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Impacts of clustering on
noise-induced spiking regularity in
the excitatory neuronal networks of
subnetworks
Huiyan Li, Xiaojuan Sun* and Jinghua Xiao

School of Science, Beijing University of Posts and Telecommunications, Beijing, China

In this paper, we investigate how clustering factors influent spiking regularity of the

neuronal network of subnetworks. In order to do so, we fix the averaged coupling

probability and the averaged coupling strength, and take the cluster number M, the

ratio of intra-connection probability and inter-connection probability R, the ratio of

intra-coupling strength and inter-coupling strength S as controlled parameters. With the

obtained simulation results, we find that spiking regularity of the neuronal networks has

little variations with changing of R and S when M is fixed. However, cluster number M

could reduce the spiking regularity to low level when the uniform neuronal network’s

spiking regularity is at high level. Combined the obtained results, we can see that

clustering factors have little influences on the spiking regularity when the entire energy

is fixed, which could be controlled by the averaged coupling strength and the averaged

connection probability.

Keywords: neuronal network of subnetworks, spiking regularity, clustering, noise, excitatory neurons

Introduction

Noise exists everywhere in biological systems. In genetic networks, random fluctuations are
inevitable as chemical reactions are probabilistic and many genes, RNAs and proteins are present
in low numbers per cell (Paulsson, 2004). Noise in genetic networks is multi-functional. It enables
coordination of gene expression across large regulons and facilitates evolutionary transitions (Eldar
and Elowitz, 2010). Meanwhile, it can also induce switches between distinct gene-expression states
(Xu et al., 2013a,b).

In neuronal networks, random fluctuations are also inevitable as random exocytosis of vesicles
containing neurotransmitters and random transmissions of ions inside and outside of the neuron.
As in genetic networks, noise also has great influences on neuronal systems (Lindner et al., 2004).
Noise can assist neurons in the detection of weak signals via a mechanism known as stochastic
resonance (Stacey and Durand, 2000, 2001), and induce synchronization in neuronal networks
(Zhou and Kurths, 2003; Wu et al., 2005). Except for these effects, noise also has great influences on
neuronal oscillatory activities (Doiron et al., 2004; Dorval and White, 2005), neuronal information
coding (Averbeck and Lee, 2006) and other neuronal dynamical behaviors (Sun et al., 2008a,b, 2010,
2011a; Ma et al., 2012; Gu et al., 2013).

In neuronal systems, neuronal information is carried by the spike trains. Firing rate and spiking
times are two important statistical quantities in the transmission process of neuronal information.
Spiking regularity characterizes regularity of interspike intervals of the spike trains, which has close
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relationship with spiking times. The more regular the interspike
intervals are, the more higher the spiking regularity is. In the
past, spiking regularity has been discussed in many literatures.
Many factors, such as noise, time delay, and synaptic couplings,
are found to have significant influences on the spiking regularity
of neuronal systems. For example, it has been found that
sodium channel noise enhances spiking regularity of neuronal
systems, while potassium channel noise decreases it (Schmid
et al., 2004a,b; Ozer et al., 2009; Sun et al., 2011b; Sun and Shi,
2014). Time delay can optimize the neuronal network’s spiking
regularity (Yang et al., 2012). And synaptic coupling also has
great influences on it, it is found that some optimal frequencies of
the time-periodic intercoupling strength could make the spiking
regularity at high level (Sun and Zheng, 2014).

In previous numerical studies, spiking regularity is
investigated mostly in single neuronal networks, such as
regular, small-world, and scale-free networks. However, our
brain cortex is a complex network. It is found to be hierarchy and
clustered (or modular) (Sporns et al., 2004; Bullmore and Sporns,
2009). Currently, some works reported that clustering could play
important roles in neuronal systems. For example, it has been
found to negatively correlate with the performance of associative
memory (Chen et al., 2011) and enhance the robustness of
self-organized criticality in neuronal networks (Wang and Zhou,
2012). In recent years, synchronization, stochastic resonance
and spiking regularity of clustered neuronal networks has been
discussed in a few literatures (Sun et al., 2011b; Yu et al., 2011;
Batista et al., 2012a,b). However, studies about influences of
clustering on neuronal dynamics are less. Considering the
important roles of clustering in neuronal systems, effects of
clustering on neuronal dynamics of clustered neuronal networks
should be discussed. Here, we pay attention to discuss effects of
clustering on spiking regularity of clustered neuronal networks.

In the present paper, we will focus on discussing effects of
clustering, measured by R, S (which are illustrated in the coming
contents) and the cluster number M on spiking regularity in
neuronal network of subnetworks (clustered neuronal networks).
We use computer simulations to address this subject in the
following contents. In the coming section, network structure is
illustrated first, and then mathematical models of the discussed
clustered neuronal network are presented, at last we introduce
a measure to quantify the neuronal networks’ spiking regularity.
In the Section Results, we investigate effects of clustering on the
spiking regularity in details. Finally, Discussions and Summary of
the paper are presented.

Materials and Methods

Clustered Structure of Neuronal Networks
In this paper, neuronal network is considered to have clustered
structure. It totally contains N excitatory neurons, which are
divided into M subnetworks equally. Namely, there are N/M
neurons in each subnetwork. Here we set N = 200. Neurons
inside the network are linked randomly. Neuron pairs in the same
subnetwork are linked with the probability pin, while neuron
pairs from different subnetworks are linked with the probability
pout . Higher values of R = pin/pout favor connections within

a local subnetwork over non-local connections. In this paper,
the quantities pin and pout are chosen so that the connection
probability between excitatory neurons remained 0.05 when
averaged across all pairs (Kumar-Litwin and Doiron, 2012).
pin and pout are named as intra-connection probability and
inter-connection probability here, respectively. In Figure 1, an
example of the considered network topology is shown. In
this figure, which serves illustrative purposes, there are four
subnetworks, each consisting of 10 neurons. Neurons inside each
subnetwork connected with each other with the probability pin
and neurons from different subnetworks connected with each
with the probability pout . Here the ratio R = pin/pout is taken
as 15 and the connections probability between all neuron inside
the whole network is taken as 0.15. In Figure 1, the connections
inside subnetworks are thicker than the connections between
different subnetworks. This indicates that the coupling strength
of neurons inside subnetworks is larger than the coupling
strength of neurons between different subnetworks, which will
be illustrated in details in the following contents.

Mathematical Models of the Clustered Neuronal
Network
The FitzHugh–Nagumo(FHN) model (Fitzhugh, 1961; Nagumo
et al., 1962) is used to describe the local single neuron, and
the equations of the clustered neuronal network are present as
followings:







εẋi = xi −
x3i
3 − yi +

N
∑

j=1
Jijgij

(

xj − xi
)

ẏi = xi + ai + Dξi (t)

where x represents the action potential and is a fast variable, y
represents the slow recovery variable. The subscript i represent
the i-th neuron inside the clustered network. The time separation
between fast and slow variable is determined by the small
quantity ε, which is set as 0.01. The matrix J = (Jij) is a
connection matrix of the neuronal network: Jij = 1 if neuron i
connects to neuron j; Jij = 0 otherwise.

gij is the coupling strength between the i-th neuron and the
j-th neuron. gij is set to be gin if the i-th neuron and j-th neuron
are in the same subnetwork, otherwise it is set to be gout . The
ratio S = gin/gout is taken as another clustering measure. The
quantities gin and gout are chosen so that the averaged coupling
strength between excitatory neurons is kept as g, value of g is
given in the following contents. ξi (t) is Gaussian noise with

〈ξi (t)〉 = 0 and
〈

ξi (t) ξj

(

t‘
)〉

= δijδ
(

t − t‘
)

(Fox, 1989; Li et al.,

2012). And D is the noise intensity of ξi (t).
For a single FHN neuron without any external stimulus, it

is at an excitable state if ai > 1. In this paper, we let all ai
being larger than 1.0 and uniformly distributed in the interval

(1.0, 1.1) (ai ∼ U (1.0, 1.1)). Namely, all neurons inside the
networks are at their steady states and do not generate any firing
pulses in the absence of external noise ξi (t).

Stochastic Euler algorithm is applied in the simulation process
with time step being 0.001 and the Gaussian noise ξi (t) is
generated by using Box–Mueller algorithm (Knuth, 1969; Fox,
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FIGURE 1 | Schematic presentation of the considered network

architecture. The whole network consists of M = 4 subnetworks,

each containing 10 neurons. Neurons inside each subnetwork

connected with each other with probability pin and neurons from

different subnetworks connected with each with probability pout.

Here the ratio R = pin/pout is taken as 15 and the connections

probability between all neuron inside the whole network is taken as

0.15.

1989). The initial values are set as xi (0) = 0, yi (0) = 0. In
the followings, we will take the parameters R, S, M as controlled
parameters to study effects of clustering on spiking regularity
of the excitatory neuronal network of subnetworks. And the
clustering measures R, S are always larger than 1. All the results
are averaged by 10 realizations.

Measure of Spiking Regularity
In order to quantitatively characterize spiking regularity of the
neuronal networks, we introduce ameasure λ, which is defined as

λ =
1

N

N
∑

i=1

λi

Here, N is the total number of neurons in the neuronal network.
λi is the reciprocal of the coefficient of variation and it can
quantify the regularity of spike timing in a neuron (Gerstner et al.,
2014). λi is formulated as

λi =

〈

Ti,k

〉

√

〈

Ti,k
2
〉

−
〈

Ti,k

〉2

where Ti,k = ti,k+1 − ti,k represents the inter-spike interval
with ti,k denoting the time of the k-th spike of the i-th neuron;

〈

Ti,k

〉

and
〈

Ti,k
2
〉

denote the mean and the mean squared inter-
spike intervals, respectively. Spiking times are defined by the
upward crossing of the membrane potential V past a certain
value Vth (here Vth is taken as 0 mV). Note that the threshold
value can vary in a wide range without altering the results.
Larger λ indicates higher spiking regularity of the entire neuronal
network.

Results

Before discussing effects of clustering parameters S, R, andM on
spiking regularity, we first study how coupling strength affects
it in an uniform neuronal network. Here the uniform neuronal
network indicates the neuronal network without clusters. With
the aid of results about dependence of spiking regularity on the
coupling strength g, we could have a deep understanding of
effects of clusterings on the neuronal network’s spiking regularity.

Dependence of Spiking Regularity on the
Averaged Coupling Strength G in Uniform
Neuronal Networks
Dependence of spiking regularity of the uniform neuronal
networks on the averaged coupling strength g for various values
of noise intensity D are exhibited in Figure 2. From Figure 2,
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we can see that for each D, there exist some optimal values of
g at which the uniform neuronal networks generate neuronal
firing activities with higher spiking regularity. For example, when
D = 0.015, with the averaged coupling strength g increasing, λ
increases first and then decreases, with a maximum of λ appears
at about g = 0.01.

Figure 3 shows three typical spatiotemporal patterns observed
in the neuronal network for different values of the coupling
strength g, here D = 0.015. Obviously, the coupling
strength can give great influences on firing behaviors of
neuronal networks. When the coupling strength g is small,
the spatiotemporal firing patterns are turbulent (or disordered),
as illustrated in Figure 3A. This is because neurons generate
firings almost by their own way when the coupling strengths
between them are weak. However, when the coupling strength

FIGURE 2 | Dependence of spiking regularity of the uniform neuronal

networks on the coupling strength g for various values of noise

intensity D.

g = 0.01, as shown in Figure 3B, neurons generate spikes
synchronously and the interspike intervals are nearly equivalent.
If we further increase coupling strength g (for example
g = 0.025), neurons inside the neuronal network still keep
synchronous, but the interspike intervals become irregular,
which leads spiking regularity being lower, as exhibited in
Figure 3C.

In the followings, we take D = 0.015. And in order to
investigate effects of clusterings on the spiking regularity, we
set the coupling strength g as 0.004, 0.01, 0.025, respectively.
Namely, we will investigate whether clustering factors have
different effects when the neuronal networks are at different
spiking regularity states, as shown in Figure 3.

Effects of Clustering Measure M on the Spiking
Regularity
From this subsection, we begin to discuss effects of clusterings on
the neuronal networks’ spiking regularity. Firstly, we investigate
how the cluster number M influents it. Here, the ratio R =

pin/pout is set as 20 and the ratio S = gin/gout is set as
30. Figure 4 exhibits dependence of the spiking regularity λ

on cluster number M for three different coupling strength g.
As discussed in the above subsection, the uniform neuronal
networks’ spiking regularity is lower when g = 0.004 and
0.025, while they could take almost highest spiking regularity
when the coupling strength g is optimal, for example g = 0.01
when the noise intensity D = 0.015. From Figure 4, we can
see that when the neuronal network has clustered structures,
the spiking regularity measured by λ decreases with M for
g = 0.01, and it does not change too much for g = 0.004
and 0.025. In order to observe the dependence of spiking
regularity on M clearly, nine spatiotemporal patterns for three
different values of M with g = 0.004, 0.01, and 0.025 are
presented in the Figure 5, respectively. In the Figure 5, M is

FIGURE 3 | Spatiotemporal patterns of the uniform neuronal networks for different coupling strength g. (A) g = 0.004; (B) g = 0.01; (C) g = 0.025. Here

D = 0.015.
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FIGURE 4 | Dependence of spiking regularity λ on the cluster number

M for three different values of coupling strength g. Here D = 0.015,

R = 20, and S = 30.

taken as 5 for Figures 5A,D,G, 10 for Figures 5B,E,H, and 20 for
Figures 5C,F,I. For g = 0.004 and 0.025, the interspike intervals
of each neuron observed from the corresponding spatiotemporal
patterns shown by the Figures 5A–C,G–I are always irregular no
matter what value ofM takes. It indicates the clustered neuronal
networks’ spiking regularity always stay at lower levels, i.e., M
has little influences on the spiking regularity in these cases. For
g = 0.01, with increasing of clustering numberM, the interspike
intervals of each neuron change from regular to irregular as
exhibited by Figures 3B, 5D–F, which indicates decreasing of
spiking regularity of the clustered neuronal network. With these
obtained results, we can see that the cluster number M could
have some influences on the spiking regularity just when the
uniform neuronal networks are at high levels (rf. g = 0.01).
Furthermore, compared the spatiotemporal patterns exhibited
in Figure 3 with the corresponding ones shown in Figure 5,
we can see that the spatiotemporal patterns are split into more
and more stripes with increasing of clustering number M.
Here, we take Figures 3B, 5D–F with g = 0.01 as examples.
Compared with Figure 3, we can clearly see five strips in
Figure 5D where M = 5. And with M increases further to
10 and 20, the strips in the spatiotemporal patterns increase
to 10 and 20 correspondingly, as shown in Figures 5E,F. In
fact, every strip region indicates one cluster. Because inter-
coupling strength is large enough and larger than intra-coupling
strength, neurons inside each cluster are synchronized with
each other but not synchronized with other neurons from
other clusters. This is why we can clearly observe strips in
Figures 5D–F.

With the introduction of clusters, the ratio of the intra-
connection probability pin to the inter-connection probability
pout and the ratio of the intra-coupling strength gin to the
inter-coupling strength gout are also introduced. Therefore, we
may wonder how these two clustering factors affect the spiking
regularity? In order to give answer to this question, we will focus
on discussing effects of R, S on λ in details in the following
subsection.

Effects of Clustering Measures S and R on the
Spiking Regularity
Dependences of spiking regularity on the clustering factors R and
S are presented by Figures 6, 7, respectively. In the Figures 6A,
7A, variations of λ on R and S for M = 2 are exhibited. From
these two figures, we can see that λ just has small fluctuations
when R and S changes for g = 0.004 and 0.01. WhenM = 2, for
g = 0.025, combined with other clustering factors, the spiking
regularity decreases with R quickly and then stays at a low level,
as shown in Figure 6A; And the spiking regularity increases a
little with S at first and then decreases to a low level, as shown
in Figure 7A. When M = 4, we observe similar phenomena as
M = 2, detailed simulation results are shown in Figures 6B, 7B.
From these results, we can see that the clustering factors R and
S has little influences on the spiking regularity. It means that for
the current clustered neuronal networks, the averaged coupling
strength g and the averaged connection probability p play the
dominant role on controlling the spiking regularity. When we
keep these two parameters being constants and just change the
allocations between intra and inter connections, the spiking
regularity of the whole clustered neuronal networks does not vary
too much and is almost determined by values of parameters g
and p.

Discussions and Summary

In neuronal systems, synchronous firings of neurons is another
important non-linear phenomenon and has been discussed in
many literatures in the past. Interacting neurons may exhibit
different forms of synchrony, such as complete synchronization,
phase synchronization of spikes and bursts (Hu and Zhou, 2000;
Vreeswijk and Hansel, 2001; Dhamala et al., 2004; Belykh et al.,
2005; Wang et al., 2009). For complete synchronization, standard
deviation of membrane potential of neurons is usually used to
quantify a neuronal system’s synchrony (Wang et al., 2009).
While for phase synchronization, order parameter is the mostly
used measure (Hu and Zhou, 2000; Vreeswijk and Hansel, 2001;
Dhamala et al., 2004; Belykh et al., 2005). In this paper, we
discuss about spiking regularity quantified by the reciprocal of
the coefficient of variation of interspike intervals. The measure
we used here can quantify the width of the interval distribution,
then in turn can quantify how regular of the interspike intervals.
Thus, the measure we used here is different from the other
measures which is used to quantify synchronous firing activities.
In fact, from the obtained results we can also see the difference
between spiking regularity and synchronous firings. As shown
in Figures 3B,C, neuronal network exhibits synchronous firings
but spiking regularity of these two spatiotemporal patterns is
different, one has high spiking regularity (Figure 3B) and the
other’s spiking regularity is low (Figure 3C). Namely, lower
spiking regularity of a neuronal network does not indicate less
synchrony; And higher synchronous firings also does not imply
higher spiking regularity. This relationship between synchronous
firings and spiking regularity of neuronal network has also been
reported in other works (Hu and Zhou, 2000).

In this paper, we investigate how clustering factors influent
spiking regularity of neuronal networks. FitzHugh–Nagumo
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FIGURE 5 | Spatiotemporal patterns of the clustered neuronal networks for different cluster number M. (A–C) g = 0.004; (D–F) g = 0.01; (G–I) g = 0.025.

Here D = 0.015, R = 20, and S = 30.

models are used as building blocks here. In order to investigate
the clustering effects, we fix the averaged coupling probability p
and the averaged coupling strength g. Then we take the cluster
number M, the ratio of intra-connection probability and inter-
connection probability R, the ratio of intra-coupling strength
and inter-coupling strength S as controlled parameters to discuss
effects of clusterings on the spiking regularity.

In order to have a deep understanding on the clustering
effects, we first presented dependence of the spiking regularity
of an uniform neuronal network (i.e., there is no clusters inside
the neuronal network) on the averaged coupling strength g
for different values of noise intensity D. From these results,
we found that the uniform neuronal network exhibited three
typical spatiotemporal patterns, two of them with low spiking
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FIGURE 6 | Dependence of spiking regularity λ on the ratio R for three different values of coupling strength g with M = 2 (A) and M = 4 (B). Here

D = 0.015, S = 30. (colored on line).

FIGURE 7 | Dependence of spiking regularity λ on the ratio S for three different values of coupling strength g with M = 2 (A) and M = 4 (B). Here

D = 0.015, R = 20. (colored on line).

regularity. We started from these three spatiotemporal patterns
to discuss how clusterings influent spiking regularity of the
clustered neuronal network. By introducing clusters inside the
neuronal network, we found that the cluster number M could
have great influences on the spiking regularity when the uniform
neuronal network’s spiking regularity stays at high level. While
when we fix the cluster number M and varies the two ratios
R and S (note that the average coupling strength g and the
averaged connection probability p are fixed), we found that these
two parameters has little influences on the spiking regularity.

Combined with the obtained results, we found that spiking
regularity of the clustered neuronal networks is almost controlled
by the averaged coupling strength g and the averaged connection
probability p.
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