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Thalamocortical neurons are involved in the generation andmaintenance of brain rhythms

associated with global functional states. The repetitive burst firing of TC neurons at delta

frequencies (1–4Hz) has been linked to the oscillations recorded during deep sleep and

during episodes of absence seizures. To get insight into the biophysical properties that

are the basis for intrinsic delta oscillations in these neurons, we performed a bifurcation

analysis of a minimal conductance-based thalamocortical neuron model including only

the IT channel and the sodium and potassium leak channels. This analysis unveils

the dynamics of repetitive burst firing of TC neurons, and describes how the interplay

between the amplifying variable mT and the recovering variable hT of the calcium channel

IT is sufficient to generate low threshold oscillations in the delta band. We also explored

the role of the hyperpolarization activated cationic current Ih in this reduced model and

determine that, albeit not required, Ih amplifies and stabilizes the oscillation.

Keywords: T-type calcium channel, thalamocortical neurons, repetitive burst firing, sub-threshold conductances

Introduction

Repetitive burst firing of thalamocortical (TC) neurons in the delta band has been linked to
the expression of the rhythms that characterize slow wave sleep and the pathological spike
and wave discharges of absence epilepsy (McCormick and Bal, 1997; Budde et al., 2005). The
synchronized expression of repetitive bursting in TC neurons of the behaving animal is the result
of the interaction between the intrinsic properties of these neurons and the synaptic activity of
the thalamo-reticulo-cortical network (Lytton et al., 1996; Destexhe and Sejnowski, 2003). The
prominent role of intrinsic ionic mechanisms in the generation and maintenance of the oscillations
at the cellular level has been extensively demonstrated: individual TC neurons maintained in vitro
are able to fire bursts repetitively either spontaneously or after injection of hyperpolarizing current,
and this ability is indeed conserved under conditions of synaptic isolation (McCormick and Pape,
1990; Leresche et al., 1991). In addition, the EEG expression of rhythms associated with repetitive
burst firing of TC neurons (slow wave oscillations during deep sleep and spike and wave discharges
during absence seizures) are strongly affected by genetic or pharmacological manipulation of the
ion channels expressed by TC neurons (Kim et al., 2001; Ludwig et al., 2003; Lee et al., 2004;
Anderson et al., 2005; Budde et al., 2005). Specifically, genetic elimination of the calcium channel
pore forming subunit CaV3.1 (the main channel subunit carrying IT in TC neurons from mice)
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abolishes the generation of low threshold spikes (LTS) (Kim et al.,
2001), and suppresses the delta oscillations during NREM sleep
(Lee et al., 2004). Conversely, overexpression of this channel
subunit results in a phenotype of pure absence epilepsy in
mice (Ernst et al., 2009). An absence epilepsy phenotype is also
obtained by genetic elimination of HCN2 (Ludwig et al., 2003),
which is an Ih channel subunit strongly expressed in TC neurons
(Santoro et al., 2000).

It has been previously shown that the two firing regimes of
thalamocortical neurons, tonic and burst firing, can be described
by two distinct oscillatory systems that operate independently
at different membrane potentials and at different time scales
(Rush and Rinzel, 1994). In a previous study, we characterized
the seven different conductance’s that operate at hyperpolarized
membrane potentials, and established their contributions to
intrinsic delta oscillations. In that study, we showed that
the minimal ionic mechanisms required for generation and
maintenance of oscillations compatible with physiological (or
pathological) repetitive burst firing are IT and the leak currents
(Amarillo et al., 2014). Here we analyze the bifurcation structure
of this minimal model and show that the system can enter
the oscillatory regime (limit cycle) from two different stable
equilibriums (which occur at physiologically plausible membrane
potentials) via different dynamic mechanisms: the transition
from a depolarized stable equilibrium occurs via a supercritical
Hopf bifurcation, whereas at hyperpolarized potentials the
system can undergo either a subcritical Hopf bifurcation or a
saddle-node bifurcation on invariant cycle (Izhikevich, 2005).We
discuss possible functional, physiological and pathophysiological
implications of this dynamic behavior.

Although a role of Ih in repetitive burst firing of TC neurons
has been suggested previously (McCormick and Pape, 1990;
Soltesz et al., 1991; Hughes et al., 1998), our simulations indicate
that Ih is not essential for repetitive burst firing (Amarillo et al.,
2014). It has been previously demonstrated that the main role
of Ih is the stabilization of the resting membrane potential
(RMP), and that this current is one of the main determinants
of the positive shift of the RMP from the potassium equilibrium
potential in TC neurons (Amarillo et al., 2014 and references
therein). In this study, we use phase plane and bifurcation
analysis to determine the role of Ih in repetitive burst firing
and we show that Ih stabilizes the oscillations by increasing the
voltage range (and the range of current injection magnitudes)
at which stable oscillations occur. Some of these results have
been presented previously in abstract form (Amarillo and Nadal,
2013).

Methods

The HH-like equations used in this study have been published
elsewhere (Amarillo et al., 2014). Briefly, the voltage equations
for the minimal IT-Leaks model and the IT-Ih-Leaks model are:

dV/dt = (Iinj − IT − IKleak − INaleak)/C (1)

and

dV/dt = (Iinj − IT − Ih − IKleak − INaleak)/C (2)

TABLE 1 | Model cell and ion channel parameters.

C = 0.2 nF

S = 20000µm2

T = 36◦C

Cao = 2× 10−3M

Cai = 0.05× 10−6M

IKleak gKleak = 1× 10−5 S/cm2

EKleak = −100mV

INaleak gNaleak = 3× 10−6 S/cm2

ENaleak = 0mV

I
(a)
T mT∞ (V ) = 1/(1+ exp[(V − V1/2mT/ − 6.2])

τmT (V ) = (0.612+ 1/(exp[(V − Vτm1 )/ − 16.7]+ exp[(V − Vτm2 )/18.2]))/3

hT∞ (V ) = 1/(1+ exp[(V − V1/2hT )/4])

τhT (V ) = (exp[(V − Vτh1 )/66.6])/3 for V < −75mV

τhT (V ) = (28+ exp[(V − Vτh2 )/ − 10.5])/3 for V > −75mV

pT = see Table 2.

Ih mh∞ (V ) = 1/(1+ exp[(V + 82)/5.49])

τmh (V ) = (1/([0.0008+ 0.0000035

exp(−0.05787V )]+ exp(−1.87+ 0.0701V )))/1.32

ḡh = 2.2× 10−5 S/cm2

Eh = −43mV

(a)Parameters that are changed in the different conditions considered in the paper are

shown in bold (see specific values in Table 2).

respectively; where IKleak = gKleak (V−EKleak)S, INaleak = gNaleak
(V−ENaleak)S are the leak currents, Iinj is the injected current, C
is the membrane capacitance and S the surface of the neuron (see
parameter values in Tables 1, 2).

The equations used for IT are:

IT = pTm
2
ThTSG(V,Cao,Cai) (3)

dmT/dt = (mT∞(V)−mT)/τmT(V) (4)

dhT/dt = (hT∞(V)− hT)/τhT(V), (5)

where pT is the maximum permeability, mT and hT are the
activation and inactivation variables respectively and mT∞(V),

hT∞(V), τmT(V), τhT(V) are the steady state and time constants
of activation and inactivation (see Tables 1, 2). G(V, Cao,Cai) is a
non-linear function of potential and calcium concentration;

G(V,Cao,Cai) = z2F2V/RT(Cai − Caoexp[−zFV/RT])/

(1− exp[−zFV/RT]), (6)

where Cao and Cai are the extracellular and the intracellular
concentrations of Ca++ and z, F, R, and T are the valence, the
Faraday constant, the gas constant and the absolute temperature
respectively.

The equations for Ih are:

Ih = ḡhmh(V − Eh)S (7)

dmh/dt = (mh∞(V)−mh)/τmh(V) (8)

where ḡh is the maximum conductance, mh is the activation
variable, Eh is the reversal potential and mh∞(V) and τmh(V)
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are the steady state activation and time constant respectively (see
Table 1).

Bifurcation analysis and phase plane portrait analysis were
performed using XPPAUT (Ermentrout, 2002). In order to
convert the three-dimensional IT-leaks model containing three
differential equations (dV/dt, dmT/dt, and dhT/dt) into a two-
dimensional model (containing only dV/dt and dhT/dt), we
assumed an instantaneous activation of IT and replaced the
time dependent equation for the steady state equation of

the m variable of IT. Thus, the current Equation (3) was
replaced by

IT = pTm
2
T∞(V)hTSG(V,Cao,Cai) (9)

Frequency current plots (Figure 1A) were obtained by averaging
the inter LTS intervals occurring during each of 4000 current
steps of 10 s, between −10 and +10 pA, using a second order

TABLE 2 | Maximum permeability and voltage dependence parameters of IT.

Condition pT (cm/s) V1/2mT (mV) Vτm1(mV) Vτm2(mV) V1/2hT (mV) Vτh1(mV) Vτh2(mV) Figures

Default 3D 7.0 × 10−5 −53 −128 −12.8 −75 −461 −16 1A, 1B, 1E*, 3, 4

Default 2D 7.0× 10−5 −53 – – −75 −461 −16 1A, 2

Activation shifted −3mV 3.0× 10−5 −56 −131 −15.8 −75 −461 −16 1C, 1F*

McCormick and Huguenard 1.1× 10−4 −57 −132 −16.8 −81 −467 −22 1D

Global voltage shifts are applied on all voltage dependence parameters of a given gating variable of IT as previously performed (Destexhe et al., 1998; Amarillo et al., 2014).

*In Figures 1E,F the parameters of voltage dependence are as indicated in the table, however the values of pT are 9× 10−5 and 4× 10−5 cm/s respectively (see text).

FIGURE 1 | Dynamical mechanisms of oscillations in the IT-Leaks

model. (A) Frequency-current plots of oscillations induced by sustained

injection of depolarizing current from a hyperpolarized stable potential

(black) and injection of hyperpolarizing current from a depolarized stable

potential (red) for the 3D IT-Leaks model (solid lines) and for the 2D

IT-Leaks model (dashed lines). The inset shows magnification of the

region of mismatch (hysteresis) between the two plots at the lowest

frequencies for the 3D model. (B) Bifurcation diagram of the IT-Leaks

model using the default value of pT (7.0× 10−5 cm/s) while maintaining

other parameters at default. The diagram shows voltage at fixed points

(black V/I curve) and max/min of limit cycle as the current injection is

changed (dots). The dashed region on the V/I curve (black) and the red

dots represent instability whereas the continuous line and blue dots

represent regions of stable equilibrium and stable periodic orbits

respectively. (C) Bifurcation diagram after shifting the activation variable

of IT by −3mV, using pT = 3.0× 10−5 cm/s. (D) Bifurcation diagram of

the IT-leaks model with kinetic parameters and voltage dependence as

in McCormick and Huguenard (1992). pT set to 11× 10−4 cm/s. (E)

Bifurcation diagram of the IT-leaks model using a pT value of

9.0× 10−5 cm/s while maintain other parameters at default. (F)

Bifurcation diagram after shifting mT by −3mV, using a pT value of

4.0× 10−5 cm/s. Conventions for panels (C–F) as in (B).
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Runge-Kutta integration algorithm with a 0.01ms time step
(Press et al., 1992).

Results

Phase Plane and Bifurcation Analysis of a
Minimal Model of Thalamocortical Neurons
In a previous study, we used a murine TC neuron conductance
model to explore the minimal requirements for generating
periodic oscillations at delta frequencies (Amarillo et al., 2014).
In the minimal model, which only has the calcium current IT
and the leak currents (IKleak and INaleak), the propensity to fire
repetitive bursts is strongly affected by the permeability of the
IT current. The baseline value of maximum permeability of IT
in this minimal model corresponds to the experimental value
obtained from rodent TC neurons in vitro: pT = 5 × 10−5 cm/s.
In agreement with the rodent experimental data, the TC model
has a low propensity to fire repetitive bursts when using this
baseline pT value of IT. However, increasing the availability of
IT—by manipulating its maximum permeability or its voltage
dependence of activation and inactivation—enables periodic low
threshold oscillations. Thus, while keeping the value of pT at
5 × 10−5 cm/s, changes in the gating variables of IT that result
in a larger window current component (a global hyperpolarizing
shift larger than−2mV in the activation variablemT , or a global
depolarizing shift larger than +2mV of the inactivation variable
hT) favor sustained oscillations (see Figure 8 in Amarillo et al.,
2014). Similarly, increasing the maximum permeability pT by
less than 30% (from 5 to 7 × 10−5 cm/s) induces spontaneous
oscillations of 32mV of amplitude at 2.3Hz. We take this value
(7× 10−5 cm/s) as default in the rest of this paper.

Here we analyze the transitions from two stable equilibriums,
one occurring at a relatively depolarized membrane potential
V (positive to about −63mV) and the other occurring at
hyperpolarized V (negative to about −75mV) into a stable limit
cycle by using injected current Iinj as parameter.We first analyzed
the bifurcation structure of the 3-dimentional system comprising
the differential Equations (1), (4), and (5). Figure 1A shows
frequency current plots of the system using the default value
of pT . These plots reveal a small range of bistability (hysteresis,
see inset) which is bounded in the left side by a fold limit cycle
bifurcation and on the right side by a subcritical Hopf bifurcation.
In this bifurcation, the stable limit cycle coalesces with an
unstable limit cycle and both disappear. We also compared the
3D dynamical system with a 2D system obtained by making
instantaneous the kinetics of the m gate of IT (see Methods),
i.e., making mT = mT∞(V). This is justified because there is
a one order of magnitude difference between activation and
inactivation time constants (with activation being faster than
inactivation). We found that the change of dimensionality from
3D to 2D does not modify the oscillatory activity of the model
in response to either injection of hyperpolarizing current from
a positive equilibrium or injection of depolarizing current from
a negative equilibrium. In fact we found that the bifurcation
structure is exactly the same, although the positions of the
bifurcations points are changed (Figure 1A).

The bifurcation diagram shows that the transition from the
resting state to the limit cycle and from the limit cycle to
rest occurs via a subcritical Hopf bifurcation at hyperpolarized
potentials (Figure 1B, open arrow) whereas the transitions at
depolarized voltages occur via a supercritical Hopf bifurcation
(Figure 1B, filled arrow).

We repeated this analysis using different voltage dependences
(global shifts) of the activation and inactivation gates of IT
and found the same bifurcation structure. Figure 1C shows
the bifurcation diagram of the IT-Leaks model after shifting
the activation of IT by −3mV using pT = 3.0 × 10−5 cm/s.
Furthermore, the bifurcation diagram of the IT-Leaks model
using the same values of voltage dependence of activation of
IT as in the seminal study by McCormick and Huguenard
(1992) (see Table 2), with pT set to 1.1 × 10−4 cm/s, also
have the same structure (Figure 1D). This indicates that the
dynamical properties of IT are insensitive to small variations of
voltage dependence provided that the maximum permeability
of IT is kept to the minimum required to enable sustained
oscillations. However, setting pT to slightly higher values
(above 8.0 × 10−5 cm/s) changes the type of bifurcation
occurring at hyperpolarized potentials from a subcritical
Hopf to a saddle-node bifurcation on invariant cycle, as the
I/V relationship changes from monotonic to non-monotonic
(Figure 1E). Similarly, setting pT = 4.0×10−5 cm/s after shifting
the activation of IT by -3mV, also changes the type of bifurcation
occurring at hyperpolarized potentials from subcritical Hopf
to saddle node on invariant cycle (Figure 1F). This dynamical
behavior indicates that at some intermediate value of pT
the model should undergo a Bogdanov-Takens codimension-2
bifurcation (Izhikevich, 2005). On the other hand the bifurcation
occurring at depolarized potentials stays a supercritical Hopf for
all values of pT .

To explore this further, we analyzed the 2D model
using a graphic visualization in phase plane portraits. We
analyzed the phase plane portraits near the bifurcation
points using either the default value of pT (Figures 2A,B)
or a slightly increased value (9.0 × 10−5 cm/s, Figure 2C).
Figure 2A shows the transition from a depolarized equilibrium
to the limit cycle as hyperpolarizing current is injected
beyond the threshold for generating repetitive LTSs. At
equilibrium, the nullclines intersect at a single stable point
(labeled a). Injection of hyperpolarizing current displaces the
V nullcline upwards and destabilizes the intersecting point
through a supercritical Hopf bifurcation initiating the oscillation
(superimposed orbits). Figure 2B shows the transition from a
hyperpolarized equilibrium to the limit cycle after injection of
depolarizing current injection. At equilibrium, the nullclines
intersect each other at a single stable point. Injection of
depolarizing current beyond the LTSs threshold shifts the V
nullcline downwards; this destabilizes the intersecting point
through a subcritical Hopf bifurcation, thereby initiating the
oscillation. The same transition is shown in Figure 2C after
increasing pT to 9.0 × 10−5 cm/s. In this case, the nullclines
intersect at three points at equilibrium. Injection of depolarizing
current beyond the LTS threshold shifts the V nullcline
downwards and cause the destruction of two of the intersecting
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FIGURE 2 | Phase-plane portrait of the IT-leaks model after

reduction of dimensionality from 3D to 2D. (A) Using a pT value of

7.0× 10−5 cm/s, at a depolarized equilibrium (Iinj = 6 pA) the

membrane potential is stable at −61.5mV (blue trace in inset). At this

potential, the V nullcline (blue line) intersects the hT nullcline (gray line)

on a single point (a). Decreasing Iinj to 2 pA induces oscillations (red

trace in inset) and in the phase-plane plot, shifts the V nullcline

upwards (red line) with loss of stability of the intersecting point (b) and

appearance of a stable limit cycle (supercritical Hopf bifurcation). Black

orbits represent the variation of V as function of hT in the direction

indicated by the arrow heads. (B) Using the same pT value as in (A),

at a hyperpolarized equilibrium (Iinj = −7 pA) the membrane potential

stabilized at −75.2mV (blue trace in inset), the V (blue line) and hT (gray

line) nullclines intersect in a single stable point (a). Changing Iinj to −6

pA induces oscillations (red trace in inset) and, in the phase plane

portrait, shifts the V nullcline (red line) downwards with loss of stability

of the intersecting point (b) and disappearance of an unstable limit cycle

(subcritical Hopf bifurcation). (C) After increasing pT to 9.0× 10−5 cm/s,

at a hyperpolarized equilibrium (Iinj = −11 pA), the membrane potential

is stabilized at −77.7mV (blue trace in inset). In the phase plane

portrait, V (blue line) and hT (gray line) nullclines intersect in three points;

one stable point (a) and two unstable points (b and c). At a lower level

of hyperpolarization (Iinj = −10 pA), depolarizing current shifts the V

nullcline (red line) downwards with destruction of the points a and b,

leaving one unstable point (d) and allowing the model to oscillate at

very low frequencies. Bottom panel shows a magnification

corresponding to the encircled area on the upper panel. Conventions for

panels (B,C) as in (A).

points (points a and b), triggering the abrupt appearance of
the oscillation. The change of the dynamical behavior from one
type of bifurcation to another—that in this case depends both
on the magnitude of current injection and on the maximum
permeability of IT—indicates again that the model can undergo
a codimension-2 Bogdanov-Takens bifurcation, which is the only
possible codimension-2 bifurcation in 2-dimensional systems
(Izhikevich, 2005).

Understanding the Role of IH in Periodic Burst
Firing
We next explored the interaction between Ih and IT in the
presence of the leak conductances. With pT set to the default
value and Ih switched off, oscillations occur in a narrow range
of current injection values (approximately between +2 and −6
pA; Figure 1B). With no current or minimal values of current
injection (Figure 3A), the availability of IT is small because
the inactivation is large (small hT). Injection of hyperpolarizing
current—up to −6 pA—further removes the inactivation of IT
and gives rise to oscillations with larger amplitudes (Figure 3B).
Under these conditions, oscillations are maintained solely by

the regenerative activation of IT. Injection of hyperpolarizing
current larger than−6 pA induces stronger de-inactivation of IT;
yet, activation never develops because the drive of the current
injection is overpowering (Figure 3C). With Ih switched on
(Figures 3D,E), the RMP is shifted toward depolarized values
due to the steady activation of Ih. In this case, injection
of low values of hyperpolarizing current produces a similar
sequence of de-inactivation/activation of IT as in the absence
of Ih (compare IT gating variables in Figures 3A,D). Notice
that both the current magnitude and the gating variables of
IT reach similar values with or without little activation of
Ih. In contrast, larger magnitudes of hyperpolarizing current
(negative to −6 pA) lead to stronger activation of Ih, which
results in the removal of a larger fraction of inactivation of
IT (Figure 3E). Hence, the depolarizing drive contributed by
Ih not only adds to the regenerative activation of IT during
the ascending phase of the LTS, giving rise to larger and
faster oscillations, but it also permits the occurrence of these
oscillations at much hyperpolarized levels (in contrast to the
case shown in Figure 3C). The resulting effect is that Ih strongly
affects the bifurcation that occurs at hyperpolarized potential yet
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FIGURE 3 | Ih has different effects on the two bifurcations. (A) Upper

trace shows the time course of the membrane potential (V) during oscillations

elicited at −1 pA (near the upper bifurcation) in the absence of Ih. The time

courses of IT and its gating variables are shown aligned underneath. The

bottom diagram shows the time course of the relative contribution of the three

currents considered (outward currents in blue and inward currents

represented by shades of red and yellow). The white solid line separates total

outward from total inward components and therefore represents the net

depolarizing or hyperpolarizing drive of the model at a given time point. Vertical

dotted lines are positioned at: the peak of the oscillation (a); the valley of the

oscillation (b); and the time point of maximum contribution of IT (c). Horizontal

dotted lines represent zero values for currents and gating variables and 50% of

the total current in diagrams of relative contribution. (B) Time course of IT, its

gating variables and the relative contribution of the currents during oscillations

elicited at −4.5 pA (near the lower bifurcation) in the absence of Ih. (C) Time

course of IT, its gating variables and the relative contribution of the currents for

a large hyperpolarizing current injection (without oscillations) in the absence of

Ih. Vertical dotted line is at the onset of current injection. (D) Time course of IT,

Ih, their gating variables and the relative contribution of the currents during

oscillations elicited at −3 pA (near the upper bifurcation) after switching on Ih.

(E) Time course of IT, Ih, their gating variables and the relative contribution of

the currents during oscillations produced under strong hyperpolarization

(−23 pA, near the lower bifurcation) in the presence of Ih. Conventions in

panels (B–E) as in panel (A).

it affects weakly the bifurcation that takes place at depolarized
potential.

The bifurcation diagram of this four-dimensional system
[with differential Equations (2), (4), (5) and (8)] shows an I/V
relationship that is monotonic for a large range of pT values. In
order to change the I/V relationship to non-monotonic under
these conditions, pT has to be increased above 1.5 × 10−4 cm/s.
This does not imply, however, that a saddle-node bifurcation
takes place because for the values of the current where the I/V
curve becomes non-monotonic, the resting state has already lost
stability via a Hopf bifurcation (data not shown). The diagram
shows that the system enters the limit cycle via a supercritical
Hopf bifurcation at depolarized potentials, and via a subcritical
Hopf at hyperpolarized potentials (Figure 4). The bifurcation
diagram also shows that the range of current injection that elicits
oscillations is much broader in the presence of Ih than in the
minimal IT-leaks model (Figure 4), consistent with a role of Ih
in stabilizing the oscillations. This effect of Ih is independent of

the sodium spiking mechanism (Figure 4, blue and gray bar; see
Discussion).

Discussion

Thalamocortical neurons have two regimes of excitability: (1)
the tonic firing mode that occurs at membrane potentials
positive to about −60mV and characterized by firing of
action potentials at frequencies that correlates linearly with the
strength of the stimuli (McCormick and Feeser, 1990); and
(2) the firing of stereotyped bursts of action potentials at high
frequency at membrane potentials negative to about −65mV
(Jahnsen and Llinas, 1984). Tonic firing is said to be a relay
mode that allows information to be reliably transmitted to
the targeted cortical areas (i.e., TC neurons under tonic mode
function as integrators) and consistently occurs during active
cognitive states. The role of burst firing is less clear; it has
been proposed that TC neuron bursting could play a role in
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FIGURE 4 | Ih adds robustness to the oscillations. Bifurcation diagram of

the IT-Ih-Leaks model using a pT value of 7× 10−5 cm/s while maintaining

other parameters at default values (see Table 1 and Amarillo et al., 2014).

Superimposed in gray is the max/min of limit cycle of the IT-leaks model (see

Figure 1B). Vertical dotted lines labeled (A–E) are positioned at the values of

current injection used in the corresponding panels of Figure 3. Conventions

are as in Figure 1. The inset shows an example of the repetitive bursting

oscillations elicited in the presence of Ih and the spiking mechanisms (INa and

IK ) using Iinj = −8 pA (upper trace) and oscillations elicited in the presence of

Ih and absence of spiking mechanisms using the same value of Iinj (lower

trace). The bars above the bifurcation diagram indicate the range of Iinj that

elicits oscillations in the model with spiking mechanisms both in the presence

of Ih (blue bar) and in the absence of Ih (gray bar).

stimulus detectability and/or in switching the cortical targets
from inattentive states to the activated states that characterize
focused attention (Weyand et al., 2001; Ortuno et al., 2014).
On the other hand, periodic bursting of TC neurons correlates
with brain states characterized behaviorally by cognitive arrest
(deep sleep, absence seizures), and physiologically, by global
synchronization of the thalamocortical system (i.e., TC neurons
under repetitive burst firing mode function as resonators).

In an early study by Rush and Rinzel (1994), the bimodal
excitability of TC neurons was explained by the co-existence of
two oscillatory systems that operate independently at different
membrane potentials and at different temporal scales. A fast
system, composed by the fast amplifying sodium conductance
and the fast resonant potassium conductances, operates at
depolarized potentials and underlies tonic firing, whereas a
slow system, composed by the gating variables (fast amplifying
activation and slow resonant inactivation) of IT, operates at
hyperpolarized membrane potentials and underlies LTS. At the
most depolarized phase of these LTSs, the fast system is activated
generating the characteristic burst of action potentials. It has
been shown, both experimentally with TTX (see Figure 10 in
McCormick and Pape, 1990) and computationally (see Figure 2C
in Rush and Rinzel, 1994), that the oscillatory behavior of TC
neurons is unaffected by the sodium spikes (see inset in Figure 4).
These evidences support the idea that the two oscillatory systems
can be studied separately and that the fast system does not

affect the behavior of the slow system. Indeed, we compared the
response to current injection of the minimal IT-leaks model with
and without spiking mechanisms (HH-like models of fast Na+
and K+ currents taken from Traub et al., 2003 and implemented
as in Amarillo et al., 2014), and found no differences in the
range of Iinj that elicit oscillations (from −6 to +2 pA; compare
the range of Iinj for limit cycle—gray dots in Figure 4 with the
range of Iinj that elicit oscillations when spiking mechanisms are
present—gray bar above the bifurcation diagram in Figure 4).
The only difference between the two sets of simulations is the
presence of fast bursts of Na+-K+ spikes riding on the LTSs
that reached the spike threshold when spiking mechanisms are
present. Furthermore, we made a similar comparison with and
without spiking mechanisms in the IT-Ih-leaks model, and the
range of Iinj that elicit oscillations does not change (from −2
to−31 pA; compare the range of Iinj for limit cycle—blue dots in
Figure 4with the range of Iinj that elicit oscillations when spiking
mechanisms are present—blue bar above the bifurcation diagram
on Figure 4).

Neurocomputational Properties of the Minimal
IT-Leaks Model
In the present study, we focus on the dynamic structure of the
slow system (given by the gating variables of IT) that underlies
repetitive burst firing of TC neurons. The bifurcation structure—
and the upper bifurcation in particular—of the minimal model
that supports this slow system is consistent with the structure
of a resonator, as it has been previously suggested (Hutcheon
et al., 1994). The supercritical Hopf bifurcation occurring as the
system enters a limit cycle from depolarized potentials enables
oscillations of graded amplitude. Thus, minor hyperpolarizations
induce oscillations of low amplitude without the requirement of
a threshold potential (in contrast to the full blown oscillations
characteristic of integrators, which usually require a large
displacement of membrane potential to reach a threshold). These
low amplitude oscillations could be potentiated by synaptic
inputs arriving at the same frequency (resonant frequency),
eventually reaching the threshold of the fast oscillatory system.
The consequent action potential firing leads to neurotransmitter
release, and therefore, to inter-neuronal communication,
thereby promoting the synchronization of the thalamocortical
system. We propose that TC neurons could anomalously
enter the repetitive burst firing mode via this supercritical
Hopf bifurcation during activated (depolarized) states. This
would result in the pathological synchronization of the
thalamocortical system at delta frequencies during wakefulness,
which correlates with the occurrence of episodes of absence
epilepsy.

Our analysis also shows that the behavior of the transition
from a stable equilibrium to the limit cycle at hyperpolarized
membrane potentials is much more complex. Depending on
the value of the maximal IT permeability, the system can
undergo either a subcritical Hopf bifurcation or a saddle-
node on invariant cycle bifurcation. This means that the
neurocomputational behavior of the system can change from a
resonator to an integrator, and, significantly, that this switch is
controlled by the level of maximal IT permeability. In addition,
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the time scale of the resonator increases continuously as the
Bogdanov-Takens co-dimension 2 bifurcation is approached
(Izhikevich, 2005).

This flexibility could have some interesting consequences on
the functionality of TC cells, since resonators and integrators are
driven by different optimal stimuli. Integrators fire in response
to scale-free depolarizing stimuli (i.e., stimuli whose time scale
depends on the firing rate of the neuron but does not depend
on times scales of the intrinsic dynamics). Resonators, instead,
are most efficiently driven by input stimuli containing both
depolarizing and hyperpolarizing phases, with significant power
in the frequency band corresponding to the intrinsic frequencies
of the cell (Mato and Samengo, 2008). Choosing the adequate
value of the IT permeability would allow the system to control its
sensitivity to inputs in the delta band or in the infra-slow band
(Crunelli and Hughes, 2010) (by approaching the Bogdanov-
Takens bifurcation). These properties could be very important in
situations where bursting is not perfectly periodic. In Samengo
et al. (2013) it was shown that, given the adequate level of
variability, bursters are able to codify input information and
that the coding mechanism is essentially determined by the
bifurcation structure.

The other important consequence of the transition from
resonator to integrator lies in the collective network behavior.
Both types of neuronal behavior tend to have very different
synchronization properties. Resonators tend to synchronize
when these neurons interact with chemical excitatory
interactions that have a time constant shorter than the period of
oscillation; whereas the same interaction has a desynchronizing
effect on networks of integrators (Hansel et al., 1995). For
inhibition, the relation is the inverse, at least for not very strong
values of the coupling constant.

IT permeability can also affect network dynamics via its effect
on gap junctions. This type of intercellular communication has
been found in thalamocortical cells in early postnatal stages
(Lee et al., 2010). The effect of gap junctions can be modulated
by intrinsic currents (Pfeuty et al., 2003; Hansel et al., 2012).
For instance, Pfeuty et al. (2003) showed that changing the
values of sodium and potassium conductances allows to control
the degree of network synchrony, from fully synchronized
to a completely asynchronous behavior. In Mancilla et al.
(2007) it is shown that this effect can be the opposite in some
cases (see Lewis and Skinner, 2012 for a discussion on the
discrepancy). In any case, the modulation of IT permeability

could also affect developmental processes via neuronal
synchronization.

In summary, there are several mechanisms that would permit
to control the dynamical state of the network and the flow
of information through the thalamocortical system just by
regulating up or down the permeability of IT.

The Role of IH
Ih not only contributes to the stabilization of the RMP in TC
neurons (Amarillo et al., 2014), but it also adds robustness to
the low threshold oscillations by potentiating the initial phase
of depolarization and also by allowing larger excursions of the
membrane potential between LTSs (favoring de-inactivation of

IT). Oscillations elicited at hyperpolarized potentials require
the activation of Ih to provide a recovering depolarization
(pacemaker potential), which adds to the depolarizing influence
of a residually activated IT. Loss of the stabilizing effects
of Ih alters both the robustness of the oscillations and the
voltage regime at which they occur, giving rise to more readily,
yet aberrant, oscillations at more depolarized potentials. This
conclusion is also supported by the absence epilepsy phenotype
of the Ih KO mice (HCN2 principal subunit; Ludwig et al.,
2003), which would otherwise contradict an essential role of Ih
in repetitive burst firing.

In addition to these effects on the rhythmic bursting behavior
of TC neurons, introduction of Ih tends to suppress the saddle-
node bifurcation that is present in the minimal IT-leaks model.
Hence, the presence of Ih would favor the resonator behavior.
This means that a more complex modulation would be required
to switch the system to the integrator behavior: i.e., concomitant
down-regulation of Ih and up-regulation of IT.

The present study contributes to unveil the complex dynamic
behavior of TC neurons. Our conclusions are in line with the
suggestion that these cells have the potential to perform a
sophisticated role in controlling and processing the information
that flows from sensory sources to the cortex (primary thalamic
nuclei), and between different cortical areas via higher order
thalamic nuclei.
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