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Since introduced in early 2000, multiscale entropy (MSE) has found many applications in

biosignal analysis, and been extended to multivariate MSE. So far, however, no analytic

results for MSE or multivariate MSE have been reported. This has severely limited

our basic understanding of MSE. For example, it has not been studied whether MSE

estimated using default parameter values and short data set is meaningful or not. Nor

is it known whether MSE has any relation with other complexity measures, such as the

Hurst parameter, which characterizes the correlation structure of the data. To overcome

this limitation, and more importantly, to guide more fruitful applications of MSE in various

areas of life sciences, we derive a fundamental bi-scaling law for fractal time series,

one for the scale in phase space, the other for the block size used for smoothing.

We illustrate the usefulness of the approach by examining two types of physiological

data. One is heart rate variability (HRV) data, for the purpose of distinguishing healthy

subjects from patients with congestive heart failure, a life-threatening condition. The other

is electroencephalogram (EEG) data, for the purpose of distinguishing epileptic seizure

EEG from normal healthy EEG.

Keywords: scaling law, multiscale entropy analysis, fractal signal, heart rate variability (HRV), adaptive filtering

1. Introduction

Biological systems provide the definitive examples of highly integrated systems functioning at
multiple time scales. Neurons function on a time scale of milliseconds. Circadian rhythms operate
on time scale of hours, reproductive cycles occur on a time scale of weeks, and bone remodeling
involves time scales of months. As an integrated system, each process interacts with faster and
slower processes. Consequently, biosignals often are multiscaled (Gao et al., 2007)—depending
upon the scale at which the signals are examined, they may exhibit different behaviors (e.g.,
nonlinearity, sensitive dependence on small disturbances, long memory, extreme variations, and
nonstationarity), just as a great painting may exhibit various details and arouse a multitude of
aesthetic feelings when appreciated at different distances, from different angles, under different
illuminations, and under different moods.

With the rapid advance of sensing technology, complex data have been accumulating
exponentially in all areas of life sciences. To better cope with such complex data, recently,
Costa et al. (2005) have introduced an interesting method, the multiscale entropy (MSE)
analysis. MSE has found numerous applications in various types of biosignal analysis, including
fetal heart rate monitoring (Cao et al., 2006), assessment of EEG dynamical complexity in
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Alzheimer’s disease (Mizuno et al., 2010), classification of surface
EMG of neuromuscular disorders (Istenic et al., 2010), heart rate
analysis for predicting hospital mortality (Norris et al., 2008), and
analysis of hear beat interval and blood flow for characterizing
psychological dimensions in non-pathological subjects (Nardelli
et al., 2015). MSE has also been extended to multivariate MSE
(Ahmed and Mandic, 2011) and multiscale permutation entropy
(Li et al., 2010). So far, however, no analytic analyses about MSE
or multivariate MSE have been carried out. This has severely
limited our basic understanding of MSE. For example, it has
not been known whether MSE estimated using default parameter
values and short data set is meaningful or not. Nor is it known
whether MSE has any relation with other complexity measures,
such as the Hurst parameter, which characterizes the correlation
structure of the data.

To help gain insights into the above questions, and to guide
more fruitful applications of MSE in diverse fields of life sciences,
in this work, we report a fundamental bi-scaling law for MSE
of the most popular model of biosignals, the fractal 1/f type
time series. As example applications, we will analyze heart rate
variability (HRV) and electroencephalogram (EEG) data. With
HRV, we will focus on distinguishing healthy subjects from
patients with congestive heart failure (CHF), a life-threatening
condition, as well as resolving an interesting debate (Wessel et al.,
2003; Nikulin and Brismar, 2004) regarding the usefulness of
MSE in distinguishing HRV of healthy subjects from that of
patients with certain cardiac disease. With EEG, we will focus on
distinguishing epileptic seizure EEG from normal healthy EEG.

2. Materials and Methods

2.1. Data
To illustrate the use of scaling analysis of MSE, in this paper,
we analyze two types of data, heart rate variability (HRV), for
the purpose of distinguishing healthy subjects from patients with
congestive heart failure (CHF), and EEG, for the detection of
epileptic seizures.

We downloaded two types of HRV data from the PhysioNet
(MIT-BIH Normal Sinus Rhythm Database and BIDMC
Congestive Heart Failure Database available at http://www.
physionet.org/physiobank/database/#ecg), one for healthy
subjects, and the other for subjects with CHF. The latter includes
long-term ECG recordings from 15 subjects (11 men, aged 22
to 71, and 4 women, aged 54 to 63) with severe CHF (NYHA
class 3–4). This group of subjects was part of a larger study
group receiving conventional medical therapy prior to receiving
the oral inotropic agent, milrinone. Further details about the
larger study group can be found at the PhysioNet. The individual
recordings of ECG are each about 20 h in duration, and contain
two ECG signals each sampled at 250 samples per second with
12-bit resolution over a range of ±10 millivolts. The other
database are for 18 normal subjects. The individual recordings
are each about 25 h in duration, each sampled at 128 samples per
second. The HRV data analyzed here are the R-R intervals (in
unit of second) derived from the ECG recordings.

The EEG database is downloaded at http://www.meb.
unibonn.de/epileptologie/science/physik/eegdata.html. The

database consists of three groups, H (healthy), E (epileptic
subjects during a seizure-free interval), and S (epileptic subjects
during seizure); each group contains 100 data segments,
whose length is 4097 data points with a sampling frequency
of 173.61Hz. These data have been carefully examined by
adaptive fractal analysis (Gao et al., 2011c) and scale-dependent
Lyapunov exponent (Gao et al., 2006b, 2011b, 2012), for the same
purpose of distinguishing epileptic seizure EEG from normal
healthy EEG.

2.2. Methods
Entropy characterizes creation of information in a dynamical
system. To facilitate derivation of a fundamental scaling law for
MSE, we first rigorously define MSE and all related concepts.

Suppose that the F-dimensional phase space is partitioned
into boxes of size εF . Suppose that there is an attractor in phase
space and consider a transient-free trajectory Ex(t). The state of the
system is nowmeasured at intervals of time τ . Let p(i1, i2, · · · , id)
be the joint probability that Ex(t = τ ) is in box i1, Ex(t = 2τ ) is in
box i2, · · · , and Ex(t = dτ ) is in box id. Let us now introduce the
block entropy,

Hd(ε, τ ) = −
∑

i1,··· ,id

p(i1, · · · , id) ln p(i1, · · · , id), (1)

take the difference between Hd+1(ε, τ ) and Hd(ε, τ ), and
normalize it by τ ,

hd(ε, τ ) =
1

τ
[Hd+1(ε, τ )−Hd(ε, τ )]. (2)

Let

h(ε, τ ) = lim
d→∞

hd(ε, τ ) (3)

It is called the (ε, τ )-entropy (Gaspard and Wang, 1993). Taking
limits, we obtain the Kolmogorov-Sinai (K-S) entropy,

K = lim
τ→0

lim
ε→0

h(ε, τ )

= lim
τ→0

lim
ε→0

lim
d→∞

1

τ
[Hd+1(ε, τ )−Hd(ε, τ )] (4)

We now consider computation of the (ε, τ )-entropy from a time
series of length N, x1 , x2 , · · · , xN . As is well-known, the first step
is to use the time delay embedding to construct vectors of the
form:

Vi = [xi , xi+L , ..., xi+(m−1)L
], (5)

where m, the embedding dimension, and L, the delay time, can
be chosen according to certain optimization criterion (Gao et al.,
2007). Then one can employ the Cohen-Procaccia algorithm
(Cohen and Procaccia, 1985) to estimate the (ε, τ )-entropy. In
particular, when it is evaluated at a fixed finite scale ε̂, the
resulting entropy is called the approximate entropy. To get
better statistics from a finite time series, one may compute K2(ε)
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using the Grassberger-Procaccia’s algorithm (Grassberger and
Procaccia, 1983):

K2(ε) = lim
m→∞

lnC(m)(ε)− lnC(m+1)(ε)

mLδt
(6)

where δt is the sampling time, C(m)(ε) is the correlation integral
based on them−dimensional reconstructed vectors Vi and Vj,

C(m)(ε) = lim
Nv→∞

2

Nv(Nv − 1)

Nv−1
∑

i= 1

Nv
∑

j= i+1

H(ε− ||Vi −Vj||), (7)

where Nv = N − (m − 1)L is the number of reconstructed
vectors, H(y) is the Heaviside function (1 if y ≥ 0 and 0 if
y < 0). C(m+1)(ε) can be computed similarly based on the
m + 1−dimensional reconstructed vectors. When we evaluate
K2(ε) at a finite fixed scale ε̂, we obtain the sample entropy Se
(Richman and Moorman, 2000).

MSE analysis is based on the sample entropy Se. The
procedure is as follows. Let X = {xt : t = 1, 2, . . . } be a
covariance stationary stochastic process with mean µ, variance
σ 2, and autocorrelation function r(k), k ≥ 0. Construct a new
covariance stationary time series

X(bs) = {x
(bs)
t : t = 1, 2, 3, . . . }, bs = 1, 2, 3, . . . ,

by averaging the original series X over non-overlapping blocks of
size bs,

x
(bs)
t = (xtbs−bs+1 + · · · + xtbs )/bs, t ≥ 1 . (8)

MSE analysis involves (i) choosing a finite scale ε̂ in phase space,
and (ii) computing Se from the original and the smoothed data
X and X(bs) at the chosen scale ε̂. For convenience of later
discussion, we denote K

(bs)
2 (ε) for the correlation entropy of the

smoothed data. When bs = 1, it is the correlation entropy of the
original data, and can be simply denoted as K2(ε).

We emphasize that the length of the smoothed time series is
only 1/bs of the original one. To fully resolve the scaling behavior
of K2(ε), the requirement on data length is quite stringent. A
fundamental question is whether MSE calculated from short
noisy data is meaningful or not.

3. Results

3.1. Scaling for the MSE of Fractal Time Series
Among the most widely used models for biological signals,
including HRV, EEG, and posture (Gao et al., 2011a), is the
fractal time series with long memory, the so-called 1/f α , or
1/f 2H−1, α = 2H − 1 processes, where 0 < H < 1 is called
the Hurst parameter, whose value determines the correlation
structure of the data (Gao et al., 2006a, 2007): when H =
1/2, the process is like the independent steps of the standard
Brownian-motion; when H < 1/2, the process has anti-
persistent correlations; whenH > 1/2, the process has persistent
correlations. Two special cases, white noise with H = 0.5 and

1/f process with H = 1, have been extensively used for the
development of multivariate MSE (Ahmed and Mandic, 2011).
In this subsection, we derive fundamental scalings for MSE of the
ubiquitous 1/f 2H−1 noise.

A covariance stationary stochastic process X = {Xt : t =
0, 1, 2, . . . }, with mean µ, variance σ 2, and autocorrelation
function r(w),w ≥ 0, is said to have long range correlation if
r(w) is of the form Cox (1984)

r(w) ∼ w2H−2, as w → ∞, (9)

where 0 < H < 1 is the Hurst parameter. When 1/2 <

H < 1,
∑

w r(w) = ∞, leading to the term long range
correlation. Note the X time series has a power spectral density
1/f 2H−1. Its integration, {yt}, where yt =

∑t
i= 1 xi, is called

a random walk process which is nonstationary with power-
spectral density (PSD) 1/f 2H+1. Being 1/f processes, they cannot
be aptly modeled by Markov processes or ARIMA models
(Box and Jenkins, 1976), since the PSD for those processes are
distinctly different from 1/f . To adequately model 1/f processes,
fractional order processes has to be used. The most popular is
the fractional BrownianmotionmodelMandelbrot (1982), whose
increment process is called the fractional Gaussian noise (fGn).
The importance and popularity of fGn in modeling various types
of noises in science and engineering motivates us to focus our
analysis on it when deriving the bi-scaling law.

1/f 2H−1 noises are self-similar, with the autocorrelation for
the original data and the smoothed data (defined by Equation 8)
being the same (Gao et al., 2006a, 2007). This signifies that

there must exist a simple relation between K
(bs)
2 (ε) and K2(ε). To

find this relation, we note that the variance, var(X(bs)), of the
smoothed data, and the variance, σ 2, of the original data, are
related by the following simple and elegant scaling law (Gao et al.,
2006a, 2007),

var(X(bs)) = σ 2bs
2H−2 (10)

Equation (10) states that the scale ε for the original data is
transformed to a smaller scale bH−1

s ε for the smoothed data.
Using the self-similarity property of the 1/f 2H−1 noise, we
therefore obtain,

K
(bs)
2

(

bH−1
s ε

)

= K2(ε) (11)

Since for stationary random processes, K2(ε) diverges when ε →

0, Equation (11) states that K
(bs)
2

(

bH−1
s ε

)

can be obtained from

K2(ε) by shifting downward the curve for K2(ε). Howmuch K2(ε)
should be shifted depends on the functional form forK2(ε), which
we shall find out momentarily.

First we note that for 1-D independent random variables,
which correspond to H = 1/2, h(ε, τ ) ∼ − ln ε (Gaspard
and Wang, 1993). Therefore, K2(ε) ∼ − ln ε. In fact, for any
stationary noise process, irrespective of its correlation structure,
we always have C(m)(ε) ∼ ε−m, ε → 0, therefore,

K2(ε) ∼ − ln ε, ε → 0 (12)
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Equation (12) is, however, not adequate for us to understand the
scaling of K2(ε) on finite scales. To gain more insights, we resort
to the rate distortion function or the Shannon-Kolmogorov (SK)
entropy (Berger, 1971; Gaspard and Wang, 1993). It is thought
to diverge with ε in the same way as the (ε, τ )-entropy and K2(ε)
(Gaspard and Wang, 1993).

Suppose we wish to approximate the random signal X(t) by
Z(t) according to

ρ(X,Z) = lim
T→∞

1

T

∫ T

0

〈

[X(t)− Z(t)]2
〉

dt ≤ ε2 (13)

where <> denotes averaging. Equation (13) may be considered a
partition of the phase space containing the random signal X(t)
by centering around X(t). Denote the conditional probability
density for Z given x by q(z|x). The mutual information I(q)
between X and Z is a functional of q(z|x),

I(q) =

∫ ∫

dxdz p(x)q(z|x) ln[q(z|x)/q(z)]. (14)

The SK (ε, τ )-entropy is

HSK (ε, τ,T) = Infq∈Q(ε)I(q) (15)

where Q(ε) is the set of all conditional probabilities q(z|x) such
that Condition (13) is satisfied. The SK (ε, τ )-entropy per unit
time is then

hSK (ε, τ ) = lim
T→∞

HSK (ε, τ,T)/T (16)

For stationary Gaussian processes, hSK (ε, τ ) can be readily
computed by the Kolmogorov formula (Berger, 1971;
Kolmogorov, 1956). In the case of a discrete-time process,
it reads

ε2 =
1

2π

∫ π

−π

min[θ,8(ω)]dω (17)

hSK (ε, τ ) =
1

4π

∫ π

−π

max{0, ln[8(ω)/θ]}dω (18)

where 8(ω) is the PSD of the process and θ is an intermediate
variable.

We now evaluate the SK entropy for a popular model of
1/f 2H−1 noise, the fractional Gaussian noise (fGn). It is a
stationary Gaussian process with PSD 1/ω2H−1. Since we are
primarily interested in small ε, we may choose the intermediate
variable θ ≤ 8(ω). Let us denote 8(ω) = B(H)ω1−2H , where
B(H) is a factor depending on H. When H = 1/2, it equals the
variance of the noise σ 2

H= 1/2. Using Equations (17) and (18), we
immediately have

hSK (ε) = A(H)− ln ε (19)

where

A(H) =
1− 2H

2
(lnπ − 1)+

1

2
lnB(H) (20)

If we assume fGn of different H to have the same variance, then
∫ π

0 8(ω)dω is a constant independent of H. A(H) can then be
written as

A(H) =
1

2
ln σ 2

H= 1/2
+

1

2

[

ln(2− 2H)− (1− 2H)
]

(21)

A(H) is maximal when H = 1/2. However, when H is not close
to 0 or 1, the term 1

2 [ln(2 − 2H) − (1 − 2H)] is negligibly small,
signifying that hSK (ε) cannot readily classify fGn of different H.

Since hSK (ε) and K2(ε) diverge in the same fashion (Gaspard
andWang, 1993), using Equation (12) to determine the prefactor,
we have a scaling for finite ε

K2(ε) ∼ − ln ε (22)

Combining Equations (22) and (11), we arrive at a fundamental

bi-scaling law for K
(bs)
2 (ε) for fractal time series:

K
(bs)
2 (ε) ∼ (H − 1) ln bs − ln ε (23)

To verify the above bi-scaling law, and more importantly, to gain
insights into the relative importance of the two scale parameters
bs and ε in MSE analysis, we numerically perform MSE analysis
of fGn processes with different H. A few examples are shown
in Figures 1, 2. The computations are done with 214 points and
m = 2. We observe excellent bi-scaling relations, thus verifying
Equation (23). Recalling our earlier comment that K2(ε) itself is
not very useful for distinguishing fGn of different H, Figure 2

clearly shows that the scaling K
(bs)
2 (ε) ∼ (H − 1) ln bs can

aptly separate fGn processes of different H. In fact, H values
estimated from Figure 2 are fully consistent the values of H
chosen in simulating the fGn processes. This analysis thus has
demonstrated the major advantage of the scale parameter bs over
ε for the study of fGn processes using MSE. It has also made it
clear that MSE is a highly non-trivial extension of the sample
entropy, and more generally, the correlation entropy K2(ε).

While Equation (23) is fundamental for MSE, it can also help
us better understand the behavior of multivariate MSE, which is
shown in numerical simulations to be almost constant for 1/f
processes with H = 1, and decays in a well-defined fashion for
white noise, where H = 1/2, and some randomized data derived
from experimental data possibly with correlations (Ahmed and
Mandic, 2011). The reason is very clear. For 1/f process, H = 1,
and therefore, MSE or multivariate MSE does not vary with the
scale parameter bs. For white noise or some derived randomized
data, H = 1/2, and therefore, MSE or multivariate MSE decays
with the scale parameter bs in a well-defined fashion,

K
(bs)
2 (ε) ∼ −

1

2
ln bs, or bs ∼ e−2K2(ε). (24)

One can readily check that the MSE curve for white noise shown
in Ahmed and Mandic (2011) is fully consistent with the formula
derived here.

3.2. Heart Rate Variability Data Analysis
As an important application of MSE, we analyze HRV data for
the purpose of distinguishing healthy subjects from patients with
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A B

FIGURE 1 | K
(bs)
2

(ε) vs. ln ε curves corresponding to the original data (bs = 1) and the smoothed data (bs = 10) for fGn processes with (A) H = 0.3 and

(B) H = 0.7. The slopes of the linear regression lines are very close to 1.

FIGURE 2 | K
(bs)
2

(ε) vs. ln bs curves for fGn processes with different H

values. The scale ε is chosen as 20% of the standard deviation of the

corresponding fGn process. H value is estimated as 1 plus the slope of the

curve.

CHF, a life-threatening condition. This is an important issue.
We refer to (Hu et al., 2009, 2010) and references therein for
the background. Note that part of the data examined here were
analyzed in prior work (Ivanov et al., 1999; Barbieri and Brown,
2006), for the same purpose. We analyze all 33 datasets here.
For ease of comparison, we take the first 3 × 104 points of both
groups of HRV data for analysis. Note that based on different bs
parameter, MSE was not very good at separating the two groups
(Hu et al., 2010). This instigated a debate on whether MSE was
useful or not for analyzing HRV (Wessel et al., 2003; Nikulin
and Brismar, 2004). To resolve this interesting debate, and more
importantly, to satisfactorily separate the two groups of HRV
data, we shall focus on the dependence of MSE on the scale
parameter ε in the following discussions.

Since earlier studies findHRVdata to be nonstationary, having
1/f spectrum with anti-persistent long-range correlations and
multifractality (see Ivanov et al., 1999 and references therein), we
analyze the increment processes of the HRV data. Figure 3 shows
K2(ε) vs. ln ε curves for the two groups of HRV data. We observe:

(i) On small scales, K2(ε) vs. ln ε curves for both groups of HRV
data show good scaling behavior. As a consequence, one can

expect a scaling relation between K
(bs)
2 (ε) and ln bs (Equation 23).

This is indeed so. The results, being very similar to that shown in
Figure 2, are not shown here, however. (ii) The scaling of K2(ε)
vs. ln ε is better and longer for the normal HRV data. (iii) As
indicated by ε∗ in the figure, the smallest scale resolvable by the
HRV data of the healthy subjects is much larger than that of the
diseased subjects.

We now discuss how to use MSE to distinguish the healthy
subjects from patients with CHF. We have found (i) The curves

K
(bs)
2 (ε) vs. bs averaged over all the subjects within the two

groups are different, just as reported in Costa et al. (2005).
However, such curves are not very useful for separating the

two groups as a diagnostic tool, as pointed out in Nikulin and
Brismar (2004). The fundamental reason is of course that the

Hurst parameter H is not very effective in distinguishing healthy

subjects from patients with HRV, as quantitatively analyzed in

Hu et al. (2010). (ii) The smallest resolvable scale, ε∗, completely

separates the healthy subjects from patients with CHF, as shown
by Figure 3. Note the scale parameter ε is a generalization of the
concept variance (or standard deviation). The observation made
by Nikulin and Brismar (2004) that a variance-like parameter
is better than MSE with varying block size parameter bs in

distinguishing healthy subjects from patients with HRV is most

appropriately interpreted as the following: the parameter bs is
less important than the scale parameter ε. This is somewhat the

opposite of the case for 1/f noise analyzed in the last section.

To more clearly see how much more advantageous ε is over

bs in distinguishing healthy subjects from patients with HRV,

we examine how the scaling K2(ε) ∼ − ln ε can be used for

this purpose. We have found that the errors obtained by linearly

fitting the K2(ε) vs. ln ε curves of Figure 3 are much smaller for

the normal HRV data than for those of CHF patients and also
can completely separate the healthy subjects from patients with

CHF. This is shown in Figure 4. Therefore, the scale parameter ε

is indeed more important than bs.
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A

B

FIGURE 3 | K2(ε) vs. ln ε curves for the HRV data of (A) 18 normal

subjects and (B) 15 patients with CHF. Each curve corresponds to one

subject. The computations were done with 3× 104 points and m = 5. ε∗

indicates the smallest scale resolvable by the data.

FIGURE 4 | The frequency of the percentage of errors obtained by

linearly fitting the K2(ε) vs. ln ε curves in Figure 3 with 6 points starting

from ε
∗ for the healthy and diseased subjects.

3.3. Epileptic Seizure Detection Through MSE of
EEG
Epilepsy is a common and debilitating brain disorder. It is
characterized by intermittent seizures. During a seizure, the
normal activity of the central nervous system is disrupted. The
concrete symptoms include abnormal running/bouncing fits,
clonus of face and forelimbs, or tonic rearingmovement as well as
simultaneous occurrence of transient EEG signals such as spikes,
spike and slow wave complexes or rhythmic slow wave bursts.
Clinical effects may include motor, sensory, affective, cognitive,
automatic and physical symptomatology. To make medications
effective, timely detection of seizure is very important. In the

A

B

FIGURE 5 | Mean MSE curves for the 3 EEG groups with (A) ε = 0.2 and

(B) ε = 0.05.

past several decades, considerable efforts have been made to
detect/predict seizures through nonlinear analysis of EEGs. For
a list of the major nonlinear methods proposed for seizure
detection, we refer to Gao and Hu (2013) and references therein.
In particular, the three groups of EEG data analyzed here, H
(healthy), E (epileptic subjects during a seizure-free interval), and
S (epileptic subjects during seizure), were examined by adaptive
fractal analysis (Gao et al., 2011c) and scale-dependent Lyapunov
exponent (Gao et al., 2012), and excellent classification was
achieved.

To examine how well MSE characterizes the three groups of
EEG data, we have plotted in Figure 5 the mean MSE curves for
the three groups, for two parameter values of the phase space
scale, ε.We observe that they separate very well. Indeed, statistical
test shows that the separations are significant. In particular, for
the scale parameter in the phase space ε = 0.2, the MSE curve
for the S group lies well below the other 2 curves. One may be
tempted to equate this as smaller complexity of the seizure EEG.
However, such an interpretation is informative only relative to
the specific ε chosen here, which is 0.2. When ε = 0.05, the red
curve for seizure EEG actually lie above the other 2 curves for
larger bs. In fact, if one can pause a moment and think twice,
one would realize that such interpretations are not too helpful
for clinical applications, since MSE can vary substantially within
and across the groups.
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A

B

FIGURE 6 | Classification of the 3 EEG groups using features from the

MSE curves: (A) the original data and (B) the differenced data.

We have tried to use MSE at specific bs values to classify
the three groups of EEG. Guided by the mean MSE curves in
Figure 5, we have found that when ε = 0.2, if only two bs
can be used, then b2 = 2 and 15 are the optimal values. The
result of the classification is shown in Figure 6A. We observe
that there are some overlaps between groups H (healthy) and E
(epileptic subjects during a seizure-free interval), as well as E and
S (epileptic subjects during seizure). Intuitively, this is reasonable.
Overall, the classification is not very satisfactory. How may we
improve the accuracy of the classification?

Recall that in fractal scaling analysis of EEG, EEG data are
found to be equivalent to random walk processes, but not noise
or increment processes (Gao et al., 2011c). The latter amounts
to a differentiation of the random walk processes. Since the basic
scaling law derived here is for noise or increment process, but
not for random walk processes, it suggests us to try to compute
MSE from the differenced data of EEG, defined by yi = xi− xi−1,
where xi is the original EEG signal. The meanMSE curves for the
differenced data of EEG are shown in Figure 7, again for two ε

values. We observe that the separation between the mean MSE
curves becomes wider. Indeed, classification of the 3 EEG groups

A

B

FIGURE 7 | Mean MSE curves for the differenced data of the 3 EEG

groups with (A) ε = 0.2 and (B) ε = 0.05.

now ismuch improved, as shown in Figure 6B. It should be noted
however that the accuracy of the classification is still slightly
worse than using other methods, such as adaptive fractal analysis
(Gao et al., 2011c) and scale-dependent Lyapunov exponent (Gao
et al., 2012).

4. Conclusion and Discussion

To better understand MSE, we have derived a fundamental
bi-scaling relation for the MSE analysis. While MSE analysis
normally only focuses on the scale parameter bs with ε more or
less arbitrarily chosen, our analysis of fGn and HRV data clearly
demonstrates that both scale parameters are important—in the
case of HRV analysis, the ε is more important, while in the case
of 1/f noise, the bs parameter is more important. In fact, we have
shown (Hu et al., 2010) that MSE, when used with ε fixed, is
not very effective in distinguishing healthy subjects from patients
with HRV. The accuracy achieved when we focus on the scaling
of K2(ε) ∼ − ln ε is not only much higher, but also comparable to
that using the scale-dependent Lyapunov exponent (SDLE) (Gao
et al., 2006a, 2007, 2013), as reported by Hu et al. (Hu et al., 2010).
The fundamental reason of course is that SDLE has a similar
scaling as K2(ε) ∼ − ln ε.

We have also computed MSE for the original as well as
the differenced data of the three EEG groups, H (healthy), E
(epileptic subjects during a seizure-free interval), and S (epileptic
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subjects during seizure), and found that mean MSE curves for
the three groups are well separated. The classification of the
3 EEG groups using MSE at two specific scale parameters bs
is reasonably good, and is better for the differenced data than
for the original EEG data. This strongly suggests that EEG
data are like random walk processes. However, even with the
differenced data of EEG, the classification is still not as accurate
as using adaptive fractal analysis (Gao et al., 2011c) and scale-
dependent Lyapunov exponent (Gao et al., 2011a). One of the
reasons for this inferiority lies in the difference in the range
of scales covered by these three multiscale methods. Adaptive
fractal analysis and scale-dependent Lyapunov exponent both
cover the entire range of scales presented in the EEG data.
However, with the length of the EEG data, which is only 4097
points for each data set, MSE can only cover a moderate range

of scales, with the largest bs only around 20, since with bs =
20, the smoothed data is already only 200 points long. Our
analysis here has raised an important question: how do we
use MSE to analyze short data? We conjecture that it may be
beneficial to focus on the scaling of K2(ε) ∼ − ln ε, or develop
new smoothing schemes, by introducing a parameter equivalent
to 1/bs but without sacrificing the length of the smoothed
data.
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