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Two cliques of genes identified computationally for their high co-expression in the mouse

brain according to the Allen Brain Atlas, and for their enrichment in genes related to

autism spectrum disorder (ASD), have recently been shown to be highly co-expressed

in the cerebellar cortex, compared to what could be expected by chance. Moreover,

the expression of these cliques of genes is not homogeneous across the cerebellar

cortex, and it has been noted that their expression pattern seems to highlight the

granular layer. However, this observation was only made by eye, and recent advances in

computational neuroanatomy allow to rank cell types in the mouse brain (characterized

by their transcriptome profiles) according to the similarity between their spatial density

profiles and the spatial expression profiles of the cliques. We establish by Monte Carlo

simulation that with probability at least 99%, the expression profiles of the two cliques are

more similar to the density profile of granule cells than 99% of the expression of cliques

containing the same number of genes (Purkinje cells also score above 99% in one of

the cliques). Thresholding the expression profiles shows that the signal is more intense

in the granular layer. Finally, we work out pairs of cell types whose combined expression

profiles are more similar to the expression profiles of the cliques than any single cell type.

These pairs predominantly consist of one cortical pyramidal cell and one cerebellar cell

(which can be either a granule cell or a Purkinje cell).

Keywords: computational neuroanatomy, gene expression, cerebellum, cell types, autism spectrum disorder

1. Introduction

The neuroanatomical structures underlying autism spectrum disorder (ASD) traits are the
subject of intense research efforts, as ASD is one of the most prevalent and highly heritable
neurodevelopmental disorders in humans (Newschaffer et al., 2007; Amaral et al., 2008; Levy, 2009;
Lord, 2011). Recent genomic advances have led to the association of more than 300 candidate
genes with ASD susceptibility (Jacquemont et al., 2006; Szatmari et al., 2007; Cook and Scherer,
2008; Basu et al., 2009; Gilman et al., 2011; Kumar et al., 2011; Levy et al., 2011; Myers et al., 2011;
Anney et al., 2012; Iossifov et al., 2012; Neale et al., 2012; O’Roak et al., 2012; Sanders et al., 2012).
However, the list is far from closed and the molecular mechanisms and brain regions underlying
ASD traits remain largely unclear. While no major anatomical pathology has been observed in
brains of ASD cases, various molecular and neuroimaging studies have linked several brain regions
to ASD. The cortex is often associated to capacities, such as planning and interpreting language,
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that are impaired in autism. Indeed, differences in gene
expression patterns in the cortex of ASD brain have been found
in Voineagu et al. (2011). On the other hand, the cerebellum,
which appeared much earlier in evolution than the cortex, is
a less likely candidate for implication in autism, because it is
more often associated to motor skills. However, a strong body of
evidence, in particular from the from the study of post-mortem
autistic brains (Skefos et al., 2014), suggests an implication of the
cerebellum in ASD. Moreover, the cerebellum may be connected
to remote parts of the brain, including the neocortex involved
in cognitive development and social interaction (see Wang et al.,
2014).

The mouse model has recently benefited from an
unprecedented flow of data, which begs for computational
analysis. Important sources of data include:

1. genetic databases of ASD, such as AutDB (Basu et al., 2009;
Kumar et al., 2011);

2. gene-based maps: the Allen Brain Atlas (ABA) of the adult
mouse (Ng et al., 2005, 2007a,b, 2009; Lein et al., 2006;
Sunkin and Hohmann, 2007; Lee et al., 2008; Hawrylycz
et al., 2011a,b), which consists of thousands of brain-wide
in situ hybridization (ISH) gene-expression profiles, digitized,
and co-registered to the Allen Reference Atlas (ARA) (Dong,
2008);

3. cell-based maps: the ongoing development of a classification
of cell types in the mouse brain based on their transcriptome
profiles (Arlotta et al., 2005; Chung et al., 2005; Sugino et al.,
2005; Rossner et al., 2006; Cahoy et al., 2008; Doyle et al., 2008;
Heiman et al., 2008; Okaty et al., 2009, 2011).

These sources of data are complementary to each other.
Recently, we used the ABA to examine the spatial co-expression
characteristics of genes associated with ASD susceptibility in
the AutDB database (Menashe et al., 2013). We identified two
networks of highly co-expressed genes that are enriched with
autism genes and significantly overexpressed in the cerebellar
cortex. These results added to the mounting evidence of the
involvement of the cerebellum in autism (Vargas et al., 2005;
Lotta et al., 2014). However, the complex internal structure of
the cerebellum requires a further investigation of the specific
cerebellar regions or cell types associated with ASD.

On the other hand, cell-type-specific transcriptomes were
recently combined with the ABA in order to estimate the brain-
wide density of cell types (Grange et al., 2014), using a linear
mathematical model, which amounts to decomposing the gene
expression data of the ABA over a set of measured cell-type-
specific transcriptomes (see also Ko et al., 2013; Tan et al., 2013
for cell-type-specific analyses of the ABA, and Abbas et al., 2009
for a similar mathematical approach in the context of blood cells).
These estimates have potential application to the neuroanatomy
of ASD: whenever a brain region exhibits over-expression of
ASD-related genes, this region can also be compared to the
neuroanatomical patterns of cell types, revealing which cell types
are involved. Computational neuroanatomy has so far combined
the AutDB and the ABA one one hand (Menashe et al., 2013),
and cell-type-specific transcriptomes and the ABA on the other
hand (Grange et al., 2014). In this paper we will close this loop by

looking for computational links between ASD-related genes from
AutDB and cell-type-specific transcriptomes.

It was observed in Menashe et al. (2013) that two cliques
of co-expressed autism genes appear to be overexpressed in
the granular layer of the cerebellum. However, this observation
was based on visual comparison of the expression patterns of
the genes in these two cliques to sections of the estimated
density patterns of cell types1. This approach by mere visual
inspection is far from satisfactory since it does not make use of
the computational potential of the ABA (Bohland et al., 2010;
Grange and Mitra, 2012; Grange et al., 2013). Moreover, post-
mortem studies of brains of autistic patients (Skefos et al., 2014)
have shown alterations in the Purkinje layer of the cerebellum,
rather than in the granule cells.

In the present study we re-examine the two cliques
discovered in Menashe et al. (2013) using recent developments
of computational neuroanatomy relating cell-type-specificity of
gene expression to neuroanatomy. We extend the Monte Carlo
methods developed in Menashe et al. (2013) (to estimate the
probability of co-expression among a set of genes) to the
comparison between the expression of a set of genes and the
spatial density profile of a cell type. This allows to estimate
the probability of similarity between gene-expression profiles of
cliques and spatial distributions of all cell types considered in
Grange et al. (2014). Finally, we look for linear combinations of
pairs of density profiles of cell types that are more similar to the
expression profiles of cliques of genes than any single cell type.

2. Methods

2.1. Cosine Similarity between the Expression
Profile of a Clique of Genes and the Density of a
Cell Type
2.1.1. Cliques of genes
We re-examine the brain-wide expression profiles of the two
cliques C1 and C2 of genes identified in Menashe et al. (2013)
based on their exceptional co-expression properties, which
consist of 33 and 6 genes, respectively:

C1 = {Astn2,Dpp6,Galnt13, Ptchd1,Trim3, Slc12a3,

Pltp,Mpp3,Darc, Fam69b, Pla2g7, Syt2,

Edg1,Cnr1,ORF11, Socs5,Atp1a1,Chgb,

Car4, Pcbp4, Syne1,Camk2d, Slc6a1,C230009H10Rik,

LOC434631, Prpf 38b,Utp23,Coro2b,Tmem109,Daam2,

Gpr37l1,BC060632,Grm4}, (1)

C2 = {Rims3,Astn2,B230308C24Rik∗, LOC434631,

4933417O08Rik,Car10}. (2)

1which at the time were available as preprint: Grange et al. (2013). Cell-type-

specific microarray data and the Allen atlas: quantitative analysis of brain-

wide patterns of correlation and density. arXiv preprint arXiv:1303.0013. The

correspondence between cell types and their integer labels is the same as in Tables

64, 65 of this preprint. See also the extended discussion of Grange et al. (2014).

Cell-type-specific transcriptomes and the Allen Atlas (II): discussion of the linear

model of brain-wide densities of cell types. arXiv preprint arXiv:1402.2820.
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They both contain genes from the AutDB database (Basu et al.,
2009; Kumar et al., 2011) of ASD-related genes(Ptchd1, Galnt13,
Dpp6 and Astn2 for the first clique, Astn2 and Rims3 for the
second).

2.1.2. Gene expression energies from the Allen Brain

Atlas
The adult mouse brain is partitioned into V = 49, 742 cubic
voxels of side 200 microns, to which ISH data are registered
(Lein et al., 2006; Dong, 2008) for thousands of genes. For
computational purposes, these gene-expression data can be
arranged into a voxel-by-gene matrix2. For a cubic voxel labeled
v, the expression energy of the gene g is a weighted sum of the
grayscale-value intensities evaluated at the pixels intersecting the
voxel:

E(v, g) = expression energy of gene labeled g

in voxel labeled v, (3)

Like the analysis of Grange et al. (2013) and Menashe et al.
(2013), the present analysis is restricted to the coronal ABA, for
which the entire mouse brain was processed in the ABA pipeline
(whereas only the left hemisphere was processed for the sagittal
atlas).

2.1.3. Cell-type-specific microarray data and

estimated cell-type-specific density profiles
The cell-type-specific microarray reads collated in Okaty et al.
(2011) from the studies (Arlotta et al., 2005; Chung et al., 2005;
Sugino et al., 2005; Rossner et al., 2006; Cahoy et al., 2008;
Doyle et al., 2008; Heiman et al., 2008; Okaty et al., 2009) (for
T = 64 different cell-type-specific samples) are arranged in a
type-by-gene matrix denoted by C, such that

C(t, g) = expression of gene labeled g

in cell type labeled t, (4)

and the columns are arranged in the same order as in the matrix
E of expression energies defined in Equation (3). In Grange et al.
(2014), we proposed a simple linear model for a voxel-based
gene-expression atlas in terms of the transcriptome profiles of cell
types and their spatial densities:

E(v, g) =
∑

t

ρt(v)C(t, g)+ Residual(v, g), (5)

where the index t denotes the t-th cell type, and ρt(v) denotes
its density at voxel labeled v. The profile ρt is a spatial density,
to be distinguished from the expression profile of a fixed cell
type across all genes. More precisely, the values of the cell-type-
specific density profiles were computed in Grange et al. (2014)
by minimizing the value of the residual term in Equation (5)

2These data were downloaded from the ABA website http://mouse.brain-map.org,

and are included in the MATLAB toolbox with which the results of the present

study were obtained. See the current version of the manual and download link in

Grange et al. (2012).

over all the (positive) density profiles, which amounts to solving
a quadratic optimization problem (with positivity constraint) at
each voxel:

(

ρt(v)
)

1≤t≤T
= argminν∈RT

+





∑

g

(

E(v, g)−

T
∑

t=1

ν(t)C(t, g)

)

2



.

(6)

The solution of this problem at every voxel happens to be quite
sparse (with fewer than 6 distinct cell types detected at most
voxels). Adding a term proportional to the L1-norm of ν in
the above objective function can increase sparsity (adapting the
search for marker genes implemented in Grange et al. 2013), but
the diversity of cell types present in a given voxel is expected to
be larger in reality than in our model, and should be increased
if the model is refitted to a richer panel of cell-type-specific
transcriptomes. However, if data sets increase to dramatically
higher values than T = 64, L1-penalization could become
necessary to increase sparsity (or to match it with known results
in well-studied voxels).

2.1.4. Cosine similarity between spatial

gene-expression patterns and cell-type-specific

spatial density patterns
The quantitative study of spatial co-expression of genes in
Menashe et al. (2013) combines the columns of the matrix of
gene-expression energies (Equation 3) by computing the cosine
similarities of all pairs of genes in the cliques C1 and C2. These
cosine similarities are then compared to those obtained from
random sets of genes containing the same numbers of elements as
C1 and C2, respectively. This technique can be adapted to compare
brain-wide gene-expression profiles to the spatial density of cell
types, simply by considering cosine similarities between gene-
expression profiles and cell-type-specific density profiles.

Given a set G of genes from the coronal ABA (selected
either computationally based on their co-expression properties,
or based on curation of the biomedical literature, for instance
G = C1 or G = C2), we can compute the sum of their expression
profiles:

EG(v) =

|G|
∑

i= 1

E(v, gi), (7)

where gi is the column index in the matrix of expression energies
(Equation 3) corresponding to the i-th gene in the set G, and
|G| denotes the number of genes in this set. The quantity EG is
an element of RV

+, just as the brain-wide density profile of a cell
type estimated from Equation (6). We can therefore estimate the
similarity between EG and the density of cell type labeled t by
computing the cosine similarity

ψ(G, t) =

∑V
v= 1 E

G(v)ρt(v)
√

∑V
u= 1 E

G(u)2
√

∑V
w= 1 ρt(w)

2

, (8)

which is a number between 0 and 1 by construction.
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Our model assumes that various sources of noise result in an
additive term. However, the efficacy and stability of the biological
agent binding to mRNA can vary from gene to gene, resulting
in multiplicative noise. The model of Equation (5) assumes that
the expression energies depend linearly on the quantity of mRNA
present at each voxel (ignoring saturation effects for strong
expression), and with a gene-independent coefficient (ignoring
multiplicative noise). Multiplicative noise could have a strong
influence when studying the sum of expression profiles of several
genes in a clique. However, it was checked in Menashe et al.
(2013) that the two cliques of genes in the present study are
over-expressed in the cerebellar cortex, even if gene-expression
profiles are separately normalized before the sum (Equation 7) is
performed, which reduces the influence of multiplicative noise.

2.1.5. Statistical significance of the similarity between

expression profiles of genes and density profiles of

cell types
Furthermore, for a fixed cell type, we can estimate how
exceptional the similarity ψ(G, t) is, compared to what would be
expected from random sets of |G| genes drawn from the coronal
ABA. This is a finite problem, but it becomes hugely complex in
a regime where |G| is relatively large but still small compared to
the size of the entire atlas (which is the case for both cliques in
the present study). We can take a Monte Carlo approach, draw R
random sets of |G| genes and simulate the cumulative distribution
function (CDF) of the cosine similarity3 between the expression
profile of a random set of |G| genes and the density profile of cell-
type labeled t (this CDF depends only on the cell type and on the
number of genes |G|, so we can denote it by CDFt,|G|). By the law
of large numbers, we obtain an estimate of this CDF by taking an
average of R random sets, and the probability PR(G, t) of getting
a lower value of cosine similarity than ψ(G, t) after R random
draws converges to the true probability when R is large enough
(in the present case the problem is finite, see Menashe et al., 2013
for details of the method).

The precision of our estimates depends on the value of R. We
can use Hoeffding’s inequality to control the probability of being
within a known error from the true CDF, as a function of the
number R of random draws. As we are estimating the probability
of having larger cosine similarity than expected by chance by
summing R Bernoulli variables, Hoeffding’s inequality (see Hastie
et al., 2009 for instance) states that for any τ , the probability of
missing the true value of the probability P(G, t) by τ is bounded
in terms of τ and the number of random draws R as follows:

P(|PR(G, t)− P(G, t)| ≥ τ ) ≤ exp(−2Rτ 2). (9)

For instance, taking τ = 0.01 and R = 26, 500 leads to a value
of 0.01 for the bound on the r.h.s. of the inequality (Equation
9), so it is enough to draw this number of random sets of genes
to obtain an estimator within 1 percent of the true probabilities,
with probability at least 99 percent.

Having conducted the simulation of the distribution of cosine
similarities for a choice of R based on Hoeffding’s inequality, we

3or any other measure of similarity.

can rank cell types for a fixed clique G by decreasing values of
statistical significance:

PR(G, tG(1)) ≥ P(G, tG(2)) ≥ ... ≥ PR(G, tG(T)). (10)

2.1.6. Similarity between thresholded

gene-expression energies and cell-type-specific

densities
Given that the expression profiles of the cliques of interest in this
study is much less sparse than any of the densities of cell types
estimated in Grange et al. (2014), the genes in the cliques must
be expressed in several different cell types, but there are large
differences in expression between cortical voxels and cerebellar
voxels for instance, and also within the cerebellar cortex (see
Figures 2A,B). We propose to threshold brain-wide expression
profile of each clique, and to recompute the cosine similarities
with density profiles, in order to discover which neuroanatomical
cell-type-specific patterns are highlighted with more intensity.
If the profile of a given cell type is highlighted by a given
clique, when the threshold grows from zero to low values of the
threshold, the cosine similarity is expected to grow, since many
voxels with low values of expression energy, that penalize the
cosine similarity to the cell type, are put to zero by the threshold.
Let us denote by τ the value of the threshold. We compute
the thresholded expression energies of the cliques and cosine
similarities as follows:

EGτ (v) = EG(v)1
(

EG(v) ≥ τ
)

, (11)

ψτ (G, t) =

∑V
v= 1 E

G
τ (v)ρt(v)

√

∑V
u= 1 E

G
τ (u)2

√

∑V
w= 1 ρt(w)

2

, (12)

At very large values of the threshold, expression energies are
going to be put to zero everywhere, and the cosine similarities
decrease to zero (for all cell types). So the cosine similarity
between the expression of the two gene cliques and the cell types
they highlight are expected to exhibit peaks when plotted as a
function of the threshold. The higher the peak, and the higher
the corresponding value of the threshold, the more intensely the
cell type is highlighted.

2.2. Cosine Similarity Between Expression of a
Clique of Genes and the Density of a Pair of Cell
Types
Instead of ranking single cell types by the significance of
the similarity between their density profile and the (possibly
thresholded) expression of a given clique, we can extend our
analysis to combinations of cell types. The simplest modification
of our similarity analysis consists of a search for pairs of cell
types whose combined density profile is more similar to the
expression profile of a given clique than any single cell type in
the data set.

As the density profiles of two cell types labeled t1 and t2 are
two vectors in the voxel space RV , they define a plane in voxel
space, and they provide a base of this plane (provided the two
vectors ρt1 and ρt2 are linearly independent, which is the case
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for all pairs (t1, t2) in the present study). To characterize how
well the expression profile of a clique of genes coincides with the
reunion of two given cell types labeled t1 and t2, we have to solve
the following minimization problem:

α∗G,t1,t2 = argminα∈R2
+

(

∑

v

(

EG(v)−α(1)ρt1 (v)−α(2)ρt2 (v)
)2

)

.

(13)
This problem is analogous to the one stated in Equation (6),
but it corresponds to fitting one vector in voxel space by linear
combination of two vectors with positive coefficients, not V
vectors in gene space using T vectors with positive coefficients.
Having solved this problem for a given pair of cell types labeled
by (t1, t2), we know the closest vector to the clique G that can be
obtained by combining these two cell types. We can compute the
cosine similarity between this optimal vector and the expression
profile of the clique (and denote it by ψ(G, t1, t2), which symbol
will be used in Table 3 and in the caption of Figure 5). We
can repeat this computation in order to obtain a Monte Carlo
simulation of this cosine similarity, just as we did in the case of
single cell types. More precisely, we compute the closest vector to
EG in the plane of voxel space spanned by ρt1 and ρt2 , which we
denote by TG,t1,t2 :

TG,t1,t2 (v) = α∗G,t1,t2 (1)ρt1 (v)+ α
∗
G,t1,t2

(2)ρt2 (v). (14)

The cosine similarity between this optimal vector and the
expression vector EG is readily computed as:

ψ(G, t1, t2) =

∑V
v= 1 E

G(v)TG,t1,t2 (v)
√

∑V
u= 1 E

G(u)2
√

∑V
w= 1 TG,t1,t2 (w)

2

. (15)

Having computed this quantity for a given clique G and all pairs
of cell types in our data set, we can detect the pairs of cell types
for which the optimization of Equation (13) leads to the largest
improvement in cosine similarity, for instance by providing a
better fitting than any single cell type. This motivates us to
consider the following pairs of cell types:

S
better(G) =

{

(t1, t2) ∈ [1..T]× [1..T], ψ(G, t1, t2)

> maxt∈[1..T]ψ(G, t)
}

(16)

Again, for a given pair of cell types, the value of the cosine
similarity can be biased by the size of the support of the two
underlying cell types, but we can estimate the probability of
getting a lower cosine similarity from random cliques of genes
(G1, G2, . . . ,GR, with |G| genes each), simply by repeating the
computation of cosine similarities (Equation 8), with the optimal
vector TG,t1,t2 (defined in Equation 14) substituted to the single
density profile:

ψ rand(Gr,G, t1, t2) =

∑V
v= 1 E

Gr (v)TG,t1,t2 (v)
√

∑V
u= 1 E

Gr (u)2
√

∑V
w= 1 TG,t1,t2 (w)

2

.

(17)

PR(G, t1, t2): =
1

R

R
∑

r= 1

1
(

ψ rand(Gr,G, t1, t2) ≤ ψ(G, t1, t2)
)

,

(18)
where R can again be worked out for given thresholds using
Hoeffding’s inequality.

2.3. Cosine Similarity between a Brain-Wide
Density Profile and a Brain Region
Given a brain region ω defined in the ARA, we define the
normalized vector χω in voxel space whose non-zero entries
correspond to the voxels belonging to the region ω:

χω(v) =
1(v ∈ ω)

√

∑V
w= 1 1(w ∈ ω)2

. (19)

Given a density profile ρt , we can compute its cosine similarity to
χω, in the same way that was used in Menashe et al. (2013) with
gene-expression profiles:

φω(ρt) =

∑V
v= 1 ρt(v)χ(v)

√

∑V
w= 1 ρt(w)

2

. (20)

The quantities φω(E
C1 ) and φω(E

C2 ) were shown inMenashe et al.
(2013) to be exceptionally large compared to quantities obtained
from cliques of the same size, when ω is taken to be the cerebellar
cortex. In this study the quantity φω will be used to study the
neuroanatomy of density profiles of cell types shown to be highly
similar to expression profiles (see Figure 7 for sorted values of
φω(ρt) with ω taken to be the cerebral cortex).

3. Results

3.1. Granule Cells and Purkinje Cells are the Most
Significantly Similar Cell Types to Both Cliques
We computed the cosine similarities between the expression
profiles of the two cliques C1 and C2 and the density profiles of
the T = 64 cell types estimated in Grange et al. (2014), using
Equation (8). The sorted values are plotted on Figure 1. It appears
that the ranking of the cell types by cosine similarity is roughly
conserved between the two cliques, and that no more than a third
of the cell types have a cosine similarity of more than 10% to
either clique.

For each cell type, we computed the probabilities PR(C1, t)
and PR(C2, t) for R = 27, 000 random sets (of 33 genes each
for clique C1, of 6 genes each for clique C2). Tables 1, 2 show
the cell types for which the cosine similarity is larger than 10%,
ordered by decreasing values of statistical significance. For both
cliques, granule cells (labeled t = 20) and Purkinje cells (labeled
t = 1), have the highest value of PR (more than 99% for both
cliques in the case of granule cells). For each of the two cliques,
one more cell type has a value of PR larger than 80% (mature
oligodendrocytes, labeled t = 21, in the case of C1, pyramidal
neurons, labeled t = 46, in the case of C2). The statistical
significance (i.e., the value of PR) drops sharply after the third
rank for both cliques. Our computational analysis therefore
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FIGURE 1 | Similarity scores between the T = 64 densities of cell

types in our data set and the cliques C1 and C2, sorted by decreasing

order of ψ (C1, t). There is a good agreement between the rankings of cell

types induced by the two cliques. The first four cell types in both cliques are

labeled t = 40 (pyramidal neurons), t = 1 (Purkinje cells), t = 20 (granule

cells), t = 46 (pyramidal neurons).

returns a list of four cell types to which at least one of the two
cliques in this study is significantly similar (more similar than at
least 80% of the sets of genes in our Monte CArlo simulations).

Figure 2 shows heat maps of the expression profiles of the two
cliques and of the density profiles of these four cell types. The
expression profiles of both cliques highlight the cerebellum, but
they are non-zero in many more voxels than any of the densities
of cell types illustrated in Figures 2C1–C4. These densities are
highly concentrated in the cerebellum (indeed the corresponding
cell-type-specific samples were extracted from the cerebellum, see
Rossner et al., 2006 for Purkinje cells, see Doyle et al., 2008 for
granule cells and mature oligodendrocytes), with the exception
of the pyramidal neurons (labeled t = 46) which are highly
localized in the cerebral cortex (the corresponding cell-type-
specific samples were extracted from the layer 5 of the cerebral
cortex, see Sugino et al., 2005).

The cell-type-specific sample of granule cells (labeled t =

20) is the only cell type that has a score higher than 99%
in both cliques. Figure 2 shows plots of the simulated CDFs
of the cosine similarities between the top three cell types by
significance and sets of genes of the same size as C1 (Figure 3A)
and C2 (Figure 3B). One can observe that both granule cells and

Purkinje cells sit more comfortably at the top of the distribution
than the cell type ranked third by statistical significance,
especially for clique C2.

We therefore need to vary the contrast in the presentation
of the expression patterns, in order to decide in which sense, if
any, the density profiles of granule cells and Purkinje cells are
highlighted differently by the cliques C1 and C2. We computed the
cosine similarities between the thresholded expression profiles
of each of the two cliques of interest, and the top-three cell
types by significance (found in Tables 1, 2), as defined by
Equation (12). The values are plotted as a function of the
threshold in Figures 4A,C (the expression profiles of the cliques
are L2-normalized so that thresholding parameter τ interpolates
between the minimum and maximum value of each of them,
and stays in the same range). Granule cells present a peak for
both cliques (Purkinje cells do only for the clique C1, but at
a lower value of the threshold, and the peak is lower, even
though Purkinje cells start from a larger similarity to the clique
C1 than granule cells before any threshold is applied). On the
other hand, the thresholding procedure lowers the similarity
between both cliques and the third cell type returned by the
statistical analysis (oligodendrocytes for clique C1 and pyramidal
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TABLE 1 | Table of cell types sorted by decreasing values of statistical

significance for clique C1 (see Equation 10), measured by the probability

PR(C1, t), for R = 27,000.

Cell type Rank by

significance,

t−1
C1

(t)

Index t PR(C1, t),

(%)

ψ (C1, t), (%)

Purkinje cells 1 1 100 45.9

Granule cells 2 20 100 42.4

Mature

oligodendrocytes

3 21 99.5 12.7

GABAergic

interneurons, PV+

4 64 38.4 35.3

GABAergic

interneurons, PV+

5 59 37.6 11.3

GABAergic

interneurons, SST+

6 57 36.1 22.1

GABAergic

interneurons, SST+

7 56 34.8 16

GABAergic

interneurons, VIP+

8 54 33.7 11.8

Tyrosine hydroxylase

expressing

9 51 29.3 26.7

GABAergic

interneurons, VIP+

10 55 26.4 10.1

Drd2+ medium spiny

neurons

11 16 25.4 21

Motor neurons,

cholinergic

interneurons

12 12 20.9 14.2

Motor neurons,

midbrain cholinergic

neurons

13 10 18.5 14.2

Pyramidal neurons 14 6 9.5 12.8

Pyramidal neurons 15 7 1 15.6

Pyramidal neurons,

corticotectal, P14

16 44 0.6 25.2

Pyramidal neurons 17 49 0.4 24.8

Pyramidal neurons,

callosally projecting,

P14

18 40 0.4 52.1

Pyramidal neurons 19 48 0.4 23.9

Pyramidal neurons 20 46 0.2 37.9

Pyramidal neurons 21 45 0 36.6

Pyramidal neurons 22 47 0 26.4

Only cell types for which the cosine similarity is larger than 10% are shown.

neurons for clique C2. Moreover, Figures 4B,D) shows heat
maps of the expression profiles of both cliques, at the values
corresponding to the peak of cosine similarity to granule cells.
Indeed the coronal sections through the cerebellum exhibit the
characteristic layered, hollow profile of the density of granule
cells observed in Figure 2C2, which confirms that the granular
layer is highlighted with more intensity by the cliques than the
Purkinje layer. Maximal-intensity projections of the thresholded
expression profiles exhibit residual expression in the cortex for
clique C2, and to a lesser extent in the hippocampus for clique C1
(but it should be noted that genes are more highly expressed in

TABLE 2 | Table of cell types sorted by decreasing values of statistical

significance for clique C2 (see Equation 10), measured by the probability

PR(C2, t), for R = 27,000.

Cell type Rank by

significance,

t−1
C2

(t)

Index t PR(C2, t),

(%)

ψ (C2, t), (%)

Granule cells 1 20 99.4 46.1

Purkinje cells 2 1 97.8 42.5

Pyramidal Neurons 3 46 81.7 47.1

Mature

oligodendrocytes

4 21 72.6 10.2

GABAergic

interneurons, PV+

5 59 67.2 12.2

GABAergic

interneurons, SST+

6 56 45.5 15.3

Tyrosine hydroxylase

expressing

7 51 44.6 26.3

GABAergic

interneurons, SST+

8 57 43.2 21

Pyramidal neurons,

Callosally projecting,

P14

9 40 42 56.4

GABAergic

interneurons, VIP+

10 54 32.3 10.5

GABAergic

interneurons, PV+

11 64 22.8 29.1

Pyramidal neurons 12 47 9.6 26

Pyramidal neurons 13 45 7.9 35

Drd2+ medium spiny

neurons

14 16 5.7 10.9

Pyramidal neurons,

corticotectal, P14

15 44 4.3 20.8

Pyramidal neurons 16 48 3.5 18.5

Pyramidal neurons 17 49 0.7 15.1

Pyramidal neurons 18 7 0.6 11.8

Only cell types for which the cosine similarity is larger than 10% are shown.

the hippocampus than in any other region of the brain on average
in the coronal ABA).

We therefore conclude that the gene expression profiles of
the two cliques of genes in this study highlight the cerebellum
with more intensity in the granular layer than in the Purkinje
layer, but these two neuroanatomical structures are by far the
most exceptionally similar to the expression profiles of the
cliques.

3.2. Pairs of Cell Types with Exceptional Cosine
Similarities to Expression of Cliques
Predominantly Involve One Cortical and One
Cerebellar Cell Type
If we do not threshold the expression profiles of the cliques, they
have a non-zero value in the cerebral cortex, albeit lower than in
the cerebellum (Figures 2A,B). This combination of cortical and
cerebellar expression is not achieved by any of the cell types in our
data set, even those that are singled out by our statistical analysis
of cosine similarity (as can be checked by visual inspection of
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FIGURE 2 | Heat maps of gene-expression of gene cliques, and

of density profiles of cell types. (A) Heat map of the sum of

expression energies of the 33 genes in the clique C1. (B) Heat map

of the sum of expression energies of the 6 genes in the clique C2.

(C) Heat maps of brain-wide densities (denoted by ρt for cell type

labeled t) of cell types estimated based on the model of Equation (5),

for Purkinje cells (C1, labeled t = 1), granule cells (C2, labeled t = 20),

cerebellar mature oligodendrocytes (C3, labeled t = 21), and cortical

pyramidal neurons extracted from layer 5 (C4, labeled t = 46). These

four cell types are the ones that are ranked the most highly by

statistical significance of similarity to either of the cliques C1 and C2

(PR > 80% in Tables 1, 2).

Figures 2C1–C4). This compels us to explore better fittings of
the expression of the two cliques C1 and C2 using more cell
types.

We computed the optimal cosine similarity scores defined in
Equation (17) for the T(T − 1)/2 = 2016 possible pairs of cell
types from our data set (the results are plotted in matrix form
as a heat map on Figure 5). Many of the maxima visibly involve

the cell type labeled t = 40 which consists of pyramidal neurons,
calosally projecting. This cell type also gave rise to high values
of cosine similarity between single cell types and both cliques
(Figure 1). However, the values PR(C1, 40) = 0.4% (rank 59 out
of 64) and PR(C2, 40) = 42% (rank 25 out of 64) reflect the fact
the values of the cosine similarities to ρ40 are biased upwards by
the large support of ρ40. Other strinking horizontal and vertical

Frontiers in Computational Neuroscience | www.frontiersin.org 8 May 2015 | Volume 9 | Article 55

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Grange et al. Cell types, neuroanatomy and ASD

FIGURE 3 | Simulated cumulative distribution functions (CDFs) of

cosine similarities between gene-expression of cliques and the

estimated density profile of the three cell types with most significant

cosine similarity (granule cells and Purkinje cells for both cliques,

along with mature oligodendrocytes for Clique C1 and pyramidal

neurons for Cliques C2, as per Tables 1, 2). The values of the CDFs at the

cosine similarities ψ (G, t), for clique labeled G and cell type labeled t, are

plotted as colored circles. The plots show that granule cells and Purkinje

cells both sit extremely comfortably at the top of the distribution of cosine

similarities to the expression of both cliques. (A) G = C1, (B) G = C2.

lines in the heat maps of Figure 5 correspond to cell types that
were already singled out by the above statistical analysis of cosine
similarities to single cell types.

For some pairs of cell types, the optimized cosine similarity
between a clique of genes and a linear combination of the
densities of cell types labeled t1 and t2 is not only larger than the
similarities with individual density profilesψ(G, t1) andψ(G, t2),
but it is also larger than themaximum of all the cosine similarities
to a single cell type, whose values for the two cliques in this study
are:

maxt∈[1..T]ψ(C1, t) = 52.08%, maxt∈[1..T]ψ(C2, t) = 56.39%.
(21)

The sets of such pairs of cell types (denoted by Sbetter(C1)
and Sbetter(C2) in Equation 16) consist of 62 and 66 elements,

respectively for cliques C1 and C2 (which represents 3.08% and
3.27% of the 2016 distinct possible pairs of cell types from our
data set). We counted the occurrences of each of the cell types
in these special pairs and presented the result in histograms
(Figure 6). It appears from both histograms that cell type labeled
t = 40, plays a special role. This cell type was extracted from
the cerebral cortex, and indeed its estimated density profile ρ40 is
highly localized in the cortex. Moreover, this cell type is the one
that has the highest cosine similarity to an ideal density χcortex
that would be uniform in the cerebral cortex and zero elsewhere
(see Equation 20 with ω chosen to be the cerebral cortex). A
sorted plot of the cosine similarities between estimated density
profiles of cell types and χcortex is presented on Figure 7, showing
that four classes of cortical pyramidal neurons stand out, the first
of which is labeled t = 40.
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FIGURE 4 | Cosine similarities of thresolded gene expression

energies of cliques, as a function of the threshold. (A) Plot of

ψτ (C1, t) as a function of τ for the top three cell types in Table 1.

(B) Heat map of the expression energy of clique C1 at the value of

the threshold τ for which ψτ (C1, 20) is maximum. (C) Plot of ψτ (C2, t)

as a function of τ for the top three cell types in Table 2. (D) Heat

map of the expression energy of clique C2 at the value of the

threshold τ for which ψτ (C2, 20) is maximum. Compare the two

coronal sections to the one of the density of granule cells in

Figure 2C2.

Again, for the best fits to pairs of densities of cell types, we
have to estimate the probability of obtaining the same results by
chance. For each of the cliques, we ran a Monte Carlo simulation
of the similarity scores to the 62 and 66 optimal combinations of
cell types returned by the above analysis (this simulation is the
extension of the quantity PR of Equation (10) to two cell types,
see Equation 18). The combinations of pairs of cell types which
have higher cosine similarity to one of the two cliques C1 and
C2 with probability larger than 99 % are presented in Table 3.
They consist of 13 and 5 pairs of cell types, respectively, and
the highest-ranking pairs for both cliques (by value of cosine

similarity) contain the pyramidal neurons labeled t = 40, along
with granule cells or Purkinje cells (see Figures 8A,B). For a
heat map of the two combinations of cell types presented at the
top of Tables 3A,B, see Figures 8A,B, where a distinct cortico-
cerebellar pattern appears.

This reflects the fact that the combination of the cerebral
cortex and cerebellar cortex (with relative weights specified by
the optimal coefficients given in the fifth columns of Table 3)
is highly similar to the expression profiles of the two cliques.
Moreover, 9 out of the 13 pairs in Table 3A and all the pairs
in Table 3B contain a pyramidal neuron (and all pairs contain
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FIGURE 5 | Optimal cosine similarities between cliques of ASD-related

genes and pairs of cell types drawn from the fitting panel of T = 64

cell-type-specific transcriptomes, defined in Equation (17). (A) Heat

map of the matrix ψ (C1, t1, t2 ), for 1 ≤ t1, t2 ≤ 64. (B) Heat map of the matrix

ψ (C2, t1, t2 ), for 1 ≤ t1, t2 ≤ 64. Striking horizontal and vertical lines

correspond to the labels t = 1 (Purkinje cells), t = 20 (granule cells), that are

returned by the analysis of similarity between cliques and single cell types, but

also to the label t = 40 (pyramidal neurons, calosally projecting).

either Purkinje cells or granule cells). We therefore conclude that
allowing one more cell-type-specific degree of freedom to fit the
expression profiles of both cliques gives rise to a predominant
contribution from pyramidal neurons, all of which are cortical
except the hippocampal cell type labeled t = 49, and all of
which had amuch lower statistical significance as single cell types.
It can be noted that the four pyramidal neurons with largest
similarity to the cerebral cortex (which stand out on Figure 7)
are all represented in Table 3.

The averages of all the pairs of cell types returned by our
analysis are plotted as heat maps on Figures 8C,D, which can be
visually compared to the heat maps of Figures 2A,B. The effect is
much better than for any of the heat maps Figures 2C1–C4, even

FIGURE 6 | Histograms of the indices of cell types (in [1..64]), that are

involved in a pair of cell types with a better cosine similarity to the

expression profile of a clique than any single cell type. (A) For clique C1

(total number of elements 124). (B) For clique C2 (total number of elements

132).

FIGURE 7 | Sorted values of the cosine similarities between density

profiles of cell types and the cerebral cortex (defined in Equation 20, for

ω = cerebral cortex). The first four values, which stand out, correspond to

t = 40, t = 46, t = 47, t = 45, which are all pyramidal neurons extracted from

the cerebral cortex.

though the heterogeneity of the expression of clique C2 across the
cerebral cortex is not reproduced.

4. Discussion

Our computational analysis shows that among the cell types
collated in Okaty et al. (2011) and analyzed together with the
ABA in Grange et al. (2014), the similarity of the expression
of both cliques C1 and C2 to granule cells and Purkinje cells is
larger than the similarity of more than 97% of the cliques of
the same size. These two cell types are the only cell types in
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TABLE 3 | Tables of pairs of cell types with higher cosine similarity to a clique of ASD-related genes than any single cell type, for which the value of

PR(G, t1, t2) is larger than 99 percent. (A) For clique C1, G = C1. (B) For clique C2, G = C2.

Index t1 Index t2 Cell type labeled t1 Cell type labeled t2 α*C1t1,t2
ψ (C1, t1, t2), (%)

40 1 Pyramidal neurons, callosally projecting, P14 Purkinje Cells (0.521, 0.459) 69.4

40 20 Pyramidal neurons, callosally projecting, P14 Granule Cells (0.521, 0.424) 67.1

46 1 Pyramidal neurons Purkinje cells (0.379, 0.459) 59.5

45 1 Pyramidal neurons Purkinje cells (0.366, 0.459) 58.7

64 1 GABAergic interneurons, PV+ Purkinje cells (0.35, 0.456) 57.7

46 20 Pyramidal neurons Granule Cells (0.379, 0.424) 56.9

45 20 Pyramidal neurons Granule Cells (0.366, 0.424) 56

64 20 GABAergic interneurons, PV+ Granule cells (0.351, 0.422) 55.1

20 1 Granule cells Purkinje cells (0.295, 0.35) 53.4

51 1 Tyrosine hydroxylase expressing Purkinje cells (0.266, 0.458) 53

47 1 Pyramidal neurons Purkinje cells (0.264, 0.459) 52.9

44 1 Pyramidal neurons, corticotectal, P14 Purkinje cells (0.251, 0.458) 52.3

49 1 Pyramidal neurons Purkinje cells (0.248, 0.459) 52.1

Index t1 Index t2 Cell type labeled t1 Cell type labeled t2 α*C2t1,t2
ψ (C2, t1, t2), (%)

40 20 Pyramidal neurons, callosally projecting, P14 Granule cells (0.564, 0.461) 72.8

40 1 Pyramidal neurons, callosally projecting, P14 Purkinje cells (0.564, 0.425) 70.6

46 20 Pyramidal neurons Granule cells (0.471, 0.461) 65.9

46 1 Pyramidal neurons Purkinje cells (0.471, 0.425) 63.4

45 20 Pyramidal neurons Granule cells (0.35, 0.461) 57.9

our data set to have this property. The statistical significance
of the similarity to the spatial density of granule cells is larger
than the one of Purkinje cells for the clique C2, but Purkinje
cells still stand out together with granule cells (which makes
sense with the involvement of Purkinje cells in autism discovered
in post-mortem studies Skefos et al., 2014). This completes the
observation made in Menashe et al. (2013) based on visual
inspection of the Purkinje and granular layers of the cerebellar
cortex. Granule cells (and not Purkinje cells) may be present
in some superficial voxels in which both cliques are highly
expressed (see the coronal sections in Figure 2), but as brain-
wide neuroanatomical patterns, granule cells and Purkinje cells
are both exceptionally similar to the expression profiles of the
two cliques in this study. The spatial resolution of the voxelized
ISH data of the mouse ABA (200 microns) complicates the
separation between granule cells and Purkinje cells, which we
attempted here by our thresholding procedure, due to the
extreme difference in size between the two cell types. Granule
cells and Purkinje cells may be present in the same voxel, and
registration errors are therefore much larger in scale of a granule
cell than in scale of a Purkinje cell. An interesting direction
for a deeper analysis can be found in Ko et al. (2013) and Li
et al. (2014), where image series rather than voxelized data are
used.

The values of the cosine similarities are not necessarily ranked
in the same order as the statistical significances (indeed their
values are not decreasing in the fourth columns of Tables 1, 2,
which are organized by decreasing order of significance). This
is related to the fact that the cosine similarity is biased in favor

of cell types present in a larger number of voxels (for example
pyramidal neurons, labeled t = 46, have a larger support, at 8980
voxels, than granule cells, at 3351 voxels). So, if a clique of genes
has a large support (which is the case of both cliques in this study,
which have non-zero expression in more than 98% of voxels),
it can have a larger cosine similarity to pyramidal neurons than
to granule cells, but its similarity to granule cells may be more
statistically significant. This is the case for clique C2, and the
fact is illustrated in more detail on Figure 3B, where it is clear
that the similarity between pyramidal neurons (labeled t = 46)
and clique C2, albeit larger than the value for granule cells and
Purkinje cells, sits lower in the distribution of cosine similarities.
Our probabilistic approach is therefore a necessary complement
to the computation of similarities.

However, two more transcriptomes of Purkinje cells are
present in our data set (labeled t = 25 and t = 52), and they
do not stand out in our analysis (their cosine similarity to cliques
C1 and C2 are 0 for t = 25 and 9.2 and 9.5% for t = 52,
respectively), even though these three transcriptome profiles are
close to each other. The difference in cosine similarities is due
to the fact that the density profiles ρ25 and ρ52 are much sparser
than ρ1, especially in the cerebellum. When fitting the cell-type-
based model (Equation 5), similar profiles compete against each
other, and the sample t = 1 wins in most cerebellar voxels. In
Grange et al. (2014), we checked that keeping only one sample of
Purkinje cells (t = 52, chosen for further numerical exploration
as it was independently estimated in Okaty et al. (2009) to be
less contaminated by other cell types) and refitting the model
yields to similar results as the complete data set, except for the
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FIGURE 8 | Heat maps of best-fitted sums of densities of cell types.

(A) Purkinje cells (t = 1) and pyramidal neurons (t = 40), best fit to clique C1,

second best fit to clique C2. (B) Granule cells (t = 20) and pyramidal neurons

(t = 40), best fit to clique C2, second best fit to clique C1. (C) The average of

the 13 pairs of cell types illustrated in Table 2A for clique C1. (D) The

average of the 5 pairs of cell types illustrated in Table 2B for clique C2.

density ρ52, which inherits most of the density from ρ1. We
reran the analysis that returned Tables 1, 2 using these refitted
densities, and found that the remaining Purkinje cells occupies
the rank of t = 1 (with scores PR(C1, 52) = 98.8% and
PR(C2, 52) = 96.5%, respectively), while the other ranks are
conserved. Restricting the number of cell types in the panel
therefore yields results compatible with the hierarchical nature
of cell types. On the other hand, it is crucial to keep a number
of genes that is large enough to sample a large subspace of the
span of the columns of the matrix E in voxel space In Grange
et al. (2014), we simulated a thalamic cell type by choosing the
200 genes that are are the most expressed in the thalamus, and
constructing a fictitious transcriptome in which the expression of
these genes is higher than average. This was shown to be enough
to transfer the thalamic density from t = 52 to this cell simulated
cell type. Hence the signal in a small fraction of a data set can
control the competition between two cell types. However, the

presence of all the other genes in the data set is necessary to
ensure that the densities of other cell types are stable under the
inclusion of the simulated cell type, and the (possibly small) sets
of genes that control the competition between cells vary from cell
to cell.

The robustness of the neuroanatomical density patterns of cell
types was shown in Grange et al. (2014) to vary between cell
types, but the most unstable spatial density profiles tend to be
the sparsest (the T cell types were ranked by deceasing stability
against subsampling of genes). The cell types that stand out in our
results are not among the sparsest ones, as they exhibit striking
neuroanatomical patterns. To investigate the stability of our
results against the exclusion of cell types, we refitted the model
of Equation (5) to a panel of cell types including only the 23 cell
types ranked highest for stability (this rank was chosen as it is
the lowest rank among those of the 4 distinct cell types presented
in Figure 3. The estimated CDFs are stable after refitting (and
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the values corresponding to statistical significance are within one
percent of the values estimated from the full panel).

Moreover, some of the densities of cell types estimated
computationally in Grange et al. (2014) can be combined pairwise
in order to match the expression of ASD-related cliques of genes
better than any single cell types. The optimal combinations we
worked out reconcile the involvement of the cerebellum in ASD
and the role of the cerebral cortex which had been thought to
be predominant. In fact, the use of pairs of cell types to fit the
expression of cliques singles out pairs of cell types consisting
of one pyramidal neuron and either granule or Purkinje cells.
It would be interesting if this association between cortical and
cerebellar neurons could be related to connections between
the cerebellum and the cerebral cortex (Oh et al., 2014). The
improvement of the similarity scores brought by considering
pairs of cell types, within this still relatively modest cell-type-
specific data set consisting of less than 100 cell types, while a
complete taxonomy of neuronal cell types could well be more
detailed by orders of magnitude, indicates that the cell-type-
specificity of ASD needs multiple genes and multiple cell types
(beyond pairs) to be worked out.

One may wonder if our method is not circuitous, compared
to the one of Menashe et al. (2013) (in which cosine similarities
are computed to estimate the similarity between the spatial
expression profile of a clique and a region of the brain defined
by classical neuroanatomy and not by gene-expression data). In
the present study, given that the expression of a clique of genes
is included in the data set that has been used to fit the model
of Equation (5). Taking the entire set of genes in the coronal
ABA into account allows one to stabilize the results in the sense
that we do not need to select genes that are over-expressed in
one cell type relative to the others (which choice would have to
be refined whenever the set of cell-type-specific transcriptome
is modified), and the optimization procedure is equivalent to a
competition between cell-type-specific transcriptome profiles. As
a numerical experiment, we refitted the model of Equation (5)
twice for each clique, using only the genes in the clique the first
time, and using its complement the second time. Given that the
two cliques of genes of genes contain only 1.1 and 0.2% of the
coronal atlas, with expression profiles exceptionally between each
other and to the cerebellar cortex, the results of the first refitting
cannot detect densities of non-cerebellar cell types, while the
results of the second refitting is very close to the original results.
As the cliques are small enough not to contain all the genes that

are over-expressed in cerebellar cell types, the study of cosine
similarities is not too circuitous.

Our analysis shows that the gene-based approach of the ABA
and the cell-based approach of the transcriptional classification
of cell types in the brain can be combined in order to quantify
the similarity between expression patterns of condition-related
genes and the spatial density of cell types, even though the
region-specificity of transcriptomes of cell types is only accessible
computationally. Our results are limited by the paucity of the cell-
type-specific data, since the number of transcriptionally distinct
neuronal cell types is presumably much larger than 64. However,
the classification of cell types is a hierarchical problem, and it
is plausible that granule cells and Purkinje cells branch early

from each other (and from cortical pyramidal neurons and
oligodendrocytes) in the classification, which makes the available
data set reasonably effective as a first draft in the context of
this study. The computational methods we devised can be easily
reapplied when more cell-type-specific microarray data become
available. Moreover, alternative measures of similarity can easily
be substituted to the cosine similarity, without modifying the
analysis of statistical significance and contrast, or the number of
random draws dictated by Hoeffding’s inequality.

Within data sets of the mouse model organism, the Allen
Atlas of the developing mouse brain (http://developingmouse.
brain-map.org/) could be used to detect stage-specific changes in
expression profiles, as the development of ASD is known to take
place in early developmental stages of the brain. However, the
current data sets do not allow to repeat the fitting of the model,
as the developmental atlas is not co-registered and voxelized,
moreover most of the cell type-specific transcriptomes come
from adult mouse brains. One can note from Grange et al. (2014)
that corticospinal neurons from non-adult mice fit poorly, which
could be traced to late maturation of these neurons.

The translation of results from the mouse model to humans is
extremely challenging, even though the ABA of the human brain
has been released (Hawrylycz et al., 2012), because the human
atlas cannot be voxelized, due to the size and paucity of the
specimens.
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