

Qi, Y., Watts, A. L., Kim, J. W., and Robinson, P. A. (2013). Firing patterns in a
conductance-based neuron model: bifurcation, phase diagram, and chaos. Biol.
Cyber. 107, 15-24. doi: 10.1007/s00422-012-0520-8

Sherman, A., and Rinzel, J. (1991). Model for synchronization of pancreatic
beta-cells by gap junction coupling. Biophys. J. 59, 547. doi: 10.1016/S0006-
3495(91)82271-8

Sinha, S., and Ditto, W. L. (1998). Dynamics based computation. Phys. Rev. Lett.
81:2156. doi: 10.1103/PhysRevLett.81.2156

Sinha, S., and Ditto, W. L. (1999). Computing with distributed chaos. Phys. Rev. E
60, 363-377. doi: 10.1103/PhysRevE.60.363

Sinha, S., Munakata, T., and Ditto, W. L. (2002a). Flexible parallel implementation
of logic gates using chaotic elements. Phys. Rev. E 65:036216. doi:
10.1103/PhysRevE.65.036216

Sinha, S., Munakata, T., and Ditto, W. L. (2002b). Parallel computing
with extended dynamical systems. Phys. Rev. E 65:036214. doi:
10.1103/PhysRevE.65.036214

Sporns, O. (2011). The non-random brain: efficiency, economy, and complex
dynamics. Front. Comput. Neurosci. 5:5. doi: 10.3389/fncom.2011.00005

Tabareau, N., Slotine, J. J., and Pham, Q. C. (2010). How synchronization protects
from noise. PLoS Comput. Biol. 6:e1000637. doi: 10.1371/journal.pcbi.1000637

Varela, F., Lachaux, J. P., Rodriguez, E., and Martinerie, J. (2001). The brainweb:
phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2,
229-239. doi: 10.1038/35067550

Womelsdorf, T., and Fries, P. (2007). The role of neuronal synchronization
in selective attention. Curr. Opin. Neurobiol. 17, 154-160. doi:
10.1016/j.conb.2007.02.002

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Kia, Lindner and Ditto. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org

May 2015 | Volume 9 | Article 49

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Nonlinear dynamics based digital logic and circuits
	Introduction
	Nonlinear Dynamics as the Source of Different Behaviors
	Programing with Bias Values
	Programing with Parameters
	Programing with Evolution Time

	Dynamical Coupling and Synchronization for Robust Dynamics Based Logic
	Computation in Arbitrary Base β
	Conclusions
	Acknowledgments
	References

