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Internal coordination models hold that early nervous systems evolved in the first place to

coordinate internal activity at a multicellular level, most notably the use of multicellular

contractility as an effector for motility. A recent example of such a model, the skin

brain thesis, suggests that excitable epithelia using chemical signaling are a potential

candidate as a nervous system precursor. We developed a computational model and

a measure for whole body coordination to investigate the coordinative properties of

such excitable epithelia. Using this measure we show that excitable epithelia can

spontaneously exhibit body-scale patterns of activation. Relevant factors determining

the extent of patterning are the noise level for exocytosis, relative body dimensions, and

body size. In smaller bodies whole-body coordination emerges from cellular excitability

and bidirectional excitatory transmission alone. Our results show that basic internal

coordination as proposed by the skin brain thesis could have arisen in this potential

nervous system precursor, supporting that this configuration may have played a role as

a proto-neural system and requires further investigation.

Keywords: nervous system evolution, internal coordination, abstract model, skin brain thesis, excitable epithelia,

nervous system precursors

1. Introduction

Thinking about early nervous system evolution can be cast into two general sets of models (Jékely
et al., in press):

1. Input-output (IO) models: nervous systems evolved initially as a way to connect sensory input
devices to effector devices (Parker, 1919; Mackie, 1990);

2. Internal coordination (IC) models: nervous systems evolved initially as a device to coordinate
internal activity, enabling multicellular effectors (Pantin, 1956; Passano, 1963; Keijzer et al.,
2013).

Of these two broad scenario groups, input-output models are the most familiar and also closest
to how present-day nervous systems are viewed, in particular the human brain (Braitenberg,
1984). Internal coordination models have been less conspicuous. The central premise of internal
coordination models is that multicellular coordination was a central constraint that heavily
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influenced the evolution of the first nervous systems (Pantin,
1956). Organizing a differentiated multicellular organism
such that it can display coordinated movement involves
specific challenges tied to the organism itself rather than to
environmental features. While the main premise of coordination
models is highly plausible (Monk and Paulin, 2014), so far little
attention has been given to them and they are in a clear need
for further elaboration and investigation. In this paper we use
a computational modeling approach to investigate the internal
validity of some of the assumptions made by a recent case of an
internal coordination model, the skin brain thesis (Keijzer et al.,
2013; Keijzer, 2015).

The skin brain thesis stresses the close link between nervous
systems and muscle-based motility: early animals evolved ways
to coordinate contractile cells such that the animal body itself
became a large and highly differentiated effector (Pantin, 1956).
An abstract way to describe this contractile organization is in
terms of a Pantin surface, defined as the total muscle surface that
an animal has available for motility (Keijzer et al., 2013). A Pantin
surface has a species-specific anatomy and provides a surface
across which patterns of contraction-extension correspond with
specific forms of animal motility. The skin brain thesis envisions
the evolutionary context for the first (proto-)nervous systems as
being intrinsically linked to a Pantin surface, where they are key
to generating systematic patterns of activity across this contractile
surface in ways that resulted in usable motility.

To test the internal coherence and plausibility of the skin
brain thesis, we developed a computational model that simulates
the hypothesized initial stage of early nervous system evolution.
Here, the Pantin surface and the nervous system are not yet
differentiated but combined as an epithelium that is both
excitable and contractile, a so-called myoepithelium. Leaving
aside the contractile properties for now, the model’s purpose
was to investigate to what extent the generic excitable properties
of such an epithelium could actually provide a basic patterning
device for inducing contraction-based motility at a whole-body
scale.

Modern excitable myoepithelia exist for example in
cnidarians, where electrical signaling takes place by direct
electrical coupling through gap junctions and where they operate
alongside a nervous system (Mackie, 1965; Josephson, 1985). In
contrast, the skin brain thesis proposes a primitive epithelium
that signals by local chemical transmission and action potentials.
While hypothetical, such an organization is theoretically
important as it provides the first step of a gradual evolutionary
route toward basic neurons: protoneurons first evolved as
cells within an excitable epithelium using directed chemical
transmission of electrical signals to neighboring epithelial
cells, in this way enabling patterned contractions; axodendritic
projections evolved subsequently to connect non-neighboring
cells, allowing more complex patterning compared to the initial
set up (Keijzer et al., 2013).

The historical status of this particular configuration is
hypothetical. However, it is consistent with findings from
cnidarians (Satterlie, 2011), while it is also clear that such
chemical signaling and in particular chemical synapses are
an essential feature for the operation of modern nervous

systems in clades that diverged early in evolution (Moroz,
2014). The evolutionary origin of chemical synapses is a
subject of ongoing research (Sakarya et al., 2007; Ryan and
Grant, 2009; Emes and Grant, 2012). At the moment, it
is unclear whether electrical synapses (e.g., gap junctions)
or chemical synapses arose first. An interesting proposal is
that chemical synapses arose in conjunction with electrical
synapses (Ovsepian and Vesselkin, 2014). Gap junctions have
important roles in intercellular metabolitic exchange and
developmental patterning. Chemical synapses evolved frommore
general pre-existing mechanisms for paracrine signaling and
for sensing: Presynaptic mechanisms share strongly conserved
homologies with endocrine mechanisms (Kloepper et al., 2007)
and postsynaptic mechanisms have a sensory basis (Emes and
Grant, 2012). Bringing these separate components together in
the chemical synapse is envisioned by Ovsepian and Vesselkin
(2014) as an exaptation from these earlier functions, while gap
junctions are cast in a developmental role. The intermediate
evolutionary step our model seeks to address in this domain
is a potential proto-mechanism for modern chemical synaptic
transmission between individual cells: coordinating contraction
across an epithelium by chemical signaling between neighboring
cells. Our model aims to investigate whether such a primitive
organization could function as a basic coordinative device. If so,
such an organization could provide a key stepping stone in the
evolutionary transition from general, diffuse paracrine signaling
to the closely targeted signaling enabled by synaptic transmission.

In addition, the skin brain proposal is relevant for the ongoing
debate about the phylogenetic position of ctenophores (Marlow
and Arendt, 2014; Moroz et al., 2014), which may imply that
nervous systems evolved more than once. Not only does the skin
brain thesis easily support a polyphyletic view on the origins
of neurons and nervous systems as stressed by Moroz (2009,
2014), but by easing the adaptive transition from proto-nervous
systems to full nervous systems it could also increase the general
plausibility of a polyphyletic view.

Without claiming that this particular configuration
actually appeared in this precise form during nervous system
evolution, considering the explanatory potential of the proposal,
investigating the characteristics of a chemically transmitting
epithelium is highly relevant for the discussions on early nervous
systems. The model provides a proof of concept of the patterning
capacities of such a configuration and a first indication of
the parameters that are important for controlling it. Taking
this proposal as a tentative working hypothesis, the central
question then becomes whether the generic properties of such
a chemically signaling epithelium could provide a primitive but
usable patterning device for a given Pantin surface. We limited
ourselves to the question whether the modeled epithelia would
show global scale patterns of activity, such as traveling waves
that could in principle be used to drive primitive peristaltic
contractions of the body.

The subject of waves in excitable media is well-founded in
existing research, using an analytical approach supported by
simulation. For an overview, see Boccaletti et al. (2006), Bressloff
(2014). This paper considers locally-coupled 2D networks
in finite topologies. Both locally coupled 2D networks and
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finite topologies are addressed separately in the literature: the
stability of ring-shaped patterns on a torus is found in existing
analytical work (e.g., Davydov et al., 2003; Kneer et al., 2014);
simulations and experiments show wave annihilation through
collision and edge effects (Zimmermann andWalz, 1997; Copelli
and Kinouchi, 2005). Similar effects are observed in cardiac
research (e.g., Panfilov and Hogeweg, 1993; Li et al., 2009).
The effect of a refractory period appears hard to incorporate
analytically: studies centering on refractory period (e.g., Copelli
and Kinouchi, 2005; Li et al., 2009) rely on computational
modeling. Our approach is similar to Copelli and Kinouchi
(2005), which used n-state Greenberg-Hastings cellular automata
implementing a refractory period in a triangular lattice. In
contrast, we look at cylinders: topologies which are continuous in
a single dimension and which may be asymmetrical; additionally,
we use more realistic cell models.

2. Methods

Given that little is known about excitable epithelia as nervous
system precursors, we need to decide how to deal with the large
parameter space and the consequent model design decisions.
For each parameter category, we need to decide what to do:
abstract away, scan, or decide upon plausible values. We used
the following rules of thumb: abstract away when possible, decide
upon plausible values when there is little to no effect on system
behavior or a clear imperative to use a certain value, and scan
when there no such imperative and an effect on system behavior.
These are the parameter spaces and the decisions taken:

• Cell model. To represent a generic excitable epithelium in
continuous time, an integrate-and-fire model with a refractory
period was used as the simplest and most abstract model that
allows us to investigate this system.
• Cell model parameters. Even the integrate-and-fire model

has thresholds and time constants which need to be set or
iterated over. A central functional requirement for systemic
behavior here is the generation of spontaneous activity. This
can be accomplished by either using thresholds that result in
spontaneous spiking or using a spiking threshold above the
resting potential with some other added form of spontaneous
activity. Either way, the level of activity has behavioral effects,
so we need to scan this parameter. We have chosen to
set thresholds at standard, roughly Hodgkin-Huxley-inspired
values, which do not spike spontaneously. To initiate activity,
we use the principle of random vesicle release.
• Network macro-structure. Epithelia are surfaces in space.

The shape should approximate a very simple animal. The
abstraction we have chosen is a tube with a skin thickness
of one cell: geometrically simple and still representative of
worm-like animals, a shape which is common in nature and
a plausible shape for a precursor system. While we do not vary
the shape itself, nor the thickness, we do perform parameter
scans over various dimensions of tubes in terms of numbers of
cells and various length-circumference proportions.
• Network micro-structure. Cells arranged on a one-cell-thick

tube can still be connected and arranged in many ways.

The simplest and most parsimonious way to arrange roughly
spheroid cells on a surface is a triangular lattice, because
of its isotropy, so that is the abstraction used. We are
interested in local connectivity, so cells only connect with
their neighbors in the grid. As for connection weights, we
have chosen to set that at a value which is above spike
threshold.

Implementation details resulting from these design decisions are
detailed below.

To analyze the model outcomes we developed two indicators
of whole-body coordination. These indicators can summarize
simulation outcomes in a form suitable for visualizing the
outcomes of parameter scans over the circumference and the
length of the networks.

2.1. Model
Our cell network model is built from single-compartmental
cell models with integrate-and-fire dynamics. We reused a
standard mechanism, IntFire1, from the NEURON simulation
environment (Carnevale and Hines, 2006) in which we
introduced a delay-to-spike to reflect the time it takes chemical
transmission to depolarize a cell and a refractory period, which
basic integrate-and-fire lacks. Parameters for the model were
inspired by the Hodgkin-Huxley model. The details of the
integrate-and-fire model are provided in Table 2. All model
parameters are stated in the model summary Tables 1–5. The
model cells were arranged in a triangular lattice generated by a
purpose-built weight generator, see Figure 1. This generator was
designed for a network building library (available upon request
from the corresponding author) developed by one of us for the
NEURON simulation environment (Carnevale and Hines, 2006).
To facilitate parameter scanning, the multiple run control (van
Elburg and van Ooyen, 2010) made available inModelDB (http://
senselab.med.yale.edu/ModelDB, accession number 114359) was
used.

An important aspect of this model is spontaneous activity.
We aim to develop a model system that is capable of self-
generated activity patterns without explicit input from outside.
Spontaneous activity can come from particular membrane
potential dynamics, localized ion channel stochasticity, or from
spontaneous vesicle release. Like the Hodgkin-Huxley model
which inspired it, the integrate-and-fire parameters we use do

TABLE 1 | Model Summary 1: Overview.

Cell populations Single excitatory

Topology Triangular lattice on a cylinder

Connectivity Nearest-neighbor

Cell Integrate-and-fire

Chemical transmission Delayed instantaneous membrane potential change

Noise Independent fixed-rate Poisson processes of

spontaneous vesicle release

Measurements Wave-front orientation

Simulator NEURON (www.neuron.yale.edu)

Code availability ModelDB, Accession number: 141132, (http://senselab.

med.yale.edu/ModelDB)
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TABLE 2 | Model Summary 2: Abstract cell and synapse model.

Name Intfire1ds

Type Integrate-and-fire cell with fixed delay-to-spike and refractory period

Dynamics The model is derived from the standard IntFire1 mechanism of NEURON (Carnevale and Hines, 2006), but with a delay between threshold crossing and

spiking which captures the delay due to the time it takes between the onset of chemical transmission and the effect on the membrane potential. As is

common in these models m = 0 corresponds to resting potential and m = 1 corresponds to the firing threshold

When the cell is not firing and chemical transmission is absent, the membrane potential is decaying exponentially with membrane time constant

τmembrane :m = e−m/τmembrane

When chemical transmission commences m is increased by the weight w provided that the model is not in spiking or refractory state: m← m+ w

If m crosses threshold due to chemical transmission the model will indicate a spike at a time τdelaytospike after threshold crossing. During this interval

and the subsequent refractory period τrefractory the model will simply ignore chemical transmission. On leaving the refractory period the membrane

potential is reset to resting level: m← 0

Parameters The parameters τdelaytospike and τrefractory were inspired by the Hodgkin-Huxley model. Transmission weights were chosen to be just above spiking

threshold

τmembrane = 15 ms

τmembrane = 15 ms

τdelaytospike = 6 ms

τrefractory = 20 ms

wnetwork = 1.01

TABLE 3 | Model Summary 3: Noise model.

Type Description

Poisson process Fixed rate νspontaneous = 103−noiseparameter Hz generator

for each cell, the noise parameter is varied from 2 to 6

TABLE 4 | Model Summary 4: Network structure.

Triangular lattice on cylinder. The open ends are arbitrarily labeled East and West

and both edges are aligned with the same primitive vector of the triangular lattice.

Cell indices start at zero on a cell on the West edge. Indices are incremented by

one for each lattice-constant-sized step on the edge in a direction arbitrarily

marked as North. After labeling all the cells on this and subsequent rings, indexing

continues stepping North from the first cell located North East of the last labeled

cell until all cells are labeled. The number of cells on a single ring is specified by the

circumference parameter, while the number of rings is specified by the length

parameter

TABLE 5 | Model Summary 5: Analysis.

Wave-front orientation preference is measured by counting how often two

neighboring cell pairs of a single orientation fire within 2ms of each other. In

Figure 2 we develop several visual representations which capture this information.

In addition, spike activities are shown as snapshots capturing 6ms of activity and

as line graphs showing wave-front size as a function of time

not result in spontaneous spiking. We used spontaneous vesicle
release to induce activity. Alternatively, non-noisy synapses and
spikingmembrane dynamics could be employed, but should yield
the same results.

Data on spontaneous release frequencies of vesicles are still
scarce and we found only one such study (Mackenzie et al.,
2000). Experimentally, the maximum spontaneous vesicle release
rate found was 0.25 Hz. In our model, which has integrated
six chemical transmission sites into a single cell, this yields
a total spontaneous vesicle release rate of 1.5 Hz per model

FIGURE 1 | Model Network. (A) Three dimensional organization of our

model network, resembling a tube-shaped animal. The epithelium model

consists of excitable cells arranged into a triangular lattice wrapped around a

cylinder. (B) Color coding used to refer to the three differently oriented wave

fronts on this lattice. The size of a wave front is established by counting the

number of neighboring cell pairs on the corresponding wave front.

cell. A reliable lower bound, other than zero, on the vesicle
release rate is not available because many synapses failed to show
spontaneous vesicle release during the experiment. From the
biophysics of vesicle release we further know that vesicle release is
calcium-concentration dependent (Augustine, 2001). As calcium
concentration dynamics is known to vary with surface-to-volume
ratio and with the concentration, mobility, and kinetics of the
endogenous calcium binding proteins (Cornelisse et al., 2007),
there is a large range of plausible vesicle release rates. We have
therefore chosen to vary model vesicle release rates over five
orders of magnitude around a value of 0.1 Hz. Thus, we included
the maximum directly observed vesicle release frequency in our
range, but have a strong bias toward lower vesicle release rates.
Generally speaking, we have tested our setup for a wide variety of
noise levels.
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We also investigated the possibility to introduce spontaneous
network activity through spontaneous spiking resulting from
stochastic ion channel gating. However, a short exploration using
the model developed by Linaro et al. (2011) (available from
ModelDB accession number: 127992) showed that this would
lead to spike rates much lower than those induced with the vesicle
release rates included in the model.

2.2. Analysis
As whole-body coordination is not a well-defined mathematical
concept at present, it is crucial that we should choose good
indicators of it. The triangular lattice favors three possible wave-
front orientations; as indicators we have chosen the relative
amounts with which these orientations appear in our simulations.
Subpanel A1 of Figure 2 illustrates our analysis method and
shows that pairs of neighboring cells come in three different
orientations: North–South, North East–South West, and South
East–North West. For each of these orientations we count the
number of neighboring pairs that fire within 2 ms of each other.
In subpanel A2 of the same figure we show how these raw counts
(left) are translated into percentages (middle left), which are then
used to set the diameter of the circles in the oriented circle pairs

FIGURE 2 | Visual representations used. (A1) Yellow disks represent active

cells at a given time; gray cells represent inactive cells. Neighboring pairs of

active cells come in three different orientations and are arbitrarily labeled with

red, green, and blue. To establish which orientation is dominant we simply

count the occurrence of the orientation labels. (A2) The orientation label

counts (left) are translated into relative wave-front orientation prevalences

(graph left of middle) and represented by the diameters of the disks with the

corresponding color labeling. In addition these counts are translated into an

average wave-front propagation orientation by adding the normal vectors to

these wave fronts with a weight proportional to their label count (diagram right

of middle). Relative wave-front orientation prevalences and propagation

direction are combined into a single representation for use in parameter scans

(right). (B,C) Like A2 with different orientation label counts.

(middle left and right). This presentation, which we call relative
wave-front orientation prevalence, is suited for the analysis of
parameter scans, e.g., Figures 5, 7. We used this representation
to present averages over all runs at a specific parameter setting.

Wave fronts propagate roughly perpendicularly to their own
orientation. This idea leads to a second representation. Instead of
showing the percentages directly, we add up the vectors normal
to the wave fronts weighed by the same percentages used in our
relative wave-front orientation prevalence representation. This
results in bars effectively pointing the way the waves go. The
longer the bar, the more prevalent the waves in that direction.
For the North–South oriented wave-front, propagation is to the
East or the West, i.e., parallel to the normal vector pointing
West, similarly propagation is parallel to a South East-pointing
vector for the North East–South West-oriented wave front, and
parallel to North East pointing vector for the South East–North
West-oriented wave front. The choice of these normal vectors
is not unique, we selected them in such a way that they point
from the center to the oriented pair in the relative wave-front
orientation prevalence representation. In Figure 2A2 middle
right we show the vector addition and the resulting vector.
We call this representationwave-front propagation orientation.
This representation is also suitable for the presentation of
parameter scans and additionally allows us to show both the
individual simulation runs and the average over simulation runs
in a single figure.

For the purpose of this study, visual inspection of preliminary
simulations showed that both relative wave-front orientation
prevalence and average wave-front propagation orientation are
reasonably good indicators of the effects of body size and
chemical transmission noise on whole-body coordination.

3. Results

In subpanel B of Figure 3 we see the temporal development of
wave-front patterns on the short cylindrical network also shown
three dimensionally in subpanelA of the same figure. After initial
excitation the wave fronts grow in size uniformly in all directions
until the wave fronts propagating longitudinally reach the edge of
the cylinder and disappear. The remaining wave fronts propagate
in both transverse directions. Provided no other noise-induced
wave fronts interfere, these wave fronts eventually annihilate
each other on the side opposite the wave front initiation point.
In subpanel C of Figure 3, where the wave-front orientation
counts are shown for the time interval depicted in subpanel B, we
clearly see the phenomena we just described reflected. Initially all
wave-front counts grow at the same rate, then the North–South
oriented wave front, propagating longitudinally, dies out and
the remaining wave fronts continue to grow in size. Wave-front
counts are approximately stable during transverse propagation.
The seemingly missing wave front at t = 216ms is an artifact of
the sampling rate: through delays and spike timings, wave fronts
travel at a speed of roughly 1 cell per 6ms, but not exactly. In this
case, the speed was a bit slower, and this frame simply does not
capture any cells firing.

In subpanel B of Figure 4 we see the temporal development
of wave-front patterns on the elongated cylindrical network also
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FIGURE 3 | Wave patterns on a short tube (length: 8 cells, circumference: 32 cells, noise rate: 0.1 Hz). (A) Network geometry: the scissors indicate the line

at which the tube is cut for presentation in (B). (B) Snapshots of network activity during 4 ms intervals in an illustrative phase of the dynamics. The wave fronts

propagating longitudinally die out at the network edges, causing the North–South oriented wave fronts to disappear. As a result, wave-fronts propagate predominantly

transversely to the tube and the wave-front orientations are South East–North West and South West–North East. (C) Temporal development of different wave-front

orientations, including all snapshot times shown in (B).

shown in 3D in subpanel A of the same figure. After initial
excitation, the wave front grows uniformly in all directions until
the wave fronts propagating transversely annihilate each other
opposite the wave front initiation point. What remains are two
wave fronts propagating longitudinally. Provided no other noise
induced wave fronts interfere with these wave fronts they will
eventually reach the edge of the cylinder and disappear. In
subpanel C of Figure 4, where the wave-front orientation counts
are shown for the time interval depicted in subpanel B, we clearly
see the phenomena we just described reflected. Initially all wave-
front counts grow at the same rate, then the South East–North
West and South West–North East oriented wave fronts, that is,
the wave fronts propagating transversely, annihilate each other.
Subsequently, the North–South oriented wave fronts continue
to grow in size until they become approximately stable during
longitudinal propagation.

To establish whether and under which conditions a surface
of excitable cells generates coordinated patterns, we simulate
our network at different network sizes and different noise rates.

Our analysis methods allow us to scan a large parameter space
for patterned activity. At an intermediate noise rate of 0.1Hz,
Figure 5 shows the relative wave-front orientation prevalences
(represented by the diameters of the colored disks) and average
propagation orientations (indicated by the orientation of the
black bars) for various body lengths and circumferences of the
excitable myoepithelium. In the corners of this figure we drew
rectangles to illustrate the shape of the model network at the
parameter settings used for the simulation in the corresponding
corner. The ratio of circumference to length used in these
drawings are understated with 1:1 (left bottom corner), 1:5 (left
top corner), 5:5 (right top corner), and 5:1 (right bottom corner),
while the actual sizes of the model network are 4:4, 4:256,
256:256, and 256:4, respectively. From the average propagation
orientations in Figure 5 we see that there is a strong preference
for longitudinal wave-front propagation if the model network
axis is long compared to its circumference (upper left). In
contrast, if the model network circumference is large compared
to its axis (lower right), then we see a strong preference for
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FIGURE 4 | Wave patterns on a long tube (length: 32 cells,

circumference: 8 cells, noise rate: 0.1 Hz). (A) Network geometry: the

scissors indicate the line at which the tube is cut for presentation in (B).

(Continued)

FIGURE 4 | Continued

(B) Snapshots of network activity during 4 ms intervals in an illustrative phase

of the dynamics. The wave fronts propagating transversely collide with each

other, causing extinction due to the refractory period. Subsequently, the

remaining wave-fronts propagating longitudinally dominate the dynamics and

the North–South wave-front orientation dominates. (C) Temporal development

of different wave-front orientations. Snapshot time markings are consistent

with those in (B).

FIGURE 5 | Analysis of whole-body coordination for various body

shapes. Relative wave-front orientation prevalences (represented by colored

disk diameter) and average propagation orientations (indicated with an

oriented black bar) are shown for various body lengths and circumferences of

the excitable epithelium. In the corners, the corresponding body shape is

indicated with a rectangle. Bottom left: small “square” cylinder, top left: long

cylinder with small circumference, top right: large “square” cylinder, bottom

right: short cylinder with large circumference. This parameter scan shows

three effects: (i) more elongated networks show better developed longitudinal

wave fronts, (ii) whereas shorter networks show better developed transverse

wave fronts, (iii) however for fixed length-to-circumference ratios (visible on the

diagonals running from bottom left to top right) we can see that with increasing

size preference for transverse or longitudinally moving wave fronts is lost.

transverse wave-front propagation. This is also visible from the
relative wave-front orientation prevalences. Hence, we see that
for these networks there is significant pattern formation. To
extract how pattern formation scales with size we can study the
change in pattern formation on the diagonals running parallel
to the main diagonal (bottom-left corner to top-right corner).
Along these diagonals body size varies while the ratio between
axis length and circumference remains constant; the smallest
body size is at the lower left side of these diagonals and the
large body size at the upper right side. As we move along these
diagonals to larger scale networks we observe that relative wave-
front orientation prevalences equalize and average propagation
orientation diminishes. This shows that pattern formation fails
to reach network size when we move to large networks.

Noise drives activity in our network, but we also expect it
to interfere with emerging patterns. The reduction of the noise
rate might therefore rescue patterning in large-scale networks,
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FIGURE 6 | Development of wave-front orientation prevalences over

time on a long tube (length: 32 cells, circumference: 8 cells) at three

different noise rates. (A) Low noise condition (0.01Hz/cell). The graph at the

top shows wave-front counts for all three orientations. It is clearly visible how

activity first grows equally for all three orientations until the scale of activation

pattern equals the tube’s circumference, at which point in time the wave front

moving longitudinally starts to dominate. (B). At the intermediate noise rate

(Continued)

FIGURE 6 | Continued

(0.1 Hz/cell) we still observe growth of wave-front patterns to the scale of the

animal, but occasionally several wave fronts are initiated in close succession

leading to destructive interference. (C) At a high noise rate (1 Hz/cell) wave

fronts are initiated at a high rate and due to destructive interference with each

other these wave fronts often fail to grow to the scale of the animal. As a result

we no longer observe whole-body coordinated activity.

and an increase in noise rate might destroy patterning in small-
scale networks. Figure 6 illustrates the influence of the noise rate
on whole-body coordination at a single fixed combination of
length and circumference. In this figure each subpanel shows,
for a specific noise rate, the temporal development of wave-front
orientation prevalences. At the top of each subpanel we find
the wave-front counts plotted vs. time, followed by snapshots
of the activity in the network. Subpanel A shows the low noise
rate situation in which almost every excitation grows to network
scale and induces coordinated activity. Subpanel B shows the
intermediate noise rate situation in whichmany wave fronts grow
to the short scale of the network but spreading on the long
scale is often interrupted by collision with other wave fronts.
Subpanel C shows the high noise-rate situation in which, in
general, wave fronts are disrupted before reaching network scale
and whole-body coordination at the network level is absent.

Figure 7 shows two parameter scans over network sizes,
performed at the highest and the lowest noise rates used in
this study. Both panels show relative wave-front orientation
prevalences (represented by the diameters of the colored
disks) and average propagation orientations (indicated by the
orientation of the black bars) for various body lengths and
circumferences of the excitable epithelium. The two subpanels are
organized as in Figure 5 but the simulations were performed at
a low noise rate of 0.001 Hz (A) and a high noise rate of 10Hz
(B). Compared to Figure 5, we find slightly stronger relative
wave-front orientation prevalences and average propagation
orientations at the low noise rate in panel (A). In panel (B),
in contrast, we see a loss of whole-body coordination with
high noise rate, since relative wave-front orientation prevalences
become uniform and average propagation orientations are almost
absent at most parameter values in this scan. This shows that
reducing noise can enhance the range of network size over
which we find whole-body coordination, whereas increasing it
will reduce this range.

Figure 8 uses the wave-front propagation orientation
representation to show, per parameter combination, the spread
of 19 different runs in which only the random number generator
initialization is changed, indicating the variability between runs
with the same parameters.

4. Discussion

The simulations’ results show that an excitable epithelial
organization incorporating local chemical transmission and
action potentials can lead to self-organized patterned activity at a
whole-body scale under specific conditions. Three main features
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FIGURE 7 | Analysis of whole-body coordination for the extreme noise rates used in this study. Relative wave-front orientation prevalences (represented by

the diameters of the colored disks ) and average propagation orientations (indicated with the oriented of the black bar) are shown for various body lengths and

circumferences of the excitable epithelium. The two subpanels are organized as in Figure 5. (A) Low noise rate: 0.001Hz, (B) High noise rate: 10Hz. Compared to

Figure 5 we find slightly stronger relative wave-front orientation prevalences and average propagation orientations at the low noise rate in (A). In contrast we clearly

see the loss of whole-body coordination with increasing noise rates, as relative wave-front orientation prevalences become uniform and average propagation

orientations are almost absent in (B).

play a central role: noise, body dimensions and body size. Let us
briefly consider each of these features.

4.1. Noise
Some form of spontaneous activity is required to initiate electrical
activity. The cells included in our model epithelium showed
spontaneous vesicle release that initiated action potentials which
local chemical transmission subsequently spread out across the
epithelium. This spontaneous activity could give rise to patterned
activity at the body scale if the noise level was sufficiently low.
At high noise levels, the subsequent spontaneous firing of action
potentials disrupts already evolving large-scale patterns.

4.2. Body Dimensions
At sufficiently low noise rates the relative epithelial dimensions,
i.e., the length to width ratio, determines the type of whole-body
coordination. Wave fronts traveling along the short dimension
die out either through collision with the edge or through
annihilation with a wave front traveling in the opposite direction
from the same initiation site. Wave fronts traveling along the
long dimension then travel on and finally die out through
annihilation with an opposing wavefront or collision with the
edge, respectively. At such vesicle release rates wave fronts
traveling along the long dimension dominate the dynamics and
lead to a primitive form of whole-body coordination. Thus,
body dimensions are a key feature for the emergence of body
coordination under these circumstances.

4.3. Body Size
In our model the scale of these patterns is determined by the rate
of spontaneous vesicle release. We see whole-body coordination
emerge only when the scale of these patterns matches roughly

with one of the dimensions of the animal, i.e., matches with
length or circumference. Consequently, we see a reduction of
whole-body coordination with the increase of animal size.

We conclude that the generic properties of the modeled
excitable epithelium enable a rudimentary form of coordinated
patterning. This occurs without any sensory input, without any
central pattern generators and without requiring any specific
wiring or particular connections between the cells. Coordination
can be cast as an ingrained self-organized feature of such a
multicellular organization.

The aim of our computational model was to investigate the
potential functional validity of a chemically signaling excitable
epithelium as hypothesized by the skin brain thesis for the
evolution of early nervous systems (Keijzer et al., 2013). The
model suggests that such an epithelial configuration could have
acted as a primitive coordination device all on its own.

A note on robustness and validity of implications: the model
is explicitly intended as a proof of concept, a particularly rigorous
thought experiment, showing the principle of coordination
through an excitable epithelium in a plausible configuration. We
do not seek to claim that precisely this principle with precisely
the mechanisms we outlined was at the basis of nervous system
evolution; we merely claim that this is an example of how the
coordination scenario could have worked. The computational
experiment was also performed using a Hodgkin-Huxley cell
model, and the results were the same, which serves as an indicator
of the robustness of the principles. These results are detailed in
the Supplementary Materials.

A theoretically important implication of the model is that it
supports an improved lineage explanation (Calcott, 2009) for the
independent and subsequent evolution of the two key features
of modern neurons—synapses and axodendritic projections—by
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FIGURE 8 | Analysis of propagation direction orientation for various body shapes and noise rates. Propagation direction orientation, averaged over a unique

combination of length, circumference, and noise rate is indicated by an oriented black bar. There are 19 individual runs per unique combination of length,

circumference, and noise rate. Propagation direction of a single run is indicated with an oriented gray bar. These gray bars usually largely overlap with the black bar,

indicating that these experiments are highly reproducible. The orientation calculation is explained in Figure 2. (A) Noise rate: 0.001Hz, (B) Noise rate: 0.01Hz, (C)

Noise rate: 0.1Hz, (D) Noise rate: 1Hz, (E) Noise rate: 10Hz.

giving an account how targeted chemical signaling connections
between adjacent cells could have functioned as part of a motility
mechanism. Our results indicate that coordination in excitable

epithelia can be cast as a potential evolutionary reason for
the rise of the chemically induced transmission of electrical
signals between neighboring cells. These epithelial cells act
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as “protoneurons,” having only chemical transmission but no
axodendritic elongations. From this point, adding short-range
axodendritic projections to this organization can be hypothesized
as a possible way to improve the coordinative properties of the
epithelial organization modeled here. Short range axodendritic
projections allow for faster spreading of activity thus allowing
for spreading of activity to body scale in situations where
otherwise this spread would be limited through interactions with
other spontaneous activity. This account thus suggests a gradual
evolutionary path toward nervous systems and thus bears on the
current discussion concerning the monophyly or polyphyly of
nervous systems evolution (Moroz, 2009, 2014).

While such wider evolutionary implications must remain
speculative at present, the model has also more immediate
implications for the study of early nervous systems evolution. It
is one of the first models targeting the now quickly expanding
domain of early nervous system evolution (Albert, 1999; Chen
et al., 2008; Monk, 2014). Though remaining very basic this
model already shows how very specific features, such as body
size, are likely to have been important features for early nervous
systems in a way that would not be transparent withoutmodeling.
In addition, this model is clearly only a start. There are,

potentially, many additional features which impact the function
of primitive neural organizations. Therefore, a more complete
understanding requires an evaluation of the impact of other
features like ion channel composition, gap junctions, and the
development of neural processes on whole body coordination.
This will also require development of measures of whole body
coordination, as the measures employed in this study do not
generalize to contexts in which the wave fronts are more
diffuse.
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