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For optimal action planning, the gain/loss associated with actions and the variability in

motor output should both be considered. A number of studies make conflicting claims

about the optimality of human action planning but cannot be reconciled due to their use

of different movements and gain/loss functions. The disagreement is possibly because of

differences in the experimental design and differences in the energetic cost of participant

motor effort. We used a coincident timing task, which requires decision making with

constant energetic cost, to test the optimality of participant’s timing strategies under four

configurations of the gain function. We compared participant strategies to an optimal

timing strategy calculated from a Bayesian model that maximizes the expected gain.

We found suboptimal timing strategies under two configurations of the gain function

characterized by asymmetry, in which higher gain is associated with higher risk of zero

gain. Participants showed a risk-seeking strategy by responding closer than optimal to

the time of onset/offset of zero gain. Meanwhile, there was good agreement of the model

with actual performance under two configurations of the gain function characterized by

symmetry. Our findings show that human ability to make decisions that must reflect

uncertainty in one’s own motor output has limits that depend on the configuration of

the gain function.

Keywords: decision making, risk-sensitivity, Bayesian decision model, response variance, coincident timing task

Introduction

In highly skilled movement, especially in sports, decision making is important for superior
performance. For example, a tennis player requires a spatial action plan about where in a court
they should aim; a ski jumper requires a temporal action plan about when they should take off. An
executed action is associated with a gain/loss. In ski jumping, the take-off jump should be as close
to the edge of the ramp as possible to get the best jump length, while take-off too early or too late
decreases jump length (Müller, 2009). However, in whatever action they plan, an executed action is
not always equal to the planned one because of motor variability (Schmidt et al., 1979; Kudo et al.,
2000; van Beers et al., 2004). Thus, both gain/loss associated with action and uncertainty in motor

output should be considered for better decision making.
The mathematical method for selecting an optimal plan under conditions of limited uncertainty

is known as statistical decision theory (Berger, 1985; Maloney and Zhang, 2010). In particular,
Bayesian decision theory, which is a part of statistical decision theory, is a method for optimizing
the expected gain/loss.The expected gain/loss is calculated by integrating the gain/loss function
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assigned to a certain action over a probability distribution of an
executed action given a planned action. The Bayesian decision
maker plans the action that optimizes the expected gain/loss
for any combination of gain/loss function and motor variability
(Hudson et al., 2012).

Previous motor control studies have evaluated the optimality
of human motor decision making by comparing Bayesian ideal
performance with actual human performance (Trommershäuser
et al., 2003a,b, 2005; Wu et al., 2006; Hudson et al., 2012; O’Brien
and Ahmed, 2013). Some reports have concluded that humans
can plan actions that are optimal when considering their own
motor variability (Trommershäuser et al., 2003a,b, 2005; Hudson
et al., 2012), while other reports have concluded that humans
cannot compute the movement strategy that maximizes the
expected gain in the presence of such variability (Wu et al.,
2006; O’Brien and Ahmed, 2013). Thus, there is inconsistency
in published claims concerning the optimality of human action
planning.

Two possible factors,—differences in experimental design,
and differences in energetic cost—could account for this
inconsistency. First, previous studies have reported optimal
or suboptimal action plans with different movements and
different configurations of the gain function. For example,
Trommershäuser et al. (2003a,b, 2005) and Hudson et al.
(2012) have demonstrated optimality in a pointing plan under
a gain function in which the magnitude of gain/loss remains
constant. In contrast, O’Brien and Ahmed (2013) have shown
suboptimal reaching and whole-body movement strategies under
an asymmetric gain function in which seeking higher values of
gain brings participants closer to scoring zero gain (“falling over
the cliff”). Therefore, we cannot directly evaluate the relationship
between the optimality of the action plan and the configuration
of the gain function because the experimental designs among
previous studies differed.

Second, previous studies have mainly treated pointing or
reaching movement as executed action (Trommershäuser et al.,
2003a,b, 2005; Wu et al., 2006; Hudson et al., 2012; O’Brien and
Ahmed, 2013). In reaching and pointing movements, energetic
cost is proportionally larger as the distance of the required
movement is made longer. Because large energetic cost requires
participant large effort, energetic cost could be a factor disturbing
the measured optimality of action strategies. For example,
Hudson et al. (2012) have reported that a discrepancy between
ideal and actual performance emerged when optimal but large-
cost movements were required during obstacle avoidance (i.e.,
large excursions).

Here, we used a coincident timing task requiring decision
making and compared the Bayesian ideal performance with
actual human performance under four different configurations
of gain function including those used O’Brien and Ahmed
(2013). In the coincident timing task, energetic cost is constant
because the participant just presses a button whatever strategy
he/she selects. Thus, we can directly evaluate the relationship
between the optimality of action plans and the configuration
of the gain function excluding the factor of energetic cost
as a possible reason for any discrepancy found. We, in fact,
found good agreement between the ideal timing strategy and
the actual strategy under a symmetric configuration. However,

a discrepancy was found under asymmetric configurations.
We will discuss possible explanations for this discrepancy.
We also observed that larger trial-by-trial compensation
occurred following miss trials than after success trials even
though the experienced response errors were of the same
magnitude.

Methods

Participants
Thirty-seven healthy right-handed adults participated in the
experiment. Sixteen participants (10 male, 6 female; mean age
28.1 ± 7.8 years) performed Experiment 1, twelve (10 male,
2 female; mean age 22.8 ± 2.8 years) participants performed
Experiment 2, and the remaining nine participants (7 male, 2
female; mean age 21.3 ± 2.2 years) performed Experiment 3. All
participants were unaware of the purpose of the experiment. This
study was approved by the Ethics Committee of the Graduate
School of Arts and Sciences, the University of Tokyo.

Experimental Task
Figure 1 shows the time sequence of our basic experimental task.
First, a warning tone was presented to ready the participants
for an upcoming trial. Then, a visual cue was presented on a
computer screen as a starting signal (14 inches, 1600×900 pixels,
refresh frequency 60Hz; Latitude E5420, Dell, Round Rock, TX,
USA). The participants were instructed to press a button after
presentation of the visual cue. The response time was recorded
as the button-press time relative to the onset time of the visual

cue. In each trial, the participants gained a point based on “gain
function,” a function that translated the response time to a certain
number of points. The details of the gain function are explained
in the following section. The foreperiod (interval between the
warning tone and the visual cue) was randomly varied between
800 and 1200ms in steps of 100ms. The target time was 2300ms
after the visual cue and was fixed throughout the experiment.
In our experiment, the target time was associated with gaining
100 points but was not necessarily the time when the participants
should respond (see below). The inter-trial interval was 2000ms.
All computerized events were controlled by a program written
with LabVIEW software (National Instruments, 2011 Service
Pack 1, Austin, TX, USA).

Experimental Condition and Procedure
In each experimental condition, the participants were required
to make a decision about when to press a button to maximize
the total gain in 100 trials. The gain for a trial was a function
of response time, termed the “gain function.” Four conditions
were tested, corresponding to different gain functions. The first
was characterized as the No Risk condition, which employed a
symmetric gain function (Figure 2A). In this condition, a gain
for a trial (G) was determined from the following equation.

G(t) =
{ 1

23 t, if t ≦ 2300

− 1
23 t + 200, if t > 2300

(1)

In the above equation, t represents a response time in
milliseconds. When the participants responded earlier than the
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FIGURE 1 | The coincident timing task. First, a warning tone is given.

After a foreperiod of random duration, a visual cue is then presented.

The participant is required to press a button after the visual cue. The

relative response time (the difference between the response interval and

the target interval) is given to the participant as feedback after every

trial.

FIGURE 2 | Experimental conditions. (A) A symmetric gain function

in the No Risk condition. A gain for a trial is determined by the

magnitude of the response time. (B) A symmetric gain function in

the Step condition. A gain of 100 points is given if the participant

responds within 400ms of the target time. (C) An asymmetric gain

function in the Riskafter condition. A gain for a trial is not given

(i.e., zero points earned), if the participant responds after the target

time. (D) An asymmetric gain function in the Riskbefore condition.

The gain function is mirror-imaged across the target response time

compared with the Riskafter condition.

target time, they received a number of points that was a positive
linear function of response interval. When the participants
responded later than the target time, they received a number of
points that was a negative linear function of response interval. A
maximum-possible one-trial gain of 100 points could be obtained
by responding exactly at the target time.

The second condition was the Step condition, which also had
a symmetric gain function (Figure 2B). In the Step condition, a
period of constant gain was on the edge of risk of zero gain both
at its start and at its termination as represented by the following
equation.

G(t) =





0, if t < 1900
100, if 1900 ≦ t ≦ 2700
0, if t > 2700

(2)

The participants received 100 points if they responded
within ±400ms of the target time. However, zero points
were given if they responded at less than target −400ms or at
more than target +400ms. We termed these eventualities “miss
trials” and when they occurred, the participants were cautioned
by an unpleasant alarm and a flashing red lamp on the screen.
The volume of the alarm was 71.5± 0.4 dB.

The third condition was characterized as the Riskafter
condition, which employed an asymmetric gain function
(Figure 2C). In the Riskafter condition, single-trial gain rose
linearly as the target time approached, then plunged to zero after
the target time and then remained zero thereafter as represented
by the following equation.

G(t) =

{
1
23 t, if t ≦ 2300

0, if t > 2300
(3)

Earlier than the target time, the gain function looks the same as
that in the No Risk condition. However, zero points were given if
the participants responded after the target time. If they missed,
they received the same penalty as in the Step condition. This
configuration has been used in O’Brien and Ahmed (2013).

The last condition was the Riskbefore condition in which the
gain function of the Riskafter condition is mirror-imaged across
the target time (Figure 2D). The gain for a trial was determined
from the following equation.

G(t) =
{

0, if t < 2300

− 1
23 t + 200, if t ≧ 2300

(4)

In contrast to the Riskafter condition, zero points were given
if the participants responded before the target time in the
Riskbefore condition. Again, if they missed, they received the same
penalty as in the Step condition. For trial-by-trial compensation
analysis described below, we defined miss trials as trials when the
participants received zero points, success trials as any other trials
in all four conditions. Of note, all the trials resulted in success
in the No Risk condition because the range in success trials was
enough large (i.e., it was 4600ms).

In each trial, we provided the participants with feedback
information consisting of the relative response time calculated
by response time–the target time, the gain for the trial, and
the cumulative total gain. All the participants performed 10
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trials for practice. This practice session was conducted to give
them a feel for the length of time from the visual cue to the
target time. In this session, we only provided them with the
relative response time (i.e., no gain function was applied). After
the practice session, all the participants performed 100 trials in
the No Risk condition as a first experimental session. In the
second experimental session, the participants who were assigned
to Experiment 1 performed 100 trials in the Riskafter condition.
The participants who were assigned to Experiment 2 performed
100 trials in the Riskbefore condition. Those who were assigned
to Experiment 3 performed 100 trials in the Step condition. Each
condition (No Risk and Riskbefore/Riskbefore/Step) was conducted
as separate experimental session. The participants rested for
several tens of seconds between sessions.

Before running each session, we explained the structure of
the gain function with a figure visualizing it (see Supplementary
Figure 1). Thus, the structure of the gain function was known
to the participants before testing. In the figure, following
information was also included: 100 points could be gained when
the relative response time was 0ms in the No Risk, Riskafter, and
the Riskbefore conditions, and when the relative response time
was within±400ms of the target in the Step condition. However,
the length of time from the visual cue to the target time was not
described; thus, the participants did not know that it was 2300ms.
Also, before performing the No Risk condition, the participants
did not know the gain structure that would be used in the next
condition.

We instructed them to maximize total gain in each condition.
Thus, they were required to make a decision about when to
press a button to maximize the total gain. Actual monetary
rewards/penalties were not used (see limitation related to this
experimental procedure).

Model Assumptions
We calculated the ideal strategy that maximizes the expected gain
by a Bayesian decision-theoretic approach for each participant
and for all conditions (Hudson et al., 2012). Our model consisted
of two sets and two functions. The two sets were: possible
response strategy T (motor decision), and executed response
time t (motor output). The two functions were: probability
distribution of executed response P (t|T), and gain function
G (t). Given a particular planned strategy, a particular response
is stochastically executed. This is considered the uncertainty in
motor output. In this study, we assumed that the produced
response time t is distributed around the planned response time
T according a Gaussian distribution (see Supplementary Table 1)
as follows.

P (t|T) =
1

√
2πσ

2
exp

[
−

(t − T)2

2σ2

]
(5)

Then, given execution of a particular response time, the gain is
given according to the gain functionG (t). Given both P (t|T) and
G (t), the expected gain EG (T) as a function of planned response
time T is calculated by the following equation.

EG(T) =
∫ ∞

− ∞
G(t) · P(t|T)dt (6)

Once we had measured the response variance σ for each
participant and condition, we could calculate the optimal mean
response time T∗ by maximizing Equation (6). A Bayesian
decision maker chooses a response time T∗ for any given gain
function G (t) and response variance σ. This can be regarded as a
theoretical risk-neutral optimal response.

Estimation of 95% Confidence Interval of Optimal
Response Time
Furthermore, we estimated the 95% confidence interval of
the optimal mean response time T∗ by bootstrapping (3000
resamples) for the Riskafter and the Riskbefore conditions. We
then examined whether the actual response time is within this
95% confidence interval in the Riskafter condition and in the
Riskbefore condition. In a range from σ = 0 to 0.4 in steps
of σ = 0.001, we first calculated each optimal mean response
time Xopt1(σ0),Xopt2(σ0.001), · · ·, Xopt400(σ0.4) by maximizing
Equation (6). Here focusing on Xopt1(σ0), we simulated 100 trials
of a task execution responding by this optimal mean response
time and having this response variance (in this case Xopt1 =
2300, σ = 0) using a MATLAB randn function. We repeated
this process 3000 times and obtained bootstrap samples x1 =
(x1t1, x1t2, · · · · ·, x1t100), x2= (x2t1, x2t2, · · ·, x2t100), · · · , x3000 =
(x3000t1, x3000t2, · · ·, x3000t100). For each bootstrap sample xb(b =
1, 2, · · ·, 3000), we calculated the average value of its samples
µ̂b = 1

100 ·
∑100

i=1 (xbti). After sorting these average samples
µ̂b(b = 1, 2, · · ·, 3000) in ascending order, we defined a
2.5% and a 97.5% point in these samples as the 95% confidence
interval in optimal mean response time T∗. By repeating the
above processes from Xopt1 (σ0) to Xopt400(σ0.4), we estimated the
95% confidence intervals of each optimal mean response time.

If the observed mean response times were within these 95%
confidence intervals, we would conclude that the participant
plans optimal and risk-neutral timing strategies. In the Riskafter
condition, observed times longer than the confidence intervals
would indicate suboptimal and risk-seeking strategies. Observed
times shorter than the confidence intervals would indicate
suboptimal and risk-averse strategies.

Optimal Response Times Calculated from the
Measured Distributions
Although we had confirmed that the response distributions
were Gaussian (see Supplementary Table 1), we also calculated
optimal mean response time for the Riskafter and the Riskbefore
conditions using the measured response distributions. In the
Riskafter condition (Figure 3A, upper panel), once we had
obtained the response distribution we simply shifted it back and
forth to identify the maximal total gain for that distribution
(Figure 3A, lower panel). In Figure 3A, we show the case of
shifting the measured distribution back. We defined the optimal
mean response time as the mean response time of the optimized
distribution (gray solid line in Figure 3A). The estimated optimal
mean response time was always earlier than the target time in the
Riskafter condition. The difference between the estimated optimal
response time and the target time reflected each participant’s
own variance in response time, (i.e., the larger one’s variance, the
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FIGURE 3 | Procedure for estimating optimal response time. (A)

Upper panel shows the response distribution obtained in the Riskafter
condition. The black solid line indicates the observed mean response

time and the dotted line is the target time. Lower panel shows the

distribution after shifting along the time axis to maximize total gain. The

gray solid line indicates the optimal mean response time estimated in

this way. In this case, the observed mean response time is found to

locate closer to the target time than optimal time (risk-seeking behavior),

thus the total gain was reduced by some miss trials (gray bars). (B)

Black arrow indicates the total gain (7296 points) when the distribution

in the Riskafter condition is not shifted. The distribution was shifted until

the highest total gain (8705 points; gray arrow) was obtained. This

optimal shift size is represented by the two-headed arrow. The estimated

optimal mean response time (gray solid line in A) is the sum of the

observed mean response time and the optimal shift size. Although two

distributions shown in (A) are identical, these distributions do not have

the same shape because the sample sizes included in one bin are

different between distribution in upper panel and that in lower panel.

earlier the optimal response time, and vice-versa. This effect is
visualized in Figure 5 as the solid curve).

In Figure 3B, the black arrow indicates the total gain when the
measured distribution is not shifted and the gray arrow indicates
the highest total gain possible for that distribution under shifting.
The two-headed arrows in Figures 3A,B represent the optimal
shift size.

Finally, we compared the estimated optimal mean response
times with the observed mean response times (black solid line
in Figure 3A). In this case, the observed time was closer to the
target time than optimal, indicating risk-seeking.We also applied
this approach to the Riskbefore condition.We compared themean,
as opposed to median optimal and observed times because the
measured distributions were Gaussian.

Trial-By-Trial Compensation Strategy
In addition to determining the response time strategies based
on all trials, we examined compensation against the most recent
response error based on a trial-by-trial analysis. These results
were then compared between/within the No Risk and the
Riskafter/Riskbefore conditions. The magnitude of the response
error experienced on the current trial is known to influence the
response in the following trial (Thoroughman and Shadmehr,
2000; Scheidt et al., 2001). Thus, the compensation size in the
following trial can be proportional to the current magnitude of
response error. Additionally, it has been shown that humans
adjust future motor behavior according to rewarding and non-
rewarding outcomes experienced (Wrase et al., 2007). Therefore,
in addition to the compensation strategy against response error,
we hypothesized that the compensation size following miss

trials would be larger in the Riskafter/Riskbefore conditions than
the compensation size following success trials in the No Risk
condition.

We defined the compensation on the current trial, trial n, by
subtracting the response time on the current trial, from that on
the following trial, trial n+1, as in Equation (7).

Compensationn = RTn+ 1 − RTn (7)

We supposed that the compensation occurs around mean
response time in both conditions, thus we defined response
error as response time–mean response time in this analysis. The
compensation size was anticipated to depend on the magnitude
of response error (in other words, the magnitude of deviation
between the current response time and mean response time).

To compare the compensation size on the following to
miss/success trials, we defined the absolute value of the difference
between mean response time in the Riskafter/Riskbefore condition
and the target time as “M” for convenience, and sorted
trials into following four bins, −2M < errorn ≤ −
M (bin 1),−M < errorn ≤ 0 (bin 2), 0 < errorn ≤
M (bin 3), andM < errorn ≤ 2M (bin 4) for Experiment
1 and −2M ≤ errorn < −M (bin 1), −M ≤ errorn <

0 (bin 2), 0 ≤ errorn < M (bin 3), andM ≤ errorn < 2M (bin 4)
for Experiment 2. Figure 4 shows the error distributions
separated by the bins. With these procedures, we can evaluate
the compensation sizes based on same magnitude of response
error between conditions. Scaling by “M” also allows data from
different participants to be combined. The last bin in Experiment
1 and the first bin in Experiment 2 are in the areas that result
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FIGURE 4 | Procedure of trial by trial analysis. Upper panel shows

the response error distribution obtained in the No Risk condition.

Lower panel shows the response error distribution obtained in the

Riskafter condition. The value of “0” in the x-axis corresponds to

mean response error in both conditions. For comparable analysis

between conditions, we sorted trials into four bins separated by the

range “M.” “M” indicates the absolute value of the difference

between mean response time in the Riskafter/Riskbefore condition and

the target time. It allows data from different participants to be

combined. The average value of “M” across the participants was

153.8 ± 42.4 in Experiment 1 and 194.5 ± 40.5 in Experiment 2.

In this example, bin 4 (i.e., the range: M < errorn ≤ 2M) was the

area of miss trial in the Riskafter condition. In contrast, the same

bin was the area of the success trial in the No Risk condition. We

especially focused on the compensation size following to errors

included in these ranges.

in miss trials in the Riskafter/Riskbefore conditions. Errors −2M
or less and more than 2M in Experiment 1 and errors less
than−2M and 2M or more in Experiment 2 were excluded from
the analysis because only small numbers of trials were obtained
within these ranges. We collected errors on trial n in each bin and
calculated the average compensation size in each bin. Repeating
this procedure for each participant and condition, we compared
the average compensation size across the participants against the
magnitude of response error between/within conditions for each
bin. Because the distributions of the compensation sizes across
the participants were Gaussian (see Supplementary Table 2), we
calculated the average value.

Statistical Analysis
We conducted paired t-tests to examine the significance of
differences between optimal and observed values for response
time and total gain in all conditions. We also conducted two-
way repeated-measures ANOVA to determine differences in trial-
by-trial compensation strategy between the No Risk condition
and the Riskafter/Riskbefore conditions. A p < 0.05 was regarded
as statistically significant. Cohen’s d measure for the t-test was
calculated to determine the magnitude of mean differences.

Trials with response times more than ±2.5 standard
deviations from the mean were excluded from the analysis
as outliers. Average number of trials excluded across the
participants and two conditions was 2.4 ± 1.5 in Experiment 1,
2.3± 1.3 in Experiment 2, and 1.7± 0.7 in Experiment 3.

FIGURE 5 | The participants adopt a risk-seeking strategy. (A) Results in

the Riskafter condition, one dot of each color corresponds to a participant.

Theoretically, the optimal mean response time must be shorter than the target

time as an increasing function of the variability of one’s response time (the

x-axis shows the SD of the response time in the Riskafter condition as an index

of this variability). However, the observed mean response times (filled circles)

are closer to the target time than optimal. Thus, a discrepancy is seen

between actual strategy and the ideal strategy. Open circles indicate optimal

mean response times estimated by shifting the participant’s actual response

time distributions. Black curve indicates the optimal mean response time

estimated by a Bayesian model (Equation 6). Gray curves indicate the 95%

confidence intervals of the optimal mean response times, which were

calculated by 3000 replications of a bootstrap algorithm. The optimal response

times estimated from the actual distributions locates roughly within the 95%

confidence intervals. (B) Results in the Riskbefore condition. The same

risk-seeking behavioral tendency is observed. In this condition, the optimal

mean response time must be longer than the target time as an increasing

function of response variability. The observed response times are again closer

than optimal to the target time.

Results

Discrepancies with Optimal Strategy
We found discrepancies between the Bayesian ideal strategy and
the actual human strategy in the Riskafter and the Riskbefore
conditions. The observed mean response times and the optimal
mean response times calculated from the measured distributions
were plotted against the standard deviation (SD) of response
time in the Riskafter condition for all 16 participants (Figure 5A).
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The optimal mean response times calculated by the Bayesian
model and their 95% confidence intervals were also plotted. As
shown in Figure 5A, the optimal mean response time moves
further from the target time as response variance increases.
However, for all participants, except one, the observed mean
response time was closer to the target time than the optimal mean
response time calculated either from the Bayesian-theoretical
95% confidence interval or from the measured distribution. This
result suggests that the participants took higher-than-optimal
risks given their own variance in response time, which is classified
as a suboptimally risk-seeking tendency.

The participants were also suboptimal in the Riskbefore
condition in the sense that they were in general faster to
respond than predicted by the optimal model (Figure 5B). In
the Riskbefore condition, the optimal time is later than the target
time. We found that all 12 participants responded closer to the
target time than the Bayesian-theoretical 95% confidence interval
for the optimal mean response time and the optimal response
time calculated from themeasured distribution. Therefore, a risk-
seeking strategy was shown under an asymmetric gain function
regardless of the location of the penalty region.

We also found that the SD of the response time was
significantly correlated with that of the observed mean response
time in the Riskbefore condition (r = 0.59, p < 0.05; but was
not significantly correlated in the Riskafter condition, r = −0.36,
p = 0.17). Thus, in the Riskbefore condition, participants who
had large response variance responded further to the target
time than those who had small variance. This result raises a
possibility that our participants might have chosen response
times reflecting the size of their own response variance. However,
their timing strategy was not optimal from the perspective of
Bayesian decision theory.

The Effect of the Symmetry of the Gain Function
Actual human strategy agreed with the Bayesian ideal strategy
under a symmetric gain function. We compared the optimal
mean response time estimated by the Bayesian model with the
observed mean response time in all four conditions (Table 1).
Paired t-tests showed that across participants, the optimal mean
response time was not significantly different from that observed
in the No Risk [t(36) = −0.08, p = 0.94, d = −0.02] and the
Step conditions [t(8) = 1.76, p = 0.12, d = 0.87]. However,
the observed mean response time in the Riskafter condition

was significantly longer than the optimal mean response time
[t(15) = − 8.00, p < 0.001, d = −2.35], and was significantly
shorter in the Riskbefore condition [t(11) = 6.68, p < 0.001, d =
2.04]. Thus, the participants planned optimal timing strategies
only under symmetric gain functions.

Looking at total gain, the average value of the observed total
gain across participants was not significantly different from that
of the optimal total gain in the Step condition [t(8) = −0.33,
p = 0.75., d = −0.08]. The average observed total gain was
significantly smaller than the average optimal gain in the No Risk
[t(36) = 2.38, p < 0.05, d = 0.14], the Riskafter [t(15) = 7.14, p <

0.001, d = 1.61], and the Riskbefore [t(11) = 6.68, p < 0.001, d =
0.65] conditions. Although the total gain was significantly smaller
than the optimal gain in the symmetric No Risk condition, its
effect size was apparently small compared with the asymmetric
Riskafter and Riskbefore conditions. Taken together, we confirm
that an optimal strategy for maximizing expected gain could be
computed under a symmetric gain function, but not under an
asymmetric gain function.

Learning Effects on Timing Strategy
We analyzed timing strategy on a whole block of 100 trials
and showed its suboptimality in the Riskafter and the Riskbefore
conditions. However, there is a possibility that the participants
gradually learned the strategy thorough trials. To investigate
this possibility, we compared the mean response time over
the first 50 trials with the mean over the last 50 trials across
participants. Paired t-tests showed that early and late mean
response times were not significantly different in the Riskafter
condition [t(15) = 1.48, p = 0.16] and the Riskbefore
condition [t(11) = 0.53, p = 0.61]. Furthermore, we conducted
paired t-tests in each participant excluding trials that were
classified as outliers. The results showed that early and late
mean response times were significantly different for only 1
out of 16 participants in the Riskafter condition [t(47) =
2.10, p < 0.05 for P13], and for 2 out of 12 participants
in the Riskbefore condition [t(47) = −2.76, p < 0.01
for P18; t(47) = 2.68, p < 0.01 for P22]. Therefore,
we concluded that participants did not learn timing strategy
through trials. This result is consistent with previous studies
claiming no evidence of learning effects on movement plans
(Trommershäuser et al., 2003b, 2005; Wu et al., 2006; O’Brien
and Ahmed, 2013).

TABLE 1 | Suboptimal strategies are adopted under asymmetric gain functions.

Condition N Optimal response Observed response Effect Optimal total Observed total Effect

time (ms) time (ms) size (d) gain (point) gain (point) size (d)

Symmetry No risk 37 2300.0± 0.0 2300.9± 72.9 −0.02 9104.0± 216.0 9070.6± 245.8* 0.14

Step 9 2300.0± 0.0 2285.3± 23.9 0.87 9585.6± 158.4 9600.0± 194.4 −0.08

Asymmetry Riskafter 16 2029.5± 56.1 2146.2± 42.4*** −2.35 8382.7± 347.8 7686.8± 501.3*** 1.61

Riskbefore 12 2611.8± 69.9 2495.2± 40.3*** 2.04 8160.6± 442.3 7833.8± 556.9*** 0.65

Optimal response time and optimal total gain were calculated with a Bayesian model (Equation 6). There is no significant difference between observed and optimal response times in

the No Risk and Step conditions (symmetric gain functions), but there is a significant difference in the Riskafter and Riskbefore conditions (asymmetric gain functions). All data shown are

averages across the participants ± standard deviation of the mean. * indicates p < 0.05 and *** indicates p < 0.001.
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Trial-by-trial compensation strategy
We then compared trial-by-trial compensation strategies
between the No Risk and the Riskafter/Riskbefore conditions. To
this end, in Figure 6A we plotted the average compensation
size across participants against the magnitude of response
error on the previous trial in Experiment 1. We performed
two-way repeated-measures ANOVA on the compensation
size. The levels were condition (2: Riskafter condition and
No Risk condition) and bin (4: bin 1–4). We found a main
effect of bin [F(1.63, 24.46) = 185.02, p < 0.001]. Thus, the
average compensation size changed based on the experienced
response error. Furthermore, we also found an interaction
effect [F(2.23, 33.52) = 6.36, p < 0.01] and a simple main effect
of condition in bin 4 [F(1, 15) = 10.78, p < 0.01], but not
in any other bins [Fs(1,15) < 4.16, ps > 0.05]. Of note, miss
trials in the Riskafter condition are included in bin 4 (i.e., the
range: M < errorn ≤ 2M). Moreover, in bin 4, the average

compensation size in the Riskafter condition was significantly
larger than that in the No Risk condition [t(15) = −3.28,
p < 0.01, d = −1.03]. These results suggest that the participants
used statistically the same compensation strategy following
success trials (bins 1–3 in both conditions), but compensated
more strongly following miss trials (bin 4 in the Riskafter
condition) compared with success trials (bin 4 in the No Risk
condition), even though response errors in both bins were of the
same magnitude (see Supplementary Figure 2).

Larger compensation after misses was also seen in Experiment
2 (Figure 6C). Again, we performed two-way repeated-measures
ANOVA on the compensation size. We found a main effect of
bin [F(1.59, 17.48) = 192.30, p < 0.001] and an interaction effect
[F(3, 33) = 4.12, p < 0.05]. We also found a simple main effect of
condition in bin 1 [F(1, 11) = 6.90, p < 0.05], but not in any other
bins [Fs(1, 11) < 2.70, ps > 0.05]. Bin 1 (i.e., the range: −2M ≤
errorn< M) is in the area of miss trials in the Riskbefore condition.

FIGURE 6 | Trial-by-trial compensation strategy adopted by the

participants. (A) Result of Experiment 1. Compensation based on

feedback from the previous trial depends on the magnitude of the

experienced response error. The average compensation across

participants is plotted against the magnitude of response error for

the Riskafter and No Risk conditions. A simple main effect test

reveals that the average compensation in the Riskafter condition is

to significantly shorter times than that in the No Risk condition in

bin 4 (penalty region in the Riskafter condition), which indicates that

participants overcompensate following miss trials compared with

success trials in which the magnitude of the response error is held

the same. (B) Individual data in the Riskafter condition, each

colored symbol corresponds to a participant. Overcompensation also

occurred following miss trials compared with success trials within

the same Riskafter condition. Absolute value of the average

compensation size across the participants in bin 4 was marginally

significantly larger than that in bin 1. (C) Result of Experiment 2.

The same tendency is observed in the Riskbefore condition. The

average compensation in the Riskbefore condition is to significantly

longer times than that in the No Risk condition in bin 1 (penalty

region in the Riskbefore condition). (D) Individual data in the

Riskbefore condition. The absolute compensation size in bin 1 was

significantly larger than that in bin4. † indicates p < 0.10, *

indicates p < 0.05, and ** indicates p < 0.01. Error bars indicate

standard error of the mean. Individual data for the compensation

size in all bins is shown in Supplementary Figure 3.
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Similarly to Experiment 1, the average compensation size in the
Riskbefore condition was larger than that in the No Risk condition
in bin 1 [t(11) = 2.63, p < 0.05, d = 0.80]. Therefore, we
confirmed larger compensation following miss trials as a robust
result regardless of the location of the penalty region.

We also confirmed that larger compensation occurred within
the same Risk conditions. Paired t-test revealed that the absolute
value of the average compensation size in bin 1 was significantly
larger than that in bin 4 within the Riskbefore condition [t(11) =
3.45, p < 0.01, d = 0.91; individual data were shown
in Figure 6D]. Within the Riskafter condition, the absolute
compensation size in bin 4 was marginally significantly larger
than that in bin 1 [t(15) = −1.78, p = 0.096, d = −0.53;
individual data were shown in Figure 6B]. Magnitude of
response errors was same in bin 1 and bin 4 but sign of errors was
different. Significant difference between bin 1 and bin 4 in the No
Risk condition was found neither in Experiment 1 [t(15) = 0.75,
p = 0.47, d = 0.18] nor in Experiment 2 [t(11) = −0.41,
p = 0.69, d = −0.15].

Discussion

Summary of Results
We directly evaluated the relationship between the optimality of
action plans and the configuration of the gain function. With
the coincident timing task, we could exclude the energetic cost
factor, which might disturb an optimal action plan. Compared
with Bayesian optimal timing strategy, our participants planned
suboptimal strategies under asymmetric configurations. They
tended to respond closer than optimal to times presenting
the risk of zero gain. Under symmetric configurations, good
agreement between the observed and optimal strategies was
found. Furthermore, larger compensation occurred following
miss trials compared with success trials even though the
experienced response errors were of the same magnitude.

Suboptimal Decision Making
We investigated whether humans can calculate an optimal
timing strategy that maximizes the expected gain under four
configurations of the gain function. In the Step condition, a
constant value of gain was on the edge of risk of zero gain. The
gain function has a symmetric configuration in this condition.
Most of the relevant previous studies have used this type of
gain function and have reported optimal movement planning
(Trommershäuser et al., 2003a,b, 2005; Hudson et al., 2012).
We likewise showed that strategies were optimal in the Step
condition. In the Riskafter condition, higher values of gain come
with higher risk. We found a discrepancy between the ideal
Bayesian model and actual strategy in the Riskafter condition,
participants showing a risk-seeking strategy. Our finding is
consistent with a previous study that reports risk-seeking strategy
under a similar gain function during reaching and whole-body
movement tasks (O’Brien and Ahmed, 2013). In addition to the
Riskafter condition, we applied the Riskbefore condition in which
the configuration of the Riskafter condition was inverted with
respect to time. We confirmed a risk-seeking strategy also in the
Riskbefore condition. Therefore, these results suggest that human
action plans tend to be suboptimal under situations in which

higher values of gain occur closer to zero gain regardless of the
location of risk. On the other hand, action plans could be optimal
under situations in which a constant value of gain was close to
zero gain.

A symmetric gain configuration was applied in the No Risk
and Step conditions, while an asymmetric configuration was
applied in the Riskafter and Riskbefore conditions. Wu et al.
(2006) have investigated the endpoint of pointing movements
under both symmetric and asymmetric expected gain landscape.
Theoretically, the optimal endpoint in that study lay within the
target circle under a symmetric expected gain landscape but
lay within the penalty circle and did not cover the target circle
under an asymmetric expected gain landscape. These researchers
showed that an intuitive strategy to aim within the target circle
could be adopted, but a counterintuitive strategy to aim within
the penalty circle could not be adopted. Even in our experiment,
the participants might not easily detect when they should press
a button because optimal response time depends on response
variance under an asymmetric configuration of the gain function.
Therefore, our findings indicate a limitation on information
processing and computational ability in decision making under
uncertainty in motor output as well as in economic decision
making (Simon, 1956).

Distortion of Subjective Value
In the field of behavioral economics, prospect theory (Kahneman
and Tversky, 1979) and cumulative prospect theory (Tversky
and Kahneman, 1992) claim that irrational decision making is
caused by a distortion of probability weighting from the actual
probability and a distortion of subjective utility from the actual
gain/loss. Prospect theory gives two reasons for risk-seeking
behavior.

One reason would be an inappropriate estimation of the
participant’s own variance in response time (Wu et al., 2009;
Nagengast et al., 2011; O’Brien and Ahmed, 2013). Wu et al.
(2009) have shown that participants under-weighted small
probabilities and over-weighted large probabilities when they
made a decision whether to point to a riskier target bar or a
safer target bar. O’Brien and Ahmed (2013) have also shown a
similar distortion of probability weighting during a reaching task.
These reports indicate that our participants might have believed
that they had smaller response variability than they actually
did. Such an inappropriate estimation of their own variance
would have influenced them to approach the penalty zone
more closely.

Before performing the Riskafter/Riskbefore condition,
participants had only experienced 100 trials in the No Risk
condition. Thus, they may not have had enough experience
with the task to know their own response variance, but the
report of Zhang et al. (2013) calls into question the idea that
more practice would have helped. These researchers have shown
that the distribution of a reaching endpoint was recognized
as an isotropic distribution rather than the actual anisotropic
distribution, and that this inaccurate estimation persisted
even after extensive practice. This report indicates that an
inappropriate estimation of one’s own variance is not necessarily
caused by lack of practice. Thus, the ability to recognize one’s own
variance in motor output appropriately may have limitations.

Frontiers in Computational Neuroscience | www.frontiersin.org 9 July 2015 | Volume 9 | Article 88

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Ota et al. Motor planning under temporal uncertainty

The second reason would be inappropriate evaluation of
gain/loss (Lee, 2005; O’Brien and Ahmed, 2013). Risk-seeking
in decision making arises when the subjective utility of gain
is overvalued against the objective value (Lee, 2005). Here,
higher values of gain came with a higher risk of zero gain in
the Riskafter/Riskbefore conditions. O’Brien and Ahmed (2013)
showed that most participants overvalued point reward and
undervalued point penalty under this type of gain function. This
inappropriate evaluation of gain/loss would also influence our
participants to respond closer to the point where gains of zero
began. However, we could not distinguish which distortion most
affected risk-seeking behavior using the above analyses. Thus,
our remaining issue is to specify them using other experimental
paradigms.

Trial-by-trial Analysis
We also investigated differences in trial-by-trial compensation
strategy between/within the No Risk and the Riskafter/Riskbefore
conditions. We found larger compensations following miss
trials compared with success trials between the No Risk and
the Riskafter/Riskbefore conditions with the same magnitude of
response errors (see Supplementary Figure 2). The sign of
response errors was same in comparison between the conditions.
In comparison within the Riskafter/Riskbefore conditions, we also
found that larger compensations occurred following miss trials
compared with success trials with different sign of response
errors. We assume that this is because of motivation to avoid
consecutive misses.

Error feedback is necessary for motor adaptation (motor
learning). Previous studies have investigated how the magnitude
of error influences subsequent adaptation. These studies have
reported that the size of the adaptation has a linear relationship
with the magnitude of past errors (Thoroughman and Shadmehr,
2000; Scheidt et al., 2001). Linear adaptation against error is an
element in minimizing future errors. However, recent studies
have shown that motor adaptation does not depend simply on the
magnitude of error. A nonlinear relationship has been observed
when the subjective value, directional bias, statistical properties,
and relevance of errors are experimentally manipulated (Fine and
Thoroughman, 2007; Wei and Körding, 2009; Trent and Ahmed,
2013).

In our task, the subjective value of error (Trent and Ahmed,
2013) was different between conditions. Errors over/within the
target time were cautioned in the Riskafter/Riskbefore condition,
while same magnitude of errors was not cautioned in the No
Risk condition. Trent and Ahmed (2013) have shown that
weaker adaptation and weaker error sensitivity in response
to errors further from the penalty region. This suggests that
nonlinear adaptation is an effective motor control strategy
for avoiding penalty. In our study, larger compensation was
observed in response to errors that were recognized as misses.
This suggests that the larger compensation strategy is an
effective control heuristic for avoiding consecutive misses.
This tendency was robust regardless of the location of the
penalty region. Thus, our results support the view that
compensation on the following trial is influenced not only by
the magnitude of the error but also by the subjective value of
the error.

Decision Making on the Sports Field
Risk-seeking behaviors are sometimes seen in real life on the
sports field. For example, professional NBA basketball players
attempt consecutive three-point shots after they succeed in
making a three-point shot even though the probability of further
points is decreased (Neiman and Loewenstein, 2011), possibly
due to enhanced self-confidence. NBA players are also unwilling
to shoot during an early stage of the shot clock even though
higher points per possession can be obtained by shooting
more frequently (Skinner, 2012). This is possibly because of
overconfidence about shot opportunities during later stages
(Skinner, 2012). Therefore, suboptimal decision making would
have the effect of degrading the performance of beginners as well
as of experts in a variety of sports.

Both symmetric and asymmetric gain functions are seen on
the sports field. Examples of the former occur in archery, Japanese
archery, and shooting. In these sports, a gain is distributed
symmetrically around the center of the target. Accuracy in hitting
the center of the target is a crucial factor in performance.
Examples of the latter gain functions occur in tennis, volleyball,
golf, and ski jumping. In tennis, a ball bouncing as close as
possible to the line marking the edge of the court would result
in scoring a point, while a ball bouncing beyond the line would
cost the player a point. In such a situation, appropriate decision
making about where to aim as well as the accuracy of the aim are
both critical factors. We have shown that humans cannot always
make such appropriate decisions that consider variance in motor
output. Therefore, the implication of our results for coaches and
trainers, especially in sports with asymmetric gain functions is
that it is important to fashion a risk-handling strategy optimized
for each player’s skill level.

Limitations
In this study, we compared the observed mean response time
calculated over 100 trials with the optimal mean response time
in the Riskafter/Riskbefore condition and in each participant.
Taking into account the fact that the location of the optimal
mean response times move further from the target time as
response variance increases, the observed mean response times
were closer than optimal to the target time in both conditions
(Figures 5A,B). However, a possibility remains that this observed
response time would have approached optimal if the participants
had been able to decrease their response variance through more
practice. Therefore, our remaining issue is to investigate this
possibility with a longitudinal study.

As another limitation, we instructed the participants to
maximize the total gain but we did not use an experimental
procedure giving them real monetary rewards in accordance
with their performance. This raises the possibility that real
monetary rewards would have induced risk-neutral behavior.
However, it has been shown that real and virtual rewards induced
similar performance in economic decision making (Bowman
and Turnbull, 2003), autonomic response (skin conductance
response) patterns resulted from monetary wins or loses (Carter
and Smith Pasqualini, 2004), and brain activation patterns
(Miyapuram et al., 2012). Therefore, we consider that use of real
monetary rewards would have a small effect on our participant’s
risk-seeking behavior. However, it would be interesting to
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investigate motor decision making in situations in which a one-
trial decision wins a high-priced award, such as a game-winning
shot or a tour-winning putt.
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