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The impact of learning and long-term memory storage on synaptic connectivity is not

completely understood. In this study, we examine the effects of associative learning

on synaptic connectivity in adult cortical circuits by hypothesizing that these circuits

function in a steady-state, in which the memory capacity of a circuit is maximal

and learning must be accompanied by forgetting. Steady-state circuits should be

characterized by unique connectivity features. To uncover such features we developed

a biologically constrained, exactly solvable model of associative memory storage. The

model is applicable to networks of multiple excitatory and inhibitory neuron classes

and can account for homeostatic constraints on the number and the overall weight

of functional connections received by each neuron. The results show that in spite of a

large number of neuron classes, functional connections between potentially connected

cells are realized with less than 50% probability if the presynaptic cell is excitatory and

generally a much greater probability if it is inhibitory. We also find that constraining

the overall weight of presynaptic connections leads to Gaussian connection weight

distributions that are truncated at zero. In contrast, constraining the total number of

functional presynaptic connections leads to non-Gaussian distributions, in which weak

connections are absent. These theoretical predictions are compared with a large dataset

of published experimental studies reporting amplitudes of unitary postsynaptic potentials

and probabilities of connections between various classes of excitatory and inhibitory

neurons in the cerebellum, neocortex, and hippocampus.

Keywords: perceptron, associative memory, l0 norm, l1 norm, inhibitory, critical capacity, synaptic weight,

connection probability

Introduction

It has long been known that learning and long-term memory formation in the brain are
accompanied with changes in the patterns and weights of synaptic connections (see Bailey and
Kandel, 1993; Chklovskii et al., 2004; Holtmaat and Svoboda, 2009 for review). Yet, a detailed
understanding of the effects of learning on synaptic connectivity is still hindered by an insufficient
account of network activity patterns and cell-type specific, experience-dependent learning rules.
Thus, it is currently not feasible to directly relate the learning experience of an animal to
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specific changes in its synaptic connectivity. As an alternative,
one may look for basic statistical features of synaptic connectivity
which are catalyzed by the learning process, develop over time,
and are present in adult circuits. In this study, we examine
a biologically motivated, exactly solvable model of associative
learning in an attempt to identify such connectivity features
in local cortical circuits. Inspired by the ideas introduced by
Gardner and Derrida (1988) and further developed by Brunel
et al. (2004), we hypothesized that a given local circuit of the adult
cortex is functioning in a steady-state. In this state the associative
memory storage capacity of the circuit is maximal (critical)
(Cover, 1965; Hopfield, 1982; Gardner, 1988; Gardner and
Derrida, 1988), and learning new associations is accompanied
with forgetting some of the old ones (Figure 1).

The steady-state learning hypothesis is supported by
computational studies conducted in the cerebellar (Brunel et al.,
2004; Barbour et al., 2007) and cerebral (Chapeton et al., 2012)
cortices. It is also consistent with recent experimental evidence
from human subjects, showing that new learning and memory

FIGURE 1 | Associative memory storage in local cortical circuits. (A) A

cortical column contains many classes of inhibitory (circles) and excitatory

(triangles) neurons. (B) By adjusting the weights of their presynaptic

connections, J, neurons in the column can learn to associate certain input

patterns, X (t), with particular outputs, y(t+ 1). Such changes in the connection

weights are constrained by the homeostatic regulation of the overall weight,

Nw1, or number, Nw0, of non-zero weight connections, as well as by the

excitatory/inhibitory nature of individual presynaptic inputs, vector g. (C) A

neuron’s ability to learn a set of presented associations decreases with the

number of associations in the set, m. The transition from perfect learning to

inability to learn an entire set becomes very sharp with increasing number of

potential inputs, N. Our numerical simulations (dots) are in good agreement

with theoretical results (solid lines) (Cover, 1965). Critical capacity, αc, is

defined as the number of associations per potential input, m/N, which can be

learned with 0.5 probability of success. This capacity in the unconstrained

perceptron model is 2.

retrieval can be accompanied by forgetting (Kuhl et al., 2010;
Wimber et al., 2015). Thus, ongoing activity in the brain is likely
to present neurons with sets of associations that are much larger
than the learning capacity of the neurons. Consequently, the
neurons will learn (presumably in development) as much as
they possibly can and from then on (throughout adulthood)
will remain at their critical memory storage capacity. This
seemingly trivial hypothesis has very powerful implications.
Because the properties of the network in the steady-state are
independent of the learning path taken by the network to reach
that state, one can analyze the steady-state connectivity in the
absence of detailed knowledge of the animal’s experience or the
learning rules involved. This will remain true as long as the
animal’s experience is rich enough to present the network with
a number of associations that exceeds the network’s capacity,
and the learning rules are versatile enough to learn the critical
number of associations within the developmental period. Due
to the fundamental nature of this hypothesis its predictions are
expected to hold for many species, brain areas, and learning
conditions.

In what follows, we extend the steady-state learning
model described in Chapeton et al. (2012) by considering
multiple classes of excitatory and inhibitory neurons and by
incorporating biologically motivated homeostatic constraints.
There is emerging evidence suggesting that in spite of circuit
changes which accompany learning, individual cells may regulate
(i) the total number (l0 norm) and/or (ii) the overall weight
(l1 norm) of their presynaptic inputs. For example, it has been
shown that the numbers of excitatory and inhibitory synapses
onto excitatory cells in the adult cortex remain constant over
periods of many days to weeks (Holtmaat et al., 2005, 2006;
Fuhrmann et al., 2007; Brown et al., 2009; Hofer et al., 2009; Kim
and Nabekura, 2011; Chen et al., 2012). Similarly, it has been
shown that synapse loss can be counterbalanced by enlargement
of other synapses, such that the summed synaptic surface area
per length of dendritic segment remains constant across time
and conditions (Bourne and Harris, 2011). In addition, long-
term imaging studies have reported that total spine volume, as
measured by normalized brightness, remains constant over days
(Holtmaat et al., 2006; Kim and Nabekura, 2011). Because spine
volume is correlated with synaptic weight (Matsuzaki et al., 2004;
Arellano et al., 2007; Harvey and Svoboda, 2007; Zito et al., 2009),
these findings suggest that the overall weight of presynaptic
inputs remains constant throughout learning.

Below, we provide a detailed formulation of the
homeostatically constrained steady-state learning model.
The model was solved analytically and the solution was validated
numerically. The results were compared with a large number
of published experimental studies reporting probabilities of
connections and distributions of connection weights for various
classes of excitatory and inhibitory neurons in the cerebellum,
neocortex, and hippocampus.

Materials and Methods

In this section we formulate a theoretical model of steady-state
learning, which incorporates various classes of neurons and
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a number of biologically inspired constraints. Related models,
which only include some of the constraints considered here, were
previously described in a number of studies (e.g., Cover, 1965;
Edwards andAnderson, 1975; Sherrington andKirkpatrick, 1975;
Gardner, 1988; Gardner and Derrida, 1988; Amit et al., 1989;
Viswanathan, 1993; Brunel et al., 2004; Chapeton et al., 2012).
Detailed description of theoretical and numerical methods can
be found in Text S1.

Biologically Constrained Model of Steady-state
Learning
Networks in the cortex are thought to be organized in
columnar units. Such units may include various functional
(Hubel and Wiesel, 1963, 1977) and structural columns (Lübke
and Feldmeyer, 2007; Stepanyants et al., 2008), which are
typically a few hundred micrometers in radius. Analyses of
neuron morphology (Kalisman et al., 2003; Binzegger et al., 2004;
Stepanyants and Chklovskii, 2005; Stepanyants et al., 2008) have
shown that the mesh created by the axonal and dendritic arbors
of cells within such units contains numerous micron-size axo-
dendritic appositions, which are called potential synapses. A pair
of potentially connected cells can form a synaptic connection
through local structural synaptic plasticity (Stepanyants et al.,
2002; Trachtenberg et al., 2002; Escobar et al., 2008). Though
nearby neurons (e.g., separated by less than 50µm) within
cortical units are typically interconnected in terms of potential
synapses, functional synaptic connectivity is invariably sparse
(Thomson and Lamy, 2007). For the purpose of this study we
consider two cells to be functionally connected if an action
potential fired by the presynaptic cell elicits a detectable response
in the cell body of the postsynaptic neuron. Such a response,
measured as a deviation of the membrane potential from its
resting value, is referred to as a unitary postsynaptic potential
(uPSP). The sign of a uPSP in a cortical neuron is dependent on
the class of the presynaptic cell; it is positive if the presynaptic cell
is excitatory (uEPSP) and negative if it is inhibitory (uIPSP).

We consider a local cortical network involved in an associative
learning task (Figure 1A). The network may contain various
excitatory and inhibitory neuron classes which are characterized
by distinct firing probabilities. The state of the network at time
t, X(t), is described by the binary (0 or 1) activities of all
neurons. The network must learn to associate this state with
the subsequent network state X(t + 1), and that to the state at
the following time step, X(t + 2), etc., thus learning a chain of
associated network states, X(t) → X(t + 1) → . . .X(t + m).
Assuming that the successive network states are uncorrelated (see
the next subsection) one can reduce the problem of network
learning to the problem of learning by individual neurons
(Figure 1B).

Thus, we consider a single model neuron, which receives
N potential inputs from N potentially presynaptic partners
and is faced with a task of learning a set of m input-output
associations. The inputs, enumerated with index j, may come
from various excitatory and inhibitory neuron classes which
have characteristic firing probabilities, fj. The model neuron is
motivated by the McCulloch and Pitts model (McCulloch and
Pitts, 1943):

θ





N
∑

j= 1

JjX
µ
j − h



 = yµ, µ = 1, . . . ,m (1)

Here, Jj is the weight of presynaptic input j, h is the firing
threshold of the neuron, and θ denotes the Heaviside function.
The inputs, X

µ
j (µ = 1,. . . , m), and outputs, yµ, are binary and

their values are randomly drawn from neuron-class dependent
probability distributions: 0 with probability 1 - fj and 1 with

probability fj. The term
∑N

j= 1 JjX
µ
j plays the role of the

postsynaptic potential, and the neuron fires when this potential
exceeds h. Equation (1) can be rewritten as a set of inequalities:

(

2yµ − 1
)





N
∑

j= 1

JjX
µ
j − h



 > 0, µ = 1, . . . ,m (2)

In this study we impose the following biologically inspired

constraints on the learning of associations
{

X
µ

j , yµ

}

:

(1) The weights of presynaptic inputs, Jj, are sign-constrained
in a way that is determined by the class of individual inputs,

Jjgj ≥ 0, j = 1, . . . ,N (3)

In these inequalities, gj = 1 if input j is excitatory and gj = −1 if
it is inhibitory.

(2) The weights of input connections are also constrained to
have a fixed norm. In the following we restrict the analysis to
two cases: (i) l0 norm constraint, which corresponds to learning
with a fixed number of non-zero weight inputs and is defined

in the limit, lim
l→0

∑N
j= 1

∣

∣Jj
∣

∣

l = Nw0, and (ii) l1 norm constraint,

which corresponds to learning with a fixed overall magnitude of
the input weights,

∑N
j= 1

∣

∣Jj
∣

∣ = Nw1. In these expressions, w0 is

referred to as the overall connection probability, while w1 is the
average absolute connection weight. For conciseness, the l0 and
l1 norm constraint can be combined into a single equation:

N
∑

j= 1

∣

∣Jj
∣

∣

l = Nwl, l = 0, 1 (4)

(3) The firing threshold of the neuron, h, is fixed and does not
change during learning.

(4) Associations,
{

X
µ

j , yµ

}

, must be learned robustly, which

means that the postsynaptic potential must be somewhat above
(below) the firing threshold if yµ = 1 (0). This imposed minimal
deviation from the threshold is referred to as the robustness
parameter, κ ≥ 0. To incorporate this parameter, we modify the
r.h.s of Equation (2), making the inequalities more stringent:

(

2yµ − 1
)





N
∑

j= 1

JjX
µ
j − h



 > κ, µ = 1, . . . ,m (5)
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To summarize, the full model can be reduced to the following:

(

2yµ − 1
)

(

∑N
j= 1 JjX

µ
j − h

)

> κ, µ = 1, . . . ,m

Jjgj ≥ 0, j = 1, . . . ,N

∑N
j= 1

∣

∣Jj
∣

∣

l = Nwl, l = 0, 1

Prob
(

X
µ
j

)

=

{

1− fj, X
µ
j = 0

fj, X
µ
j = 1

Prob
(

yµ
)

=
{

1− fout, yµ = 0
fout, yµ = 1

(6)

Any set of connection weights, Jj, which satisfy Equation (6) is a
valid solution of model.

Model Assumptions and Approximations
The steady-state learning model relies on several assumptions
and approximations. Here we describe these assumptions and
provide experimental evidence supporting the approximations
made:

(1) We discretized time into finite-size bins and describe the
activity of neurons in the network with binary values: 1 if a
neuron is firing and 0 if a neuron is silent. This approximation
is reasonable so long as one can choose an integration window
which is larger than the duration of a typical uPSP (τ ), yet small
enough not to encompass successive action potentials fired by
any given cell. Denoting the typical firing rate for a cell class
with r, such binning of activity should be possible when r × τ

is smaller than one. In fact, many classes of neurons maintain
in vivo firing rates that are low enough for this condition to
be valid. Specifically, uEPSPs and uIPSPs in pyramidal cells
typically have τ in the 40–60ms range (Sayer et al., 1990;
Markram et al., 1997; Gonzalez-Burgos et al., 2005; Sun et al.,
2006; Lefort et al., 2009), while the spontaneous firing rates of
these cells in vivo are r ∼ 1–3Hz (Csicsvari et al., 1999; Puig
et al., 2003; Hromadka et al., 2008; Yazaki-Sugiyama et al., 2009,
also see Barth and Poulet, 2012 for review). These observations
put cortical pyramidal cells well within the range of validity
of the above approximation. For inhibitory cells the data is
more variable, but generally also supports the approximation.
For example, the reported spontaneous firing rates in vivo are
9.2Hz for FS cells in mouse visual cortex (Yazaki-Sugiyama et al.,
2009), 7.6Hz for FS cells in cat striate cortex (Azouz et al., 1997),
about 3Hz for PV cells and <1Hz for SOM cells in mouse visual
cortex (Ma et al., 2010), and 13–14Hz in CA1 interneurons of rat
hippocampus (Csicsvari et al., 1999). We note that it is not clear
if the activity of neurons during associative learning resembles
low firing rate spontaneous activity, or whether it is similar to
the bursting activity of subsets of neurons recorded in animals
actively engaged in trained behaviors. Nonetheless, because the
fraction of bursting neurons at any given time is small (Barth
and Poulet, 2012), the average network firing rate is expected
to be low. For example, in vivo imaging studies, in which the
activities of large ensembles of cortical neurons are monitored
over time, have reported population average firing rates of <1Hz
(Kerr et al., 2005; Greenberg et al., 2008; Golshani et al., 2009).

(2) We used linear summation to approximate integration
of uPSPs in the cell body. This has been shown to be a good

approximation in the neocortex (Tamas et al., 2002; Leger et al.,
2005; Araya et al., 2006), cerebellum (Brunel et al., 2004), and
hippocampus (Cash and Yuste, 1998, 1999).

(3) We assumed that the threshold of each neuron remains
fixed throughout learning. This assumption was motivated by
the fact that coefficients of variation in the values of firing
thresholds of cortical excitatory and inhibitory neurons are
several-fold smaller than the corresponding numbers for the
uPSP amplitudes. For example, coefficients of variation for the
numerous cortical projections summarized in Supporting Tables
1 and 2 of Chapeton et al. (2012) have the following average
values: 0.17 ± 0.02, (mean ± SE, n = 9 systems) for firing
thresholds and 0.94 ± 0.03 (n = 52 systems) for connection
weights.

(4) We followed Dale’s principle (Dale, 1935) and assumed
that the weights of excitatory/inhibitory inputs remain
positive/negative throughout learning.

(5) The activities of all neurons in the network (j = 1,. . . ,
N) at every time step, µ, were randomly drawn from neuron-

class specific probability distributions, Prob
(

X
µ
j

)

, leading to

successive network states that are (i) independent and (ii)
random.With this approximation, the problem of learning by the
network was decoupled and reduced to the problem of learning
by N independent neurons. This approximation is supported by
the following experimental observations. (i) For cortical neurons
in vivo, serial correlation coefficients of inter-spike intervals
are known to be small. For example, correlations of all lags
greater than one are not significantly different from zero (Nawrot
et al., 2007; Engel et al., 2008). Although small, but significant,
lag one correlations (∼ −0.2) are observed at high firing rates
(Nawrot et al., 2007), these correlations vanish at <2Hz (Engel
et al., 2008). (ii) Correlations between the activities of pairs
of cells in vivo are known to be small. For example, low
pairwise correlations have been reported for pyramidal cells in
rat olfactory (∼0.05) (Miura et al., 2012) and visual (∼0.033)
(Greenberg et al., 2008) cortices. Weak pairwise correlations have
also been found in the sensorimotor cortex of behaving monkeys
and humans (Truccolo et al., 2010). In addition, extracellular
recordings from L2/3 of somatosensory cortex have shown that
correlation coefficients between regular spiking cells are small
during periods of spontaneous and evoked activity (0.04 and
0.02) (Middleton et al., 2012). Similar results have been obtained
for the correlations between regular spiking and fast spiking cells
(0.11 and 0.01) (Middleton et al., 2012).

(6) The l0 and l1 norm constraints were motivated by the
following experimental evidence. (i) The density of spines on
excitatory neuron dendrites remains constant over days to weeks
in many areas of the adult cortex (Holtmaat et al., 2005, 2006;
Fuhrmann et al., 2007; Brown et al., 2009; Hofer et al., 2009;
Kim and Nabekura, 2011). Likewise, the number of inhibitory
synapses onto excitatory dendrites (Chen et al., 2012) and the
number of spines on some inhibitory cell dendrites (Keck et al.,
2011) remain nearly constant over days. Together, these studies
suggest that homeostatic mechanisms may regulate the number
of synapses received by excitatory and inhibitory neurons (l0
norm constraint). (ii) It has been reported that the total size
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of spines remains constant over several days as measured by
the normalized spine brightness (Holtmaat et al., 2006; Kim
and Nabekura, 2011). Because the normalized spine brightness
is correlated with spine volume (Holtmaat et al., 2005) and the
latter is correlated with synaptic weight (Matsuzaki et al., 2004;
Arellano et al., 2007; Harvey and Svoboda, 2007; Zito et al.,
2009), the overall weight of the presynaptic inputs of a pyramidal
cell may be conserved. Another study (Bourne and Harris,
2011) has reported that by 2 h after LTP induction dendrites
of CA1 pyramidal neurons in the hippocampus lose some of
their small dendritic spines. However, this loss is balanced by an
enlargement of the surface area of other excitatory synapses in
such a way that the summed surface area of excitatory synapses
remained constant across time and conditions. A similar trend
was observed for the inhibitory synapses (Bourne and Harris,
2011). These observations imply that dendrites may use local
protein synthesis to maintain the overall weight of excitatory and
inhibitory inputs (l1 norm constraint).

(7) We assumed that associative memories can be recalled
robustly in the presence of small noise in synaptic transmission,
e.g., failures in generation or propagation of presynaptic action
potentials, spontaneous neural activity, synaptic failure, and
fluctuations in synaptic weight. In order to incorporate this
feature into the model we assumed that an association was
robustly learned by a neuron if it could be correctly recalled even
in the presence of fluctuations in postsynaptic potential of size κ .

Theoretical Solution of the Model
The theoretical solution of the model, Equation (6), is governed
by four variables (u+, u−, z, and x), which are implicitly defined
by the following system of equations:

foutI1 (−u−, 0) = (1− fout)I1 (−u+, 0)

1
N

N
∑

i= 1

(

1√
fi(1−fi)

)l

Il

(

giz
√

fi
1−fi

+
(√

Nκx−hz
)

Nw1

√
fi(1−fi)

δl,1,

√

2
(√

Nκx−hz
)

Q

hw0
δl,0

)

=
(

N
h

)l
wlQ

l

1
N

N
∑

i= 1

figi√
fi(1−fi)

I1

(

giz
√

fi
1−fi

+
(√

Nκx−hz
)

Nw1

√
fi(1−fi)

δl,1,

√

2
(√

Nκx−hz
)

Q

hw0
δl,0

)

= Q

1
N

N
∑

i= 1
I2

(

giz
√

fi
1−fi

+
(√

Nκx−hz
)

Nw1

√
fi(1−fi)

δl,1,

√

2
(√

Nκx−hz
)

Q

hw0
δl,0

)

= 2Q2Nκ2

(u++u−)2h2

Q = 2h (u++u−)√
Nκ

foutI0(−u−,0)+(1−fout)I0(−u+,0)
foutI1(−u−,0)+(1−fout)I1(−u+,0)

x

u+ + u− ≥ 0; x ≥ 0;
(√

Nκx− hz
)

δl,0 ≥ 0

(7)

Detailed derivation of these equations, together with the
definitions of the special functions I0,1,2, can be found inText S1.

The critical capacity of a neuron, the probabilities of its non-
zero weight connections for different input classes (denoted with
i), Pconi , and the probability density functions for its non-zero

input weights, pi (J), can be expressed in terms of these four
variables:

αc = 2x2
(

foutI2 (−u−, 0) + (1− fout)I2 (−u+, 0)
)

(

foutI1 (−u−, 0) + (1− fout)I1 (−u+, 0)
)2

Pconi = I0



giz

√

fi

1− fi
+

(√
Nκx− hz

)

Nw1

√

fi
(

1− fi
)

δl,1 +

√

2
(√

Nκx− hz
)

Q

hw0
δl,0, 0





pi (J) =

√

fi
(

1− fi
)

2
√

πI0

(

giz
√

fi
1−fi

+
(√

Nκx−hz
)

Nw1

√
fi(1−fi)

δl,1 +
√

2
(√

Nκx−hz
)

Q

hw0
δl,0, 0

)

×

(

Q−
2
(√

Nκx− hz
)

fi
(

1− fi
)

w0

hδl,0

N2J2

)

+

× e
−
(√

fi(1−fi)Q
2

N
h
J+z

√

fi
1−fi

+ (
√
Nκx−hz)

h
√

fi(1−fi)

(

hgiδl,1
Nw1

+
hδl,0
w0NJ

))2

(8)

Plus-sign in the subscript of the last equation denotes the positive
part function. Corresponding results for the unconstrained case
are included in Text S1. Equations (7) and (8) were solved with
custom MatLab code (Theoretical_Results.m of Supplementary
Materials) to produce the results shown in Figures 2, 3, and
Figure S1.

Model Parameters
Results of the model, Equation (8), depend on the following
dimensionless parameters: fraction of potential inputs of each
class, Ni/N, firing probabilities of these input classes, fi,
robustness of the postsynaptic neuron,

√
Nκ/h, and the values

of norm constraints, w0 and Nw1/h. In Results, we only consider
two classes of inputs, inhibitory and excitatory, and thus, the
number of independent parameters in the unconstrained model
reduces to four (Ninh/N, finh, fexc,

√
Nκ/h). An additional

parameter, w0 (Nw1/h), is present in the l0 (l1) norm constrained
case.

The fraction of potential inhibitory inputs received by a
neuron in the network, Ninh/N, can be approximated by the
average fraction of inhibitory neurons in the cortical column.
The latter is known to be in the 0.11–0.20 range (Braitenberg
and Schüz, 1998; Lefort et al., 2009; Meyer et al., 2011; Sahara
et al., 2012). Thus, we used Ninh/N = 0.15 in Figures 3, 4.
Firing probabilities can be estimated based on the expression
f = r × τ . Numerical values of firing rates, r, and integration
windows, τ , for excitatory and inhibitory neurons are given in
point 1 of Model Assumptions and Approximations subsection.
Based on these numbers we estimated that fexc ≈ 0.1, while finh
is expected to be larger due to generally higher firing rates of
inhibitory neuron classes. However, because the exact values of
firing probabilities are not known, in Results we decided to adopt
finh = fexc = 0.15 (Figures 2–4), while in Supplementary Materials
we show the results for the unbiased case, finh = fexc = 0.5
(Figure S1). We did not find a clear way to determine the value
of robustness parameter,

√
Nκ/h, from experimental data. This

is why, in Figures 2, 3 we first show that the results of the model
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FIGURE 2 | (A–C) Critical capacity as a function of the fraction of

potential inhibitory inputs for finh = fexc = 0.15 and various values of the

robustness parameter κ. (A) The unconstrained model. At certain values

of Ninh/N, the curves merge with the asymptotic solution (black curve)

corresponding to the limit of large robustness,
√
Nκ/h≫1. For smaller

fractions of inhibitory inputs, the critical capacity is a decreasing function

of κ and an increasing function of Ninh/N. (B) Qualitatively similar results

were obtained in the l0 constrained model. (C) In the l1 constrained

model the critical capacity curves are slightly skewed to the left and

have a maximum at Ninh/N < 0.5 for all values of κ. Values of the

constraints are w0 = 0.25 in B and Nw1/h = 70 in (C). (D–F) Overall

connection probability (dashed lines) and overall connection weight (solid

lines) as a function of Ninh/N. Note the different y-axis scales for w0

(linear, left) and Nw1/h (logarithmic, right). In the constrained models,

the overall connection probability (E) or the overall connection weight

(F) is fixed for all values of Ninh/N (horizontal lines).

depend on the value of this parameter in a predictable way, and
then set

√
Nκ/h= 3 in Figure 4.

The biologically plausible ranges for the dimensionless
constraints, w0 and Nw1/h, were approximated based on their
definitions (see Text S1). For two classes of presynaptic inputs
these definitions yield:

w0 = Ninh
N Pcon

inh
+
(

1− Ninh
N

)

Pconexc

Nw1
h

= N
h

(

Ninh
N Pcon

inh
〈Jinh〉 +

(

1− Ninh
N

)

Pconexc 〈Jexc〉
) (9)

Here Pcon
inh,exc

and
〈

Jinh,exc
〉

are the connection probabilities and
the average uPSP amplitudes of inhibitory and excitatory inputs.
To estimate the values of the constraints we combined the
dataset compiled in Chapeton et al. (2012) with a recent study
of inhibitory connectivity (Packer and Yuste, 2011) and then
restricted the analysis to neocortical systems. The 95% confidence
intervals were then obtained using bootstrap sampling with
replacement (n = 10,000 samples). Parameters h, Pcon

inh,exc
, and

〈

Jinh,exc
〉

were sampled with weights proportional to the numbers
of experimental counts, whereas N and Ninh/N were sampled
uniformly from 5,000 to 10,000 (Lefort et al., 2009; Meyer et al.,
2010) and 0.11–0.20 (Braitenberg and Schüz, 1998; Lefort et al.,
2009; Meyer et al., 2011; Sahara et al., 2012) intervals. This
procedure resulted in 95% confidence intervals of [0.1–0.4] for
w0 and [20–190] for Nw1/h. In Figure 3 we show how results
of the model depend on the values of these constraints, while in

Figures 2, 5 we opted to use the average values obtained from the
bootstrap sampling, w0 = 0.25 and Nw1/h = 70.

Numerical Solutions of the Model
Since the analytical calculations used to produce the results of
this study are very involved we used numerical simulations as an
additional validation step. Details of these numerical algorithms
can be found in Text S1. Standard convex optimization
methods were used to produce numerical solutions for the
unconstrained and l1 norm constrained problems. Since the l0
norm constrained problem is non-convex, numerical solutions
in this case were performed with a modified perceptron
learning rule. The critical capacity (Figures S1A–C) and the
distributions of connection weights (Figures S1D–F) resulting
from these simulations are in good agreement with the theoretical
calculations.

Numerical simulations were also used to illustrate plausibility
of the steady-state learning hypothesis, which relies on the
assumption that a network is able to reach the state of
maximum memory storage capacity. To this end, we used
perceptron-type learning rules and biologically plausible model
parameters to reproduce theoretical results of all three cases
(Figure 4).

Fitting Distributions of Connection Weights
Theoretical probability density functions of Equation (8)
were used to fit simulated and experimental distributions of
connection weights. To this end, these equations were rewritten
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FIGURE 3 | Effects of l0 and l1 constraints on critical capacity and

connection probability. (A,B) Critical capacity of the l0 and l1 constrained

models plotted as a function of the constraints, w0 and Nw1/h. Diamonds

denote the corresponding value of the critical capacity in the unconstrained

model. The critical capacity is at its maximum when w0 and w1 match the

corresponding values calculated for the unconstrained model. (C,D) Excitatory

(solid lines) and inhibitory (dashed lines) connection probabilities in the l0 and l1
constrained models. Gray histograms in (C) represent excitatory (solid outline)

and inhibitory (dashed outline) connection probability data from a large set of

experimental studies (see Text S1 for details). Note that the histogram counts

are shown at the top of (C).

by using the experimentally determined values of Pconi and
introducing two parameters: σ i, which describes the width
of the distribution and Gi, which is the magnitude of the
minimum non-zero connection weight present in the l0 model.
The resulting probability density functions are governed by two
parameters (σ i and Gi) in the l0 case and one parameter (σ i) in
the l1 case:

σi =
√
2h√

fi(1−fi)QN
; Gi =

√

2
(√

Nκx−hz
)

fi(1−fi)w0Q
h
N2

pi (J) = 1√
2πPconi

h
Nσi

(

1− G2
i

J2
δl,0

)

+
×

e
−
(

giJ√
2σi

+erfinv(1−2Pconi )+
√
2Gi
σi

(

Gi
2giJ

−1
)

δl,0

)2

(10)

Fitting the simulated distributions of inhibitory/excitatory
connection weights shown in Figure 4 was done with one
parameter (σ inh/σ exc) in the unconstrained and l1 constrained
models, and two parameters (σ inh/σ exc and Ginh/Gexc) in the
l0 case. Fitting was done in MatLab by using non-linear least
squares fit.We note that the functional form of the distribution of
connection weights in the unconstrained model (Chapeton et al.,
2012), written in the notation of Equation (10), is identical to that

of the l1 case. For this reason, the unconstrained and l1 models
produce identical fits.

A similar fit of experimental distributions of uEPSP
amplitudes is shown in Figure 5. Fitting with the l0 model
produced the following best fit parameters: σ = 1.06 [0.88–
1.23]mV (mean [95% confidence interval]), G = 0.055 [0.045–
0.064]mV in Figure 5A and σ = 0.79 [0.71–0.88]mV,G = 0.051
[0.041–0.060]mV in Figure 5B. For the l1 model we discarded
weak, unreliable connections (gray regions in Figure 5) and thus
introduced a normalization factor A as an additional fitting
parameter. Hence, fitting in this case was also performedwith two
parameters. The resulting best fit values of σ were: 1.02 [0.92–
1.13]mV in Figure 5A and 0.81 [0.70–0.92]mV in Figure 5B.

Results

Effects of Homeostatic Constraints on Network
Capacity and Connectivity
The general solution of the model is described in Text S1. Since
this solution is very involved, theoretical results were validated
with numerical simulations (see Figure S1). Here we illustrate
the theoretical results by considering a single cell receiving inputs
from two classes of presynaptic neurons, one inhibitory and one
excitatory. The critical associative memory storage capacity of
this cell, αc, was calculated by solving the system of Equations
(7) and (8) (Theoretical_Results.m of SupplementaryMaterials).
Figures 2A–C show the dependence of αc in the unconstrained
and l0,1 norm constrained models on the fraction of potential
inhibitory inputs, Ninh/N, and the robustness parameter, κ .
Though the results for the three models are distinctly different,
there are notable common trends. First, in all three models,
the critical capacity is a decreasing function of κ , indicating
the trade-off between the maximum number of associations a
neuron can learn and the robustness of the learned associations.
Second, in the case of robust memory storage (κ > 0), adding a
small fraction of inhibitory neurons increases αc. This, however,
comes at the expense of the total number of non-zero weight
connections, Nw0, and/or the overall connection weight, Nw1

(Figures 2D–F).
Next, we evaluated the effects of the l0,1 norm constraints

on the critical capacity and connection probabilities for various
input classes. Figure 3 shows the results for two classes of inputs,
excitatory and inhibitory, with Ninh/N = 0.15. This numerical
value, as well as the values of other parameters of the theory,
is based on published experimental data (see Materials and
Methods for details). As expected, the critical capacity of the
constrained models is maximal when w0 (Figure 3A) and w1

(Figure 3B) match the corresponding values of these parameters
in the unconstrained case (diamonds in the figure). This is
because at these exact values of w0 and w1 the norm constraints
are effectively removed, and the solutions of the constrained
models reduce to that of the unconstrained case, which naturally
has the maximum critical capacity.

Increasing w0 beyond this point in the l0 model has no effect
on critical capacity (Figure 3A) because it is always possible to
start with the connectivity of the unconstrained network, and
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FIGURE 4 | Comparison of theoretical distributions of connection

weights to numerical simulations. (A–C) Probability density functions

obtained with perceptron-type learning rules for N = 500, Ninh/N = 0.15,√
Nκ/h = 3, and finh,exc = 0.15 are shown with blue bars. Values of the

constraints are w0 = 0.25 in B and Nw1/h = 70 in C. Green lines show

theoretical fits of these probability density functions with Equation (10).

Goodness of the fits is captured by the high adjusted R2 coefficients.

The theoretical distributions of excitatory and inhibitory connection

weights in the unconstrained (A) and l1 constrained (C) models consist

of Gaussians truncated at J = 0 and finite fractions of zero-weight

connections. The distribution in the l0 constrained model (B) also

contains a finite fraction of zero-weight connections, but is

non-Gaussian. This distribution has gaps between zero and non-zero

connection weights for excitatory and inhibitory inputs. Parameters

Pcon
inh,exc

give theoretical fractions of inhibitory and excitatory non-zero

weight connections. (D–F) Same probability density functions plotted on

a log-log scale show deviations between theory and numerical

simulations in the head and tail regions of the distributions.

then add a small number of infinitesimally weak connections
which will have no effect on the learned associations, but will
increase the overall connection probability to the desired value.
As the capacity of the l0 model cannot be greater than the
capacity of the unconstrained model, solutions constructed in
this way have the maximum possible capacity, and thus are
valid for large values of w0 (to the right of the diamonds in
Figure 3A). However, because multiple solutions of this type
exist, excitatory and inhibitory connection probabilities cannot
be defined uniquely.

Numerous experimental studies have shown that the
probabilities of local excitatory and inhibitory connections onto
the principal cortical neurons (pyramidal and spiny stellate cells
in the cerebral cortex and Purkinje cells in the cerebellum) are
distinctly different. In particular, excitatory connections are
sparse, with connection probabilities well below 0.5, while the
inhibitory connection probabilities are generally much higher.
This difference can be seen in the histograms of Figure 3C which
summarize connection probabilities compiled in Chapeton et al.
(2012) together with the data from a large study of parvalbumin
positive to pyramidal cell connectivity (Packer and Yuste, 2011).
Consistent with these observations, the probabilities of excitatory
and inhibitory connections in the unconstrained model have
been shown to be distinctly different (Chapeton et al., 2012), Pconexc

< 0.5 and Pcon
inh

> 0.5 (diamonds in Figures 3C,D). Therefore,
we decided to examine if the constrained models considered in
this study produce a similar trend. Figure 3C shows Pconexc and
Pcon
inh

in the l0 norm constrained model plotted as functions of the
overall connection probability, w0. Both Pconexc and Pcon

inh
increase

with w0, however, P
con
exc always remains below 0.5, while Pcon

inh
exceeds 0.5 beyond certain values of w0. The range of w0 values
estimated for excitatory cells in the neocortex is 0.1–0.4 (see
Materials and Methods). In this range Pconexc < 0.5, while Pcon

inh
is higher than Pconexc in the case of robust memory storage (κ >

1). Connection probabilities in the l1 norm constrained model
depend on the value of Nw1/h (Figure 3D). This parameter,
estimated from the experimental data, is in the 20–190 range (see
Materials and Methods). In this range Pconexc < 0.5 and Pcon

inh
> 0.5

for all values of robustness. Thus, for biologically realistic values
of w0 and Nw1/h, the connection probabilities produced by
the homeostatically constrained models are consistent with the
experimentally observed difference in probabilities of excitatory
and inhibitory connections onto principal cells.

Distribution of Connection Weights
In this subsection we compare and contrast the probability
densities of input connection weights at critical capacity for the
unconstrained and l0,1 norm constrained models [see Text S1
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FIGURE 5 | Comparison of theoretical and experimental distributions

of connection weights. (A,B) Blue bars show distributions of uEPSP

amplitudes in layer 5 of rat visual cortex (Song et al., 2005) and all layers of

mouse barrel cortex (Lefort et al., 2009). These distributions were fitted with

both the l0 (green) and l1 (red) constrained models (see Text S1 for details).

Goodness of the fits is captured by the adjusted R2 coefficients, which are

close to 1. (C,D) To examine how the two models fit the heads and the tails of

the distributions of uEPSP amplitudes (blue line), (A,B) are re-plotted on a

log-log scale. Blue numbers indicate the counts in the logarithmic bins. Data

points, which fall below the uEPSP detection threshold and are thus unreliable,

are highlighted in gray. The probability density in the l0 model has a gap

between zero and non-zero connection weights; there is no such gap in the l1
model.

and Equations (8) and (10)]. In the unconstrained and l1
norm constrained cases these probability densities consist of
Gaussian functions, truncated at zero, and finite fractions of
zero-weight connections (Figures 4A,C). The distribution of
connection weights in the l0 norm constrained model also
contains a finite fraction of zero-weight connections. However,
the probability density function for non-zero connection weights
is non-Gaussian (Figure 4B). Interestingly, this function has a
gap for weak input connections, i.e., it does not contain non-
zero connection weights below a certain threshold.Wewould like
to point out that this feature of connection weights constrained
by the l0 norm was previously reported by Bouten et al. (1990),
who considered associative learning by a neuron receiving a
single class of sign-unconstrained inputs, i.e., the inputs were not
constrained to be excitatory or inhibitory.

Since the steady-state learning hypothesis relies on the
assumption that the network can achieve the state of maximum
associative memory storage capacity, we set out to show that this
can be done with a biologically plausible learning rule. To this
end, we attempted to reproduce the theoretical critical capacities
and the shapes of theoretical connection weight distributions in

the three models by usingmodified perceptron learning rules (see
Materials and Methods). The simulations were performed for
biologically plausible values of model parameters (see Materials
and Methods) and about 95% of theoretical, maximum memory
storage capacity was reached in all three models: αc = 0.95/0.99
(numerical/theoretical) in the unconstrained model, 0.94/0.99 in
the l0 model, and 0.97/1.01 in the l1 model.

The overall shape of numerical distributions generated
at theoretical critical capacity (Figures 4A–C) was in good
agreement with the theory, Equation (10). However, small
deviations between theory and numerical simulations were
observed in the head and tail regions of these distributions.
To examine these deviations in more detail we re-plotted
the distributions of connection weights on a log-log scale
(Figures 4D–F). In the unconstrained and l1 norm constrained
models the tails of the numerical distribution appear to be
slightly heavier than theoretically predicted Gaussian tails
(Figures 4D,F), while in the l0 case (Figure 4E) there is a
slight deviation in the regions of weak inhibitory and excitatory
connections. It is likely that this deviation results from the fact
that the numerical simulations were performed for a large, yet
finite number of potential inputs, N = 500, while theoretical
distributions were obtained in the limit of infinite N.

Comparison of Experimental and Theoretical
Connection Weight Distributions
The two homeostatically constrained models produce distinctly
different distributions of connection weights. Below, we
investigate how these distributions compare with the
distributions of uPSP amplitudes reported in experimental
studies. For this purpose, we selected two studies with very
high counts of recorded uEPSPs, one performed in rat visual
cortex (n = 931, layer 5) (Song et al., 2005) and the other in
mouse barrel cortex (n = 909, all layers) (Lefort et al., 2009).
The two models (green and red lines in Figures 5A,B) were
used to fit both experimental distributions (blue histograms in
Figures 5A,B). In spite of the fact that the goodness of these fits
was high as measured by the adjusted R2 coefficients, significant
deviations were observed between the distributions (P < 10−12

for both models in Figures 5A,B; Kolmogorov-Smirnov test),
most noticeably in the head and tail regions. To focus on these
differences, Figures 5C,D show the distributions on a log-log
scale.

Due to the fluctuations in electrophysiological recordings,
very weak connections between neurons cannot be detected
reliably. Such connections are often missed or ignored, leading
to a systematic underestimate of weak connection counts. The
gray regions in Figure 5 highlight the values of uEPSP amplitudes
which fall below the reliable uEPSP detection threshold [0.1–
0.25mV in rodent neocortex (Mason et al., 1991; Markram et al.,
1997; Feldmeyer et al., 1999; Berger et al., 2009)]. Unfortunately,
the difference between the distributions produced by the two
models only becomes apparent inside the gray regions, and thus,
it cannot be directly tested. In these regions of small uEPSP
amplitudes the l0 model provides seemingly better fits to the
experimental distributions, but the statistical significance of these
results could not be verified based on the available data.
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Bothmodels of steady-state learning underestimate the counts
of strong synaptic connections (uEPSP amplitudes > 1mV).
Though not very numerous (blue numbers in Figures 5C,D),
these strong connections appear to be a characteristic feature
of cortical connectivity. Sub-criticality of neural networks in
the brain, non-linearity in the summation of presynaptic inputs
(Brunel et al., 2004), as well as the effects of the finite size of local
cortical networks (Chapeton et al., 2012) (e.g., Figure 4D, right)
have been proposed as possible explanations for the discrepancy
between the Gaussian tails of the theoretical probability density
functions and the much heavier distribution tails observed
experimentally. At present, we are unable to differentiate between
these explanations.

Discussion

The study of associative learning by artificial neural networks
has a long history dating back to the work of McCulloch and
Pitts who introduced one of the first binary neuron models
(McCulloch and Pitts, 1943). Rosenblatt later showed that
such a binary neuron, now termed the perceptron, can solve
classification problems by learning to associate certain input
patterns with specific outputs (Rosenblatt, 1957, 1958). The
memory storage capacity of a simple perceptron (no constraints,
h = 0 or learnable threshold, κ = 0) was calculated by Cover
(1965), who used geometrical arguments to show that a simple
perceptron can learn to associate 2N unbiased input-output
patterns (fin = fout = 0.5). It was Hopfield who recognized that
stable states in recurrent networks of binary neurons can be used
as a mechanism for memory storage and recall (Hopfield, 1982).
Subsequently, a general framework for the analysis of memory
storage capacity was established by Gardner (1988), Gardner
and Derrida (1988) who used the replica theory, originally
developed for spin glass applications (Edwards and Anderson,
1975; Sherrington and Kirkpatrick, 1975), to solve the problem
of robust learning (κ > 0) of arbitrarily biased associations. To
model granule to Purkinje cell connectivity in the cerebellum,
Brunel and colleagues constrained Gardner’s solution by fixing
the firing threshold and forcing the inputs to be all excitatory
(Jj ≥ 0) (Brunel et al., 2004). These results were then extended
by Chapeton et al. (2012) on the case of excitatory and inhibitory
inputs and applied to cortical circuits.

In this study, we generalize themodel of Chapeton et al. (2012)
by incorporating multiple classes of excitatory and inhibitory
neurons and including two types of experimentally motivated
homeostatic constraints. The constraints were designed to ensure
that individual neurons maintain a fixed total number or a fixed
overall weight of their non-zero inputs throughout learning.
Both constrained models were solved analytically by using
the replica theory. The results were validated with numerical
simulations and compared to the available data on cortical
connectivity.

Our theory produced two specific results regarding the
connectivity among potentially connected cells in steady-state
networks. First, we showed that functional excitatory connections
onto principal cells should be realized with less than 50%
probability, while the probabilities of inhibitory connections

should be higher (Figures 3C,D). Because in cortical systems
inhibitory cells account for only 11–20% of all neurons,
functional connectivity in a steady-state network is expected
to be sparse, i.e., it must contain a large fraction of zero-
weight connections. This theoretical finding is in qualitative
agreement with a dataset compiled from 38 published studies
(62 projections in total) in which connection probabilities
have been measured in various cortical systems (histograms
in Figure 3C). It is important to note that a zero-weight
connection between neurons does not necessarily imply that
the structural connection is absent, as the neurons may still
be connected with synapses that are silent (synapses devoid
of AMPA receptors Malinow and Malenka, 2002). This detail,
however, did not factor into the comparison because neither
the theory nor the electrophysiological recordings discriminate
between the two alternatives. Furthermore, it has been shown
that the fraction of silent synapses in adult cortex is low
(e.g., Busetto et al., 2008).

Second, we derived the shapes of the connection weight
distributions in a steady-state [see Equation (10) and Figures 4,
5]. Similar to the unconstrained model, distribution in the
l1 case consists of Gaussians truncated at zero and a finite
fraction of zero-weight connections. The distribution in the l0
model also contains a finite fraction of zero-weight connections,
but the shape of the distribution for non-zero connection
weights is no longer Gaussian. It is characterized by a gap
between zero and non-zero connection weights. Hence, we
predict that a network operating in a steady-state, subject to
a constraint on the number of functional connections cannot
contain arbitrarily small connection weights. Rather, there should
be no functional connections weaker than a certain threshold
(∼0.05mV for uEPSP amplitudes in the neocortex, Figure 5). It
is not impossible to envision a biological mechanism by which
weak connections can be silenced and/or completely eliminated
(Oh et al., 2013). In practice, however, it may be difficult to
test this hypothesis because the connection weight threshold is
too small to be measured reliably with current experimental
techniques (Mason et al., 1991; Markram et al., 1997; Feldmeyer
et al., 1999; Berger et al., 2009). Interestingly, the value of
the connection weight threshold obtained in this study is in
agreement with the smallest quantal sizes and miniature EPSP
amplitudes recorded in cortical pyramidal neurons [∼0.1mV
(Hardingham et al., 2010)], responses believed to be produced by
the release of neurotransmitter from a single presynaptic vesicle.

On the whole, the shapes of model distributions for non-
zero connection weights are consistent with the experimental
distributions of uEPSP amplitudes in rodent neocortex
(Figure 5). However, significant discrepancies were observed
in the head and tail regions of the distributions (P < 10−12,
Kolmogorov-Smirnov test). Due to the uncertainties in
electrophysiological recordings of very weak connections (below
0.1–0.25mV in the neocortex), there is still controversy regarding
the shape of the uPSP amplitude distribution in this region. Does
the distribution smoothly approach zero with decreasing uPSP
amplitude as suggested by the log-normal fit performed in Song
et al. (2005) and predicted based on the model of multiplicative
spine size dynamics (Loewenstein et al., 2011), does it increase as
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implied by the exponential distributions of spine head volumes
(Mishchenko et al., 2010; Stepanyants and Escobar, 2011) and
predicted by the unconstrained and l1 norm constrained models,
or does it have a gap near zero as predicted by the l0 model?
New, more sensitive experimental measurements are required to
provide a definitive answer to these questions.

Both models of steady-state learning described in this study
predict Gaussian decay of connection weight distributions in the
region of strong connections. Contrary to this, distributions of
uEPSP amplitudes in Figure 5 exhibit much heavier tails in the
region beyond 1mV. Several explanations have been previously
proposed in order to account for this feature theoretically.
Neurons may be operating below their critical capacity, or
individual inputs to a neuron may be non-linearly transformed
in the dendrites before they are summed in the cell body (Brunel
et al., 2004). Heavy distribution tails have also been attributed
to the fact that the number of potential presynaptic connections
received by cortical neurons, though large [N ∼ 5,000–10,000
(Lefort et al., 2009; Meyer et al., 2010)], is finite, while the
theoretical results of this study were obtained in the N → ∞
limit. In fact, numerical simulations performed for N = 500
potential inputs can lead to heavier tails of connection weight
distributions, supporting this interpretation (e.g., Figure 6D in
Chapeton et al., 2012).

It was previously shown (see Figure 5C in Chapeton et al.,
2012) that the unconstrained model provides a good fit to
the IPSP distribution reported in Holmgren et al. (2003).
Unfortunately, due to generally low counts in published PSP
data for inhibitory neurons we had to refrain from examining
such connections in this study. With future advances in
optical methods such as glutamate uncaging (Packer and
Yuste, 2011) and optogenetic tagging of genetically defined
interneurons (Kvitsiani et al., 2013), it should be possible to
study connections between multiple inhibitory and excitatory
classes. Here, significant deviations in connection probabilities
and shapes of PSP distributions from what is predicted by
the theory could reveal connection types that are not directly
involved in associative learning.

Our results show how neural networks may benefit from
the presence of a small fraction of inhibitory neurons and
connections. Figure 2 illustrates that a small fraction of
inhibitory connections increases the capacity of the neurons
for robust associative memory storage. This increase, however,
comes at the expense of the overall connection weight in the l0
model or total number of functional connections in the l1 model,
quantities that are likely to be directly related to the metabolic
cost of the brain. It would be interesting to find out how
different cortical areas balance network performance, measured
in terms of information flow or memory storage capacity, with
themetabolic cost associated with neuron firing, and number and
weight of functional synaptic connections.

In this study, it was assumed that memory recall is a dynamic
event in which activity of the network steps through a chain
of predefined states. It is well known that in binary neural
networks, such as the ones considered here, a chain of network
states will inevitably terminate at an attractor in the form
of a fixed point or a limit cycle. Hence, memory recall is

bound to lead to a frozen network state, or states of cycling
activity. With no external input, a network that is robust to
small fluctuations could remain in the attractor state over a
prolonged period of time, which is unrealistic. Thus, we think
that external input, delivered via inter-areal, inter-hemispheric,
and subcortical projections, must be responsible for reinitializing
the network activity and initiating the recall of new associative
memories.

The theoretical model presented in this study describes
the effects of associative learning on synaptic connectivity
in a steady-state of maximum memory storage capacity. We
would like to emphasize that network connectivity in such
a state need not be static. As the network is continually
learning new associative memories (while forgetting some of
the old ones) individual synaptic connections may potentiate
or depress, new synaptic connections may be created, and
the existing connections may be eliminated. Yet, the average
features of steady-state connectivity must remain constant.
What is more, these features are independent of the path
taken by the network to reach the steady-state, making the
problem theoretically tractable. Clearly, not all changes in
synaptic connectivity can be described within the steady-
state framework presented here. Changes which occur during
development (Van Ooyen, 2011), follow injury or lesion (Butz
and Van Ooyen, 2013), or accompany learning of new skills
may perturb the network from the steady-state for prolonged
periods of time (Ruediger et al., 2011). It is more difficult
to model these non-equilibrium processes, as they require
detailed knowledge of animal’s experience and the learning rules
involved.
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