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A three-dimensional mathematical
model for the signal propagation on a
neuron’s membrane
Konstantinos Xylouris * and Gabriel Wittum

Department of Simulation and Modeling, Faculty of Informatics, Goethe Center for Scientific Computing, Goethe University

Frankfurt, Frankfurt am Main, Germany

In order to be able to examine the extracellular potential’s influence on network activity

and to better understand dipole properties of the extracellular potential, we present and

analyze a three-dimensional formulation of the cable equation which facilitates numeric

simulations. When the neuron’s intra- and extracellular space is assumed to be purely

resistive (i.e., no free charges), the balance law of electric fluxes leads to the Laplace

equation for the distribution of the intra- and extracellular potential. Moreover, the flux

across the neuron’s membrane is continuous. This observation already delivers the

three dimensional cable equation. The coupling of the intra- and extracellular potential

over the membrane is not trivial. Here, we present a continuous extension of the

extracellular potential to the intracellular space and combine the resulting equation with

the intracellular problem. This approach makes the system numerically accessible. On

the basis of the assumed pure resistive intra- and extracellular spaces, we conclude

that a cell’s out-flux balances out completely. As a consequence neurons do not own

any current monopoles. We present a rigorous analysis with spherical harmonics for the

extracellular potential by approximating the neuron’s geometry to a sphere. Furthermore,

we show with first numeric simulations on idealized circumstances that the extracellular

potential can have a decisive effect on network activity through ephaptic interactions.

Keywords: models, theoretical, ephaptic coupling, dipole effect, detailed 3D-modeling, 3D-modeling, cable

equation

Introduction

The membrane potential belongs to the most important quantities of a neuron. Its function of time
and space describes neuronal activity. It is a voltage across the membrane defined by the difference
between the intra- and extracellular potential.

Since the neuron is embedded in ionic milieus, potential gradients in the off-membrane spaces
result in electric fluxes, which are conserved according to the first principles. This conservation
law is the basis of the standard cable equation which describes the unfolding and propagation
of an action potential (Rall, 1962, 1964; Scott, 1975) very efficiently. The standard cable equation
maps a neuron to a tree of lines, each of which corresponds to a cylindric compartment with mean
diameter. On these structures, it computes the evolution of the membrane potential according to
its diffusion equation.
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The resulting extracellular potentials can be theoretically
computed with the line source method (Holt and Koch, 1999;
Gold et al., 2006), once the transmembrane currents have been
determined with the aid of the cable equation’s solution.

These extracellular potentials in turn can be exploited to
examine ephaptic feedbacks on other neurons (Holt and Koch,
1999). Indeed, the distribution of the extracellular potential can
elicit transmembrane currents whichmay have decisive effects on
the membrane potential of neighboring cells (Anastassiou et al.,
2011; Buzsáki et al., 2012).

The goal of the current paper is to develop and implement
an integrated three-dimensional model which synchronously
captures both quantities, the membrane potential and the
extracellular potential, during activity and which uses the
neuron’s geometry as it is instead of reducing it to cylindric
compartments. The aim of such a model is to deepen the
knowledge in signal processing and to carry out simulations
on small networks of realistic neurons while having all these
influences in action.

The work of Voßen et al. (2007) did a first step in the
development of a generalized cable equation. It was built on
the principle of the continuity of electric fluxes. Although the
core model with the intra-, extracellular and membrane potential
was correctly derived, the subsequent approach used to couple
these unknowns and to solve them numerically resulted in major
difficulties. The limit case to the standard cable equation evoked
greater challenges and the simulations themselves were restricted
to a very small time period of hundreds of micro seconds on a
small part of a passive membrane.

The study of Xylouris et al. (2010) used a more direct
approach for the coupling and generalized the existing model
to active membranes. Nonetheless, although it was capable to
reproduce action potentials, it still lacked in many characteristics
of the signal processing, like the width of the propagating
signal, the waveform of extracellular potential at activity and
the computation on more complicated geometries. Indeed,
computations on more complicated geometries diverged
numerically. Furthermore, the membrane potential’s defining
equation in Xylouris et al. (2010) was the transmembrane
current, which contains the time derivative of the membrane’s
capacitive property as only differential operator. The membrane
potential’s propagation was provided indirectly through the
difference between the intra- and extracellular potential- thus
making it actually hard to expect correct results for the spacial
distribution. Moreover, as consequence, it produced vanishing
transmembrane currents causing zero extracellular potentials
and zero ephaptic interactions. This is why, the solving procedure
with this direct coupling was of little use.

This paper introduces a completely new coupling of the
unknowns. Therein, the defining equation for the membrane
potential contains its own spacial differential operator. For the
first time, we could carry out simulations on three-dimensionally
resolved ideal neurons and on a small network of cells. This
description, furthermore, allows for a proof that the extracellular
potential distributes in the extracellular space like a current
multipole. It will show that the only current monopole for a
neuron exists at rest.

Model

Three-Dimensional Cable Equation
Let �in and �out be domains in R

3 denoting the neuron’s
intra- and extracellular space, respectively, and �̄in ∩ �̄out =
Ŵ the membrane, a two dimensional manifold embedded in
R
3. Let � = �in ∪ �out = R

3 be the whole space. Let,
furthermore, 8in, 8out, and Vm be the intra-, extracellular, and
membrane potential, respectively. 8 will represent either 8in

or 8out.
The quantities σin and σout denote the intra- and extracellular

conductivities, respectively. The normal nin→out is the normal
on the membrane Ŵ pointing from the intracellular space to
the extracellular. We will need this quantities in order to define
the fluxes. For the active transmembrane flux, we will just
consider the Hodgkin–Huxley model for the sake of a simpler
writing. There we have the sodium conductivity gNa+ , the
potassium conductivity gK+ and the leakage conductivity gL. The
quantities ENa+ , EK+ , and EL denote the reversal potentials of
the indexed ions. The gating parameters n, m, h obey ordinary
differential equations (Hodgkin and Huxley, 1952) and calibrate
how much of the maximal possible ionic flux passes through the
channel.

Considering the non-membrane conductivity (≈ 3mS
cm )

(López-Aguado et al., 2001) and the dielectricity of water (≈
1), Gary Holt demonstrated in his Ph.D. Thesis (Holt, 1997)
that a possible non-membrane capacitor would discharge with a
time constant of approximately 3 ns. Because this time scale is
much faster than the one of the phenomena considered—the fast
channel dynamics react on a µs-time scale—, it appears as good
approximation to assume no capacitive properties for the non-
membrane spaces (ρ = 0 in �in and �out). Indeed, this is the
basis of the derivation for the three dimensional cable equation.
In addition, we will assume to have time invariant magnetic fields

( d
EB
dt

= 0). Then, Gauß’s and Faraday’s law satisfy root equations
in the intra- and extracellular space, so that the conservative
electric field can be expressed with the aid of a potential gradient.
Combining this gradient with Gauß’s law immediately leads to
the Laplace equation for the potentials in the non-membrane
spaces.

∇ · EE = ρ

ǫǫ0

(ρ=0)= 0, (1)

∇ × EE = −dEB
dt

!= 0, (2)

⇒ EE = −∇8, (3)

⇒ −18 = 0. (4)

The constants ǫ0 and ǫ are the dielectricities in vacuum and
material, respectively.

Because of flux continuity, the flux across the membrane is
continuous and must correspond to the flux emerging from the
membrane dynamics [denoted with jall(Vm)]. Hence,

−σin∇8in · nin→out = −σout∇8out · nin→out = jall on Ŵ. (5)
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With this boundary condition in mind, we arrive at the three-
dimensional cable equation (Figure 1):

−18out = 0 in �out, (6)

−18in = 0 in �in, (7)

Vm = 8in − 8out on Ŵ. (8)

The flux jall contains all fluxes passing the membrane.
Considering just the Hodgkin–Huxley model and some
additional stimulus, it looks like:

jall = cm
dVm

dt
+m3hgNa+ (Vm − ENa+ )+ n4gK+ (Vm − EK+ )

+ gL(Vm − EL)+ jStm. (9)

Since it is possible to have different dynamics on each region of
the neuronal membrane, we furthermore introduce the following
δ-functions

δdend(x) =
{

1 on the dendrite
0 else

}

,

δactive(x) =
{

1 on the soma or nodes of Ranvier
0 else

}

,

δsyn(x) =
{

1 on the postsynaptic density
0 else

}

,

δstim(x) =
{

1 on the stimulation area
0 else

}

.

FIGURE 1 | Compact scheme of the three-dimensional cable equation.

Assuming pure resistivity for the non-membrane spaces, the respective

potentials distribute according to the Laplace equation therein. These Laplace

problems fulfill at the membrane an interface-condition which complies with

the conservation of fluxes. The emerging flux from the potential equals the total

transmembrane flux, denoted with jall. Within jall all transmembrane currents

are accumulated: capacitive, channel, any stimulation or synaptic currents.

With the help of these δ-functions, we can define a more refined
transmembrane flux considering where it precisely occurs.

We define

jHH(n,m, h,Vm) = m3hgNa+ (Vm − ENa+ )+ n4gK+ (Vm − EK+ )

+ gL(Vm − EL). (10)

The synaptic activity is simply modeled with the aid of a modified
Heaviside function H(x, t). This function should be one as soon
as the membrane potential at the pre-synapse exceeds a certain
value, say 2 mV, and it remains one for the time the synapse
is active regardless of the presynaptic membrane potential.
Additional activation at the pre-synapse should integrated by the
synaptic function α(Vm|pre, t)

jsyn(Vm|pre, t) = H(Vm|pre, t) · α(Vm|pre, t), (11)

where Vm|pre is the membrane potential at the presynaptic
terminal.

Then the refined total transmembrane current has the form:

jall(x,Vm) = cm
dVm

dt
+ δactive(x)jHH(n,m, h,Vm)

+ δstim(x)jStm(t)+ δsyn(x)jsyn(Vm|pre, t). (12)

Numeric Model
The three dimensional cable equation (Equations 6–8) is a non-
symmetric system (8in does not couple with 8out the same way
as 8out with 8in) of PDEs which couples two Laplace equations
in the intra- and extracellular space with the transmembrane flux.
This flux depends on the membrane potential. One difficulty in
solving this system is the coupling of the membrane potential,
which lives on a lower dimensional manifold, with the quantities,
which live in full space. Since the discretization of this system
is carried out with the help of integrals, the lower dimensional
quantity cannot be measured the same way as the quantities
in space (because the space integrals do not see it at all).
In order to get rid of this particularity, we will extend the
membrane potential, which is defined by the difference between
the intra- and extracellular potential (Vm = 8in − 8out) on the
membrane, to the intracellular space. To that end, we extend the
extracellular potential to the intracellular space and combine its
extension with the intracellular potential equation. So, we arrive
at a problem for the membrane potential in the intracellular
space.

Because Vm = 8in − 8out on the membrane Ŵ, we will
extend 8out to the intracellular space continuously so that
the following identity holds. Let this extension be denoted
with 8IN

out:

Vm = 8in − 8out = 8in − 8IN
out on Ŵ, (13)

⇒ 8out = 8IN
out on Ŵ. (14)

At this point we have some freedom to choose the right hand
side of the extracellular potential extension equation. We choose
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it to be zero. Then it can be easily combined with the intracellular
problem (Equation 7), which is a Lapalcian, too. We have

− 18IN
out = 0 in �in, (15)

8IN
out = 8out on Ŵ,

⇒ −1(8in − 8IN
out) = −1Vm = 0 in �in, (16)

−σin∇Vm · nin→out = jall(Vm)

+ σin∇8IN
out · nin→out

on Ŵ.

Thus, instead of solving the system (Equations 6–8) we solve
(Figure 2):

− 18out = 0 in �out, (17)

−σout∇8out · nin→out = jall(Vm) on Ŵ,

−18IN
out = 0 in �in, (18)

8IN
out = 8out on Ŵ,

−1Vm = 0 in �in, (19)

−σin∇Vm · nin→out = jall(Vm)

+ σin∇8IN
out · nin→out

on Ŵ.

For referencing reasons, we will call the additional current,
which is considered in the boundary condition of the membrane
potential equation (Equation 19), as ephaptic current

FIGURE 2 | By extending the extracellular potential to the intracellular

space (green) continuously, an extension of the membrane potential

into the intracellular space is established. By means of this trick we obtain

a coupling between the extracellular and the membrane potential which can

be directly used for numerics and simulations.

jeph: = σin∇8IN
out · nin→out. (20)

Numeric Discretization and Procedures
In space, we discretize this system (Equations 17–19) with the
finite volume method (Versteeg and Malalasekera, 2007). This
method guarantees the local conservation of fluxes. This is
necessary, because the model has been derived on this principle.
Furthermore, important characteristics of the solution, as we will
see in the following section depend on this conservation. In time,
an implicit method is used while the non-linearity is resolved
with the Newton method.

Similarly to the finite element method, we discretize the
domain�with volume elements, for example tetrahedrals, whose
edge points and edges form the grid �h, and we approximate
the unknown functions (in our case Vm,8out, and 8IN

out) with
a linear combination of shape functions. Our shape functions
bj(x) have the property to be continuous and linear on each
elements (j = 0, ..., #�h = N). They are as many as our grid
points (#�h = N) and are uniquely determined by the following
defining conditions

bj(xk) = δjk xj ∈ �h (21)

bj(x) is continuous and linear on each element (22)

We represent our unknown functions with these

Vm(x, t) =
N

∑

j=0

vtmj
bj(x), (23)

8out(x, t) =
N

∑

j=0

φt
outj

bj(x), (24)

8IN
out(x, t) =

N
∑

j=0

φ
IN,t
outj

bj(x). (25)

Purpose of the discretization schema is to establish linear
systems out of the differential Equations (17–19) which uniquely

determine the unknowns coefficients vtmj
, φt

outj
, φ

IN,t
outj

of these

linear combinations. The upper index t should indicate that these
coefficients are time dependent.

For the finite volume method, we need to construct a so called
dual grid, which arises from the domain discretization and which
is used in order to discretize the differential space operators. We
call the elements of the dual grid control volumes. The volume
elements of the dual grid are defined by the edge points which
correspond to the barycenters of the initial tetrahedrals and the
barycenters of its sides and edges. By this construction, we create
as many control volumes as we have nodes in the grid �h. Let
Bk be the control volume of the k-th grid node. We integrate the
differential equations over this control volume and apply Gauß’
integral theorem:

−18out(x, t) = 0 (26)
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∫

Bk

−1

N
∑

j=0

φt
outj

bj(x)dx = −
∫

Bk

N
∑

j=0

φt
outj

1bj(x)dx (27)

=
∫

∂Bk

N
∑

j=0

φt
outj

∇bj(x) · En(x)dS(x)

=
N

∑

j=0

φt
outj

∫

∂Bk

∇bj(x) · En(x)dS(x)

=
N

∑

j=0

φt
outj

akj.

Because ∂Bk is a polyhedron and bj(x) is analytically known,
the integrals

∫

∂Bk
∇bj(x) · En(x)dS(x) = akj can be analytically

computed. Furthermore, on the membrane these integrals equal
to the transmembrane flux (Equation 12) which in general can
also depend on other unknowns, like the gating variables or
the membrane potential. Furthermore, this is the term which
includes the time operator d

dt
. We discretize our equation fully

implicit and because this flux is not linear, we apply Newton’s
method to solve the emerging equations for each time step.
Therein, the Jacobian of the system needs to be inverted,
which we accomplish with high efficient iterative solvers. More
precisely, we use a parallel ILU-preconditioned BiCGstabmethod
(Barrett et al., 1987). All of this has been implemented with the
use of the C++-library ug4 (Vogel et al., 2012), providing flexible
numerical tools for these purposes.

Results

The intracellular problem (Equation 7) is a Laplace problem with
a Neumann boundary. We referred this to the approximation
of purely resistive non-membrane spaces (i.e., the intra- and
extracellular space do not contain any free charges). Thus,
the driving force of the intracellular potential is given by its
Neumann-flux on the boundary (i.e., the membrane). Now,
integrating the Laplace equation over the whole neuron and
applying Gauß’s theorem yields an important constrain for the
transmembrane currents: The fluxes are balanced out over the
whole membrane at each point of time!

−18in = 0 (28)

⇒
∫

�in

−18indx =
∫

Ŵ

−σin∇8in · nin→outdS(x)

=
∫

Ŵ

jall(Vm)dS(x)
!= 0 (29)

There are at least two important implications of this situation.
First, an influx at some point of the membrane, necessarily
leads to an out-flux at some other point of the membrane with
the same total amount of current. Moreover, this must happen
simultaneously, since otherwise the condition is violated.

Second, the extracellular potential distributes like a multipole
in the extracellular space.

Dipole-like Distribution of the Extracellular
Potential for a Idealized Sphere Neuron
Regardless of the neuron’s shape, the extracellular potential
equation (Equation 17) demonstrates that its only source is
the transmembrane flux as expressed through its boundary
condition. A current monopole of the extracellular potential
would be defined by the overall transmembrane flux. Yet, this flux
is always zero as shown before (Equation 29). Thus, there is no
monopole component and the extracellular potential distributes
in space like a current multipole. To get some quantitative idea
of its distribution, we approximate the neuron’s geometry to a
sphere. Then, we are able to express the extracellular potential
with a generalized Fourier series of spherical harmonics.

Let �in = BR be a sphere with radius R and Ŵ = ∂BR its
boundary. The spherical harmonics Ym

l
(θ, φ) satisfy the Laplace

problem on this geometry:

−1Ym
l = 0 (30)

8out(r, θ, φ) =
∑

l≥0

l
∑

m≥−l

(blmr
−(l+1))Ym

l (θ, φ) (31)

⇒ −18out = 0. (32)

The solution8out is concretized by the coefficients blm. These are
determined by the transmembrane flux jall(Vm):

∂8out

∂r
|r=R =

∑

l≥0

l
∑

m≥−l

−(l+ 1)
1

Rl+2
blmY

m
l (θ, φ) = jall(Vm)

(33)

⇒ bkn = − Rl+2

l+ 1

∫ π

0

∫ 2π

0
sin(θ)jall(Vm)Y

n
k (θ, φ)dθdφ.

(34)

Especially, we obtain for the first coefficient b00 which
corresponds to the potential of a monopole:

b00 = − Rl+2

l+ 1

∫ π

0

∫ 2π

0
sin(θ)jall(Vm)

1√
4π

dθdφ

= − Rl+2

(l+ 1)
√
4π

∫

Ŵ

jall(Vm)dS(x) = 0. (35)

Thus, the solution of the extracellular potential does not contain
any monopole-part and behaves like a multipole falling in space
with higher powers of the distance.

Numerical Error Analysis and Verification by a
Comperison with NEURON
NEURON (Hines and Carnevale, 1997) is a highly sophisticated
simulation environment for modeling a wide range of neuronal
networks with the aid of the standard cable equation. Since
the current three-dimensional model generalizes the one
dimensional cable equation and since there are no non-trivial
analytic solutions of an active neuron for our equations, we
want to use this software environment in order verify both
our model and our implementation. Our results should be very
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similar with these of NEURON for comparable computational
domains. In order to keep the three-dimensional computation
fast and in order to be able to create suitable three-dimensional
computational domains, we carry out this comparison on a very
long cylinder l = 9.9 mm with small diameter d = 200 µm in

relation to its length ( d
l
≈ 2 · 10−4). Such cases approximately

comply with the assumption of the one-dimensional model (
of infinite cylinders). No significant differences in the rise and
propagation of an arising action should be visible.

We use proMesh (Reiter, 2014) to construct the three
dimensional cylindric soma with a length 9.8 mm and a diameter
200 µm (Figure 3).

This test domain we now use in order to first verify the the
correct implementation of our discretization schema and second
in order to see that we indeed obtain almost identical solutions in
comparison with those produced by NEURON.

First is obtained, if the computed solution converges as the
computational grid fineness is increased. In order to assess the
second point, we have to compare the one dimensional solution
of NEURON with the three-dimensional solution of our model.
By construction of the one dimensional cable equation, each
quantity, although computed on every point of a line, actually
represents a volumetric quantity. Thus, the one-dimensional
model assumes for all quantities to be radial symmetric and
iso-potential on cross-sections of a three-dimensional cylinder.
Considering this particularity, we can blow up the solution of
NEURON to a three-dimensional solution and compare it with
the solution of our model or we compare NEURON’s solution
with our solution recorded on the cylinder axis. For the sake of
simplicity, we use the second way considering that its difference
with the volumetric comparison is just the factor of the cross-
section area.

Because for three dimensional numeric computations,
domains have to be discretized, even simple cylinders never
correspond to ideal cylinders, which, however, are the basis of
the one-dimensional model. Thus, we will always expect small
quantitative differences in such a comparison and, therefore, we
are already satisfied to evaluate the differences with NEURON
with the aid of an Euclidean integral norm

||f ||L2([a,b]) =
√

∫ b

a
|f |2dx, (36)

FIGURE 3 | Computational domain constructed with proMesh (Reiter,

2014) for the comparison of the 3D-model’s results with NEURON. The

cylinder represents a soma having a length of 9.8 mm and a diameter of 200

µm. The purple is the intracellular and the blue the extracellular space. The

domain is discretized with tetrahedrals.

where the interval [a, b] corresponds to the time interval of
the simulation. Furthermore, in order to get this measure
dimensionless, we will consider the relative error between the
solution of neuron VmNEURON and the solution computed at
refinement level x, denoted with VmLevel x

, over the interval [0,T]

||VmNEURON − VmLevel x
||L2([0,T])

||VmLevel x
||L2([0,T])

. (37)

Yet, qualitative measures like propagation speed and signal width
should be identical.

Concerning the numeric convergence at grid refinement,
we computed the solution on our cylinder, composed by a
tetrahedral grid, at two levels of refinement and observed the
desired convergence (Figure 4). This behavior should serve as
benchmark for the right implementation of the finite volume
discretization schema.

The solution between the standard cable equation and the
three dimensional model are qualitatively undistinguishable
(Figure 3). The small numerical differences (Table 1) are due to
the aforementioned reasons: the cylinder in the computation is a
disretization of an ideal one, the cylinder’s length is finite (the
standard cable equation assumes infinite cylinders). Moreover,
since the three-dimensional model additionally considers the
coupling of the extracellular potential on the membrane, so that
there are always to be expected some subtile differences in the
solutions, which are reflected in Table 1.

However as regards the emerging of the action potential
(Table 1, Figure 4), the propagation speed of 5m

s , and the signal
width (Table 1, Figure 4) we receive identical results.

Simulation on a Small Network of Four Idealized
Neurons
With a computationally quite demanding simulation, we also
solve the Equations (17–19) on a more complicated geometry
representing four idealized neurons with chemical synapses
(Figure 5).

The simulation is demanding, because we have a non-linear
time-dependent domain problem in three dimensions. It means
we solve several a huge linear systems in each time step within
Newton’s method. Thereby, the time step to be chosen is
constrained by the fast dynamics of the active membrane’s gating
variables, which in our case is chosen with 10µs, while we
aim to simulate the time period of 14ms. This means we need
to compute the solution for 1400 time steps, which is time
demanding despite parallel procedures due to the geometry’s
complexity.

We constructed the computational domain given by a small
network of four neurons with the help of an algorithm developed
inNiklas Antes’ master thesis (Antes, 2009). Each cell consists of a
myelinated axon (diameter d ≈ 5µ m), a soma (d ≈ 20µm) and
dendrites (d ≈ 10µm). The cells are several hundredmicrometer
separated among each other.

As regards the transmembrane current jall(x,Vm) (Equation
12) for the different cell parts, we just considered passive
properties on the dendrites while an active membrane reflecting
Hodgkin–Huxley dynamics for the soma as well as for the
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FIGURE 4 | Comparison of the three-dimensional model with

NEURON. (A) Computational domain with the marked areas (B–D) where

the membrane potential is recorded. (B–D) Time courses of the membrane

potential at the corresponding areas. The solution of the three dimensional

model at refinement level 0 is the blue line. After two refinements the solution

converges—the red line representing the solution at refinement level 1

coincides with the solution represented at refinement level 2 (dotted green

line). This implies the correct implementation of the applied finite volume

discretization schema. We see that the solution produced by the

three-dimensional model (dotted green line) is almost the same as the

solution produced by NEURON (purple line). The small differences are due to

the nature of the three-dimensional modeling procedure (see text).

TABLE 1 | Relative error of the computed solution in comparison with

NEURON.

Solution on refinement level x
||VmNEURON−VmLevel x ||

L2([0,T])
||VmLevel x ||

L2([0,T])

VmLevel 0
0.2002

VmLevel 1
0.1174

VmLevel 2
0.1174

The relative error between the solution computed with NEURON VmNEURON
and the solution

computed on refinement level x, denoted with VmLevel x
is very small. This implies that

qualitative characteristics like propagation speed, signal width as well are very similar. The

small differences measured here can be explained with the nature of the three-dimensional

model which automatically considers the extracellular potential in the signal processing

and which works with discretized and finite domains (in this case: cylinders are supposed

to be ideal and infinite for the standard cable equation).

nodes of Ranvier. On themyelinated sheaths, the transmembrane
current jall(x,Vm) is composed of the first term in Equation (12)
only, the capacitive current. Furthermore, two of the cells (cell 1
and cell 4, see Figure 5) own external input areas by which the
network can be stimulated.

Because we simulate the relatively small time period of 14
ms, we let the synapses work as pre-defined strong post-synaptic
current pulses of some nA, which are triggered as soon as
the membrane potential at the pre-synapse indicates that an
action potential has arrived. This is assumed to happen when
the membrane potential at the pre-synapse exceeds the value
of 5 mV.

For the sake of simplicity, we choose a constant intra- and
extracellular conductivity σin = 2mS

cm , σout = 20mS
cm .

We activate the network by stimulating cell number one (see
Figure 5) with approximately 30 pA at each of its input areas

over the whole simulation period of 14 ms. At the moment of
8ms, we then stimulate cell number four with a current pulse of
approximately 0.5 nA over 20µs. Although this stimulation of the
fourth cell is not enough to generate an action potential alone,
within the regime of this network and with the ephaptic current
activated (Equation 20), an action potential arises (see Figure 6).
This demonstrates that ephaptic interactions can have a decisive
effect as to whether a neuron fires.

The model integrates the impact of the extracellular
potential into the signal processing. Though its impact is
rather small, it still can have a significant effect when
combined with the right stimulation at the right time. Action
potentials can arise, which otherwise would not show up
(Figure 6).

Discussion

The three-dimensional passive model of Voßen et al. (2007)
has been extended to a model with active membrane dynamics
and has been reformulated mathematically with the aid of
an extension of the membrane potential into the intracellular
space. This reformulation, for the first time, facilitated numeric
simulations of neuronal activity on three-dimensionally resolved
idealized neurons generalizing the one dimensional cable
equation by fully incorporating the three-dimensional extension
of the neurons’ geometry and by automatically considering
the extracellular potential’s influence on the membrane. As
shown, the latter influence -though it is quite small- in
combination with additional stimulation at the right timing
can lead to an action potential which otherwise would not
have arisen.

Frontiers in Computational Neuroscience | www.frontiersin.org 7 July 2015 | Volume 9 | Article 94

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Xylouris and Wittum Three-dimensional mathematical model for signal propagation

FIGURE 5 | Computational domain of four idealized neurons consisting

of a soma, an axon, dendrites and chemical synapses. Computationally,

the synapses are modeled by a postsynaptic current at the postsynaptic site

as soon the membrane potential exceeds some threshold indicating an action

potential at the pre-synapse. Due to the complexity of the computation, a

small time period of around 14 ms is covered.

For the sake of verifying the correct implementation of this
model and because it should deliver similar results as the one-
dimensional cable equation for the limit case of long and thin
cylinders, we carried out a comparison with NEURON and
obtained very good agreement between the two models.

Based on the assumption of charge-free non-membrane
spaces -an assumption also used for the derivation of the standard
cable equation-, we could provide strong theoretical evidence
(to our knowledge for the first time) with the aid of the three-
dimensional model that there aren’t any current monopoles
as the overall out-flux across the membrane balances out. A
significant consequence of this behavior is that the leading term
of the extracellular potential’s multipole expansion vanishes so
that it falls in space with higher powers of its distance to the
transmembrane current source. In the work of Lindén et al.
(2011), this very assumption has been applied for the extracellular
potential in order to arrive at converging LFPs. The authors in
Lindén et al. (2011) showed that a monopole behavior would lead
to a diverging LFP.

We consider the ability to carry out realistic simulations with
the cable equation on three-dimensionally resolved ideal neurons
as important step and milestone on the way of refining and
generalizing existing models for neuronal activity. This three

FIGURE 6 | Effect of ephaptic interactions. Two simulations on an

idealized small network of four cells and idealized paradigm. One simulation

(left column), in which the ephaptic current (Equation 20) is neglected and one

simulation (right column) in which it is included. Both simulations are carried

out with the same stimulation paradigm. An initial signal spreads through the

network. Additionally around the moment of 8 ms, the forth cell (the upper cell

of this network) is activated slightly with a current pulse so that it depolarizes

just below the threshold for and action potential. Although the effects of

ephaptic interactions are very small, we see that they can determine whether a

neuron activates in particular circumstances.

dimensional model facilitates gaining a better understanding of
all the processes involved in the signal processing, especially the
influence of the extracellular potential activity on the membrane
and the impact of the precise three-dimensional shape of the
neuron’s geometry. Concerning the ephaptic communication,
it would be interesting to further investigate its influence on
synchronous firing within networks. The latter point also seems
to be very promising since lots of precise experimental geometric
data are produced. Questions connecting function with geometry
can be directly tackled with this model.

However, there is still a long way to go on this path, as
the biggest challenge at the moment for our model is its
computational demand. Further algorithmic and computational
analysis needs to be invested in order to make applicable cutting
edge solvers of linear systems arising from partial differential
equations -like algebraic multi grid methods- on highly parallel
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machines, even on graphic card clusters. As next steps, we want
to focus on these improvements.

On the other hand, the computational efficiency is a big
advantage for standard one dimensional cable equation. Once
we accomplished this efficiency for the three-dimensional model,
there are still lots of interesting applications which we wish
to address- especially concerning backward modeling with
questions like which are the underlying network properties in
order to reproduce a given a extracellular potential activity
wave.

Furthermore, we see the need of a deeper theoretical analysis
of this model with the purpose to provide a mathematical
proof that it converges to the standard cable equation for
the limit case of infinite cylinders and vanishing extracellular
resistivity.

Our long-range purpose is to generalize this model with
homogenization and multi-scale techniques so that to be able to

simulate the activity of bigger clusters of neuronal networks while
also considering the detail in processing on the small scale.

Realized steps on this path will be hopefully items of future
publications.
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