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Humans can efficiently walk across a large variety of terrains and locomotion conditions

with little or no mental effort. It has been hypothesized that the nervous system simplifies

neuromuscular control by using muscle synergies, thus organizing multi-muscle activity

into a small number of coordinative co-activation modules. In the present study we

investigated how muscle modularity is structured across a large repertoire of locomotion

conditions including five different speeds and five different ground elevations. For this

we have used the non-negative matrix factorization technique in order to explain

EMG experimental data with a low-dimensional set of four motor components. In

this context each motor components is composed of a non-negative factor and the

associated muscle weightings. Furthermore, we have investigated if the proposed

descriptive analysis of muscle modularity could be translated into a predictive model that

could: (1) Estimate how motor components modulate across locomotion speeds and

ground elevations. This implies not only estimating the non-negative factors temporal

characteristics, but also the associated muscle weighting variations. (2) Estimate how

the resulting muscle excitations modulate across novel locomotion conditions and

subjects. The results showed three major distinctive features of muscle modularity:

(1) the number of motor components was preserved across all locomotion conditions,

(2) the non-negative factors were consistent in shape and timing across all locomotion

conditions, and (3) the muscle weightings were modulated as distinctive functions

of locomotion speed and ground elevation. Results also showed that the developed

predictive model was able to reproduce well the muscle modularity of un-modeled

data, i.e., novel subjects and conditions. Muscle weightings were reconstructed with

a cross-correlation factor greater than 70% and a root mean square error less than

0.10. Furthermore, the generated muscle excitations matched well the experimental

excitation with a cross-correlation factor greater than 85% and a root mean square

error less than 0.09. The ability of synthetizing the neuromuscular mechanisms

underlying human locomotion across a variety of locomotion conditions will enable

solutions in the field of neurorehabilitation technologies and control of bipedal artificial

systems. Open-access of the model implementation is provided for further analysis at

https://simtk.org/home/p-mep/.
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Introduction

Human locomotion emerges from the complex interaction
between the nervous, muscular, and skeletal systems (Winter,
1990; Enoka, 2008; Latash, 2010). Human body is a multiple
degree of freedom (DOF) structure, comprising many segments
connected by joints, actuated by a highly redundant set of non-
linear actuators (muscles). In spite of this complexity humans
can walk efficiently across a variety of (irregular) terrains and
they can seamlessly transit across locomotion speeds and ground
elevations, while adapting to the underlying mechanical demand
with little or no mental effort (Clark, 2015). The ability to
understand how the neuromuscular controller handles this
complexity and dimensionality is fundamental to understand,
characterize, and synthetize human movement.

Bernstein (1967) hypothesized that the nervous system
simplifies the motor control by organizing the high-dimensional
neuromuscular activity into a small number of coordinative
modules. Based on this, later studies introduced the concept
of muscle synergies (d’Avella et al., 2003; Bizzi et al., 2008;
Overduin et al., 2012). Muscle synergies are considered to be
the basic control signals responsible for generating the larger
repertoire of muscle-specific excitation needed for executing a
specific motor task (d’Avella et al., 2003; Cheung et al., 2005;
Ting and Macpherson, 2005; Bizzi et al., 2008; Dominici et al.,
2011; Bizzi and Cheung, 2013). These hypotheses have been
supported by a number of experimental studies conducted in
animal models (d’Avella et al., 2003; Ting and Macpherson, 2005;
Overduin et al., 2008) as well as in the intact human (Lacquaniti
et al., 2012; Lafortune et al., 2012; Duysens et al., 2013) and in
patients with neurological impairments (Gizzi et al., 2011). In
these studies, muscles electromyograms (EMGs) were recorded
experimentally and used to explore neuromuscular control
strategies in a descriptive manner. Typically, collected EMG
signals are linearly separated into various motor components
by using techniques such as non-negative matrix factorization
(NNMF) (Lee and Seung, 2001) or principal/independent
component analysis (Cappellini and Ivanenko, 2006). In the
case of the NNMF each motor component is composed of
a non-negative factor and the associated muscle weightings.
In the context of this manuscript NNMF is the factorization
technique employed to carry out the descriptive analysis of
muscle modularity. Whether this approach can also be used
to predict (rather than describe) patterns of muscle excitation
is an open question, which we aim to address in this
manuscript.

In this study we addressed three major questions. Firstly, we
investigated experimentally how muscle modularity is structured
across a large repertoire of human locomotion tasks, i.e., five
locomotion speeds and five ground elevations, for a total of 25
conditions. Secondly, we extracted regularities characterizing the
experimentally observed muscle modularity. Regularities were
used to build a predictive model that could be employed to
generate motor components as well as muscle-specific excitation
patterns required to walk at a given speed and elevation.
Finally, we validated the ability of the predictive model to yield
electrophysiologically consistent estimates of muscle excitations

over non-modeled locomotion conditions and subjects. In
summary, the relevance of this study include:

1. Understanding whether muscle modularity preserves its
structure over a large repertoire of locomotion conditions
(e.g., including for the first time various combinations of speed
and elevation conditions). This is an open question in current
movement neurophysiology and biomechanics.

2. Understanding whether it is possible to reliably synthetize the
neuromuscular control signals underlying human locomotion
into a compact computational model. This model would
provide biologically inspired controllers to be employed
in neuromusculoskeletal simulations and neurorehabilitation
technologies.

Materials and Methods

Experimental Procedures
Nine healthy male subjects of age: 31.1 ± 5.5 years, weight:
73.7 ± 10.51 kg, and height: 1.76 ± 0.08m (mean ±

standard deviation) volunteered for the experiments. The
Ethics Committee of the University Medical Center Goettingen
approved the experimental protocol. All participants signed an
informed consent. Subjects walked on a treadmill across 25
locomotion conditions including five speeds (i.e., 1, 2, 3, 4, and
5 km/h) and five elevations (i.e., −20, −10, 0, 10, and 20%).
Subjects performed on average 17± 2.5 gait cycles per condition
measured starting from the heel strike.

During treadmill locomotion, EMG signals were band-
pass filtered between 10 and 500Hz and recorded at the
sampling frequency of 2048Hz using a multi-channel amplifier
(USB-EMG2, OTBioelettronica, IT) connected to disposable
Ag-AgCl electrodes (Neuroline 720, Ambu, USA) in bipolar
configuration. Data were recorded from 15 muscle groups of
the right leg including: Tibialis Anterior (TA), Soleus (Sol),
Peroneus (Per), Vastus Lateralis (VastLat), Vastus Medialis
(VastMed), Rectus Femoris (RFem), Sartorius (Sar), Adductor
Group (Add), Gluteus Medius (GlutMed), Tensor Fasciae
Latae (TFL), Gastrocnemius Lateralis (GastLat), Gastrocnemius
Medialis (GastMed), Biceps Femoris (BFem), Semimembranosus
(Sem), and Gluteus Maximus (GlutMax). The electrodes were
placed following the SENIAM1 recommendations and using
manual palpation to cross check. Before placing the electrodes,
the skin was prepared by shaving the target area and by applying
a small quantity of abrasive gel (Everi, Spes Medica, IT). A retro-
reflective marker was placed on the heel of the right leg and
recorded using a seven-camera motion capture system (Oqus
cameras, Qualysis, SE).

Movement Data Processing
The raw heel marker trajectories obtained from the motion
tracking system were smoothed using a low-pass (8Hz), zero-
phase, fourth-order Butterworth filter. This marker trajectory
was used to detect the initial contact of the foot with the
ground and to segment the gait cycle. Acquired EMG data

1http://www.seniam.org/
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were band-pass filtered (30–300Hz) using a zero-phase, fourth-
order Butterworth filter to remove movement artifacts, full-
wave rectified and then low-pass filtered (3Hz) using the same
filter type to determine linear envelopes. For each subject and
muscle group, the resulting linear envelopes were normalized
with respect to the overall peak amplitude for that muscle.
This was determined as the maximum value of a 50ms
moving-average window applied to the muscle linear envelopes
across all the recorded trials. Normalized linear envelopes
were then segmented into individual gait cycles based on
the heel marker trajectories. The amplitude-normalized EMG
linear envelopes were then time-normalized to 200 equidistant
points over a gait cycle using a cubic spline function, and the
resulting profiles were referred to as the experimental muscle
excitations.

Descriptive Analysis
This analysis was performed using data of seven subjects across
all (25) conditions. For every subject and locomotion condition,
the muscle excitations from each gait cycle were concatenated
into an m × n matrix, where m indicates the number of
muscles and n is the number of time-normalized samples (i.e.,
200) multiplied by the number of gait cycles. The NNMF
algorithm was applied to the experimental muscle excitation
matrix resulting in a set of subject-specific and condition-specific
motor components, i.e., a non-negative factor and associated
discrete weightings (Lee and Seung, 2001). The number of motor
components was an input parameter for the NNMF algorithm
and it constrained the final factorization dimensionality. The
extracted non-negative factors were linearly combined with
the weightings to produce an m × n matrix of reconstructed
excitations, which was then compared to the experimental
muscle excitation matrix. The accuracy of the reconstruction was
assessed with the Variance Accounted For (VAF) index, defined
as VAF = 1 – SSE/TSS, where SSE is the sum of squared errors
between the experimental and reconstructed excitations and
represents the unexplained variation, and TSS is the total sum of
squares, which quantifies the total variation of the experimental
excitations (Ivanenko et al., 2006a; Dominici et al., 2011; Sartori
et al., 2013). For a given number of motor components, this
procedure was iterated 50 times starting from randomly chosen
initial conditions for the factors and weightings (Ivanenko et al.,
2005; Gizzi et al., 2011; Sartori et al., 2013). Across all 50
factorizations, the one with the highest VAFwas considered as the
final output for that specific dimensionality. The dimensionality
was incrementally increased until a minimal threshold VAF of
85% was obtained, and the resulting set of motor components
was deemed to be the final output of the factorization (Gizzi et al.,
2011; Lacquaniti et al., 2012; Sartori et al., 2013).

Within each motor component, the resulting non-negative
factors were averaged across all gait cycles and normalized
with respect to their maximum value. The associated muscle
weightings were then scaled accordingly, i.e., by the inverse of the
normalization coefficient. Therefore, averaged and normalized
non-negative factors varied between 0 and 1 and encoded
the temporal modulation of muscle recruitment. On the other
hand, the scaled weightings encoded the amplitude information
(Sartori et al., 2013).

Predictive Model
Figure 1 shows a block diagram of the developed predictive
model. The model estimates: (1) non-negative factors, (2) muscle
weightings, and (3) the resulting muscle excitation profiles
(MEP). These were estimated for a given locomotion condition
(i.e., speed and elevation) and a set of weightings characterizing
the baseline condition (elevation 0% and speed of 3 km/h). In
summary, the model was constructed based on the findings from
the descriptive analysis, which demonstrated that the structure
of the locomotion motor program, including the number and
timing of the non-negative factors, was consistent across the
conditions. Therefore, subject-specific and condition-specific
profiles were averaged and parameterized to determine a set of
generic factors (Figure 1A). The muscle weightings, on the other
hand, modulated systematically across the conditions and these
trends were captured using regression with the elevation and
speed as the independent variables (Figure 1B). The regression
was determined with respect to the differences in the weightings
relative to their absolute values in the baseline condition.

The development of the predictive model is explained
thoroughly in the Supplementary Material and it comprises three
major blocks:

- Excitation primitives block (Figure 1D). This block
approximates the experimental non-negative factors for each
motor component (c) using single impulse Gaussian curves
similarly to what has been reported in literature (Ivanenko
et al., 2006a; Gizzi et al., 2011; Duysens et al., 2013; Sartori
et al., 2013). These curves explain the temporal modulation
of the non-negative factor profiles observed in the descriptive
analysis as a function of the percentage of the gait cycle. We
refer to this single impulse Gaussian curves as the “excitation
primitives,” or XPs (Sartori et al., 2013):

X̃Pc (t) = e
−

(t−µc)
2

2σc2 (1)

where t is the gait cycle frame (i.e., 0%≤ t ≤ 100% gait cycle),
µc is the temporal shift of the peak of the Gaussian curve
within the gait cycle, and σc is the width of the Gaussian
curve for each extracted component (c). Refer to Section
Experimental Procedures of the Supplementary Material.

- The weightings predictor block (Figure 1E). This block takes
as input locomotion speed (υ) and elevation (θ) and computes
the resulting weightings for a selected muscle (m) and motor
component (c). The model employs the following regression
equation:

Wm,c (υ, θ,WBL) = △υ(υ)m,c +△θ(θ)m,c +WBLm,c (2)

where WBL are the muscle weightings at the baseline
locomotion condition, and 1υ and 1θ are the increments
modeling the additive changes in the baseline weightings due
to the velocity and elevation, respectively. Refer to Section
Movement Data Processing and Descriptive Analysis of the
Supplementary Material for more detail.

- The MEP reconstruction block (Figure 1F). This block
multiplies the XPs (X̃Pc (t)) from the first block (Figure 1D)
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FIGURE 1 | The model has three inputs: The desired speed, the desired elevation, and the set of muscle weightings characterizing the baseline

condition (elevation 0% and speed 3km/h). The outputs are predicted motor components (weightings and excitation primitives) as well as the synthetic muscle

excitation profiles (MEP) for the muscles under study. The generic Excitation Primitive block (D) was determined using the non-negative factors collected

experimentally (A). The Regression Model block (C) was determined using experimental muscle weightings (B). The Weightings Predictor block (E) produces the

estimated muscle weightings for a given speed and elevation. The MEP Reconstruction block (F) realizes the linear combination of the excitation primitives and the

estimated muscle weightings. The model can be applied in two modes, the Subject-Generic Mode (SGM) and the Subject-Specific Mode (SSM), depending whether

the input baseline weightings are generic (subject group average) or experimentally obtained for a specific subject.

by the muscle weightings (W̃m,c (υ, θ,WBL)) estimated in
the second block (Figure 1F) to predict the excitation profile

(M̃EPm(υ, θ,WBL)) of a specific muscle (m) at a desired
velocity (υ) and elevation (θ), as given in Equation (3)
(refer to Section Predictive Model of the Supplementary
Material):

M̃EPm(υ, θ,WBL) =W̃m,c(υ, θ,WBL) · X̃Pc (t) (3)

Subject-generic or Subject-specific Modes
The predictive model can output subject-specific or subject-
generic MEPs depending on the set of baseline weightings
used to calibrate it (as described by Equation 2). The subject-
generic estimation was determined by averaging the weightings
in the baseline condition per muscle and component across
all the subjects in the training dataset (i.e., mean experimental
baseline). When such a baseline is used as an input for the
predictive model (Figure 1), the resulting estimations reflect
an average motor control across a group of subjects. The
calibration using the average baseline allows the model to
be applied as is, without the need to collect additional
experimental data. On the other hand, for the subject-
specific estimation, the model is calibrated using the baseline
weightings obtained experimentally from an individual subject
walking at baseline condition. In this, we hypothesize that the
model estimations for other conditions would be in this case
more precise since the model is customized to an individual
subject. Two uses of the model are hereafter denoted as a

subject-generic mode (SGM) and subject-specific mode (SSM),
respectively.

Analysis and Validation Procedures

Training and Validation Scenarios
Two different scenarios were used in order to develop and test
the predictive model (Figure 2). In both scenarios, the data
obtained by the descriptive analysis of seven subjects were used
to train the predictive model, i.e., to determine the XPs and
regression equations. The two remaining subjects were used
to further test both scenarios with novel subjects (unknown
subject group). In scenario 1, the training included only the
data from a subset of conditions, three elevations (−20, 0, and
20%) and three speeds (1, 3, and 5 km/h), for a total of nine
conditions. This scenario yielded a predictive model trained
on a reduced dataset. This enabled assessing the ability of a
conservative model to generalize predictions of experimental
data in novel locomotion conditions and subjects. Therefore,
the model was tested with the remaining 16 conditions of the
seven subjects (known subject group) as well as with the two
unknown subjects excluded from the training (unknown subject
group).

In scenario 2 the training step included all 25 locomotion
conditions, thus showing the capacity of a more complete model
to predict known and unknown subject groups. The predictive
model trained and validated under this scenario will be freely
released to the public upon acceptance.
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FIGURE 2 | Two different scenarios were used in order to test the predictive model. The model in scenario 1 was developed using the data from seven

subjects over nine conditions. The model in scenario 2 was developed using the data from seven subjects in full set of 25 conditions. The models developed in each

scenario were assessed using the data of the seven subjects included in the training (known subjects group) as well as the two subjects excluded from the training

(unknown subjects group).

It is worth stressing that scenario 1 represents this study’s
main validation procedure. Scenario 2 allowed validating the
comprehensive predictive model that is finally released to the
public and therefore provides the perspective user with expected
predictive performance analyses.

Descriptive Analysis
The extracted non-negative factors and muscle weightings were
compared across subjects, locomotion conditions, and gait cycles.
The time shift between non-negative factors was computed as
the time difference required to align the signals for maximum
correlation and expressed as a percentage of the gait cycle.
Then, the cross-correlation coefficient (r) was calculated after
compensating for this time shift. These measures assessed the
average similarity in the factor shapes and timing across the
conditions. Statistically significant differences for the weighting
amplitudes of eachmuscle across the conditions were tested using
a Two-Way repeated measures ANOVAwith speed and elevation
as the factors. The significance threshold was set at p < 0.05 using
the Greenhouse-Geisser correction.

Predictive Model
The predictive model performance was evaluated following the
two scenarios described in Section Training and Validation
Scenarios (Figure 2). In each scenario, the model was applied in
both modes (SSM and SGM), and the assessment considered the
outputs of each model block:

i. Evaluation of the XP block output. Cross-correlation
coefficient (r) and the time shift were computed to compare
the similarity between the experimental non-negative factors
and generic XPs across subjects and conditions.

ii. Evaluation of the weightings predictor block output. To
assess an overall similarity between the sets of predicted
and experimental muscle weightings, the cross correlation
coefficient (r) was determined by treating a set of weightings
within a single motor component as a vector of values. In
addition, the root mean square error (RMSE) between the
estimated and experimentally obtained values was computed
for each weighting within each component to assess an
average absolute error in estimating a specific weighting.
Since, there was a large set of test cases, histograms were used
to report concisely the individual results and demonstrate the
overall performance of the model. Furthermore, due to the
non-normality of the data, the median and the interquartile
range were used to report the overall performance. Also, the
Wilcoxon Signed Ranks test was used to compare the quality
of estimation when using SGM vs. SSM. The threshold was
set at p < 0.05.

iii. Evaluation of the MEP predictor block output. The
resulting MEPs obtained using the predictive model in SSM
and SGM were compared with the experimental muscle
excitations by computing r and the RMSE between the
predicted and experimental profiles. Histograms, median and
interquartile range were used to report concisely the overall
performance of the model. Also, the Wilcoxon Signed Ranks
test was applied to assess the differences in performance
between the SGM and the SSM.

Results

Descriptive Analysis
The NNMF procedure resulted in four components being
consistently extracted across all seven subjects and 25 locomotion

Frontiers in Computational Neuroscience | www.frontiersin.org 5 September 2015 | Volume 9 | Article 114

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Gonzalez-Vargas et al. Predictive model of muscle excitations

conditions with a VAF of 94.1 ± 2% (mean ± standard
deviation). Table 1 shows a summary of the timing of the
peak activation, correlation and time shift of the extracted
components across subjects and conditions. In this, the timing
of the peak activation as well as the shape of the non-negative
factors were consistent and repeatable across subjects and
conditions. Consistency and repeatability is further highlighted
in Figure 3, showing the average (red line) and standard
deviation (gray shade) of the non-negative factors superimposed
on all experimental factors.

In component 1, the corresponding non-negative factors
peaked in the transitions between heel strike and weight
acceptance (5.3 ± 3.2% gait cycle, Table 1). Statistical tests
showed significant weightings changes across speeds and
elevations (p < 0.01) in muscles including: VastLat, VastMed,
Rfem, Sar, GlutMed, Bfem, Semi, andGlutMax. The non-negative
factors of component 2 peaked in the stance phase (37.9 ± 9.9%
gait cycle, Table 1). Statistical tests showed significant weightings
modulation across speeds and elevations (p < 0.01) in the
Sol, Per, GastLat, and GastMed. In component 3 the non-
negative factors exhibited a two-peak shaped profile (Figure 3).

TABLE 1 | Peak excitation, correlation and time shift of the extracted

non-negative factors across conditions and subjects.

Component Peak excitation (%) Correlation (%) Time shift (%)

1 5.3 ± 3.2 95.2 ± 4.6 2.1 ± 2.2

2 37.9 ± 9.9 94.9 ± 3.6 3.5 ± 4.8

3 71.9 ± 2.4* 97.9 ± 1.8** 89.9 ± 2.6 2.6 ± 6.6

4 91.3 ± 3.5 91.4 ± 5.6 1.7 ± 1.6

*Values for the first peak. **Values for the second peak. Refer to Figure 3.

The first burst peak occurred approximately at 71.9 ± 2.4% of
the gait cycle (i.e., after toe off), and the second one at 97.9 ±

1.8% (i.e., just before the heel strike). Statistical tests showed
significant weightings modulation across speeds and elevations
(p < 0.01) in the TA, Sar, and Add. Finally, component 4 marks
the preparation for the heel strike at the end of the swing phase
(peaked at 91.3 ± 3.5% of the gait cycle). The statistical test
demonstrated significant differences across speeds and between
elevations for the weightings of the TA, GlutMed, Semi, BFem
(p < 0.01).

Figure 4 further outlines the weightings for all muscles across
all elevations for the speed of 3 km/h. For other speeds similar
muscle weighting trends were obtained. Figure 5 illustrates the
changes in muscle weightings for representative muscles in each
component across four locomotion speeds and elevations. The
figure depicts the difference in the weightings with respect to the
values in the baseline condition (speed of 3 km/h and elevation
0%). Across speeds, the muscle weightings consistently increased
with speed. The trend was the same for positive elevations,
i.e., higher elevations were characterized with higher weightings,
whereas the changes in muscle weightings for negative elevations
were muscle-specific. These characteristic trends can be observed
most clearly in the highly activated muscles of each component.

Predictive Modeling
Validation in Scenario 1
i. Evaluation of the XP block output. Table 2 shows the

correlation and time shift between the predictive model
XPs and the experimental non-negative factors (Section
Applicability of the developed MEP Model). It indicates that
the XPs determined in this scenario correlated well with the
experimental non-negative factors and closely approximated
the maximum peak timings when tested in the unknown

FIGURE 3 | Subject- and condition-generic non-negative factors (red line) obtained by averaging the experimentally obtained profiles (gray lines)

across subjects and conditions (speed × elevation). The non-negative factors have consistent shape and timing between the subjects and conditions.
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FIGURE 4 | Weighting coefficients for 15 muscles in four components at the speed of 3 km/h and across elevations. The bars represent the average

amplitude (mean ± standard deviation) for seven subjects.

FIGURE 5 | Example modulations of muscle weightings across speeds and elevations. The plots depict the mean ± standard deviation of the amplitude

differences with respect to the baseline condition. For elevations (speeds), the mean was calculated by averaging across speeds (elevations).

conditions for the known subjects group. Correlation values
were always above 88% with time shifts below 9.5%.
The results were similar for the unknown subject group
(see Table 3). The correlation values were higher than
87% and the time shifts below 11% for most components
and conditions. Therefore, although the model was
trained using a restricted dataset (i.e., only 9 conditions,
Section Descriptive Analysis), the resulting XP correctly
approximates novel subjects. However, component 4 showed
similar shape to experimental values (r >87%), but the peaks
were considerably shifted as compared to other components,
especially for elevation 10% (17.4 ± 11.1%) and both speeds
(18.9± 6.3 and 17.7± 19.2%).

ii. Evaluation of the weighting predictor block output.

Figure 6 summarizes the quality of estimation of the muscle

weightings in unknown conditions for both the known and
unknown groups using the two modes of the predictive
model (SSM and SGM). For a total of 448 comparisons
(i.e., seven subjects, four components, and 16 conditions) in
the known subjects group, the SSM outperformed the SGM
significantly (p < 0.01) in both outcomemeasures. However,
for the unknown subject group, for a total of 128 comparisons
(i.e., two subjects, four components, and 16 conditions) there
was no statistically significant difference in the quality of
estimation between the SGM and SSM. However, as seen in
Figure 6 (right plots), the histograms show that SSM tends to
be more skewed toward higher correlation in the estimation
than SGM.

iii. Evaluation of the MEP estimator block output. Figure 7

shows a summary of results for the estimation of MEPs
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TABLE 2 | Correlation and time shift between the predictive model XPs and the experimental non-negative factors for the known subjects group (mean ±

standard deviation)*.

Component Correlation (r) Time Shift (%)

Elevation Speed Elevation Speed

−10% 10% 2km/h 4km/h −10% 10% 2km/h 4 km/h

1 92.2 ± 4.2 95.8 ± 1.7 93.7 ± 4.5 94.4 ± 2.6 6.3 ±7.2 5 ± 6.1 5.3 ± 8.9 3.3 ± 2.4

2 95.3 ± 3.3 91.1 ± 5.1 93.3 ± 5.1 94.2 ± 3.8 7.15 ± 4.4 4.7 ± 3.9 6.6 ± 5.5 6.5 ± 9.9

3 89.3 ± 5.9 90.6 ± 6.5 92.8 ± 4.7 88.9 ± 7.4 6.95 ± 7.9 7.1 ± 4.6 5.2 ± 4.1 7.1 ± 5.1

4 90.4 ± 5.3 87.6 ± 6.1 90.8 ± 4.6 88 ± 6.7 6.19 ± 7.8 6.7 ± 6.6 9.5 ± 14.9 4 ± 2.7

*For elevations, the average was computed across speeds and vice versa.

TABLE 3 | Correlation and time shift between the predictive model XPs and the experimental non-negative factors for the unknown subjects group

(mean ± standard deviation)*.

Component Correlation (r) Time Shift

Elevation Speed Elevation Speed

−10% 10% 2km/h 4km/h −10% 10% 2km/h 4km/h

1 96.5 ± 2.4 96.2 ± 3 94.5 ± 7.5 96.6 ± 4.2 4.4 ± 2.9 4.7 ± 2.8 7.5 ± 11.4 10.2 ± 16.1

2 98.5 ± 0.5 93.5 ± 2.4 95.0 ± 3.4 95.7 ± 2 4 ± 2.4 5.6 ± 3.5 5.3 ± 3.8 6.8 ± 4.6

3 86.9 ± 7.1 91.4 ± 5.5 90.5 ± 4.5 90.9 ± 7.5 10.4 ± 11.6 5.4 ± 4.3 4.9 ± 5.2 4.8 ± 3.6

4 87.9 ± 9.7 93.9 ± 2.8 91 ± 7 87.6 ± 9.9 7.9 ± 5.6 17.4 ± 11.1 18.9 ± 6.3 17.7 ± 19.2

*For elevations, the average was computed across speeds and vice versa.

across unknown conditions. For both known and unknown
subjects, the model in SSM and SGM estimated the
MEPs with a median correlation higher than 85% and
a median RMSE below 0.01 for novel conditions. For
a total of 1680 comparisons (i.e., seven subjects, 15
muscles, and 16 condition) in the known subject group
and 480 comparisons (i.e., two subjects, 15 muscles, and 16
conditions) in the unknown subject group, the performance
was similar between modes, with no statistical differences
found between them. This points out that the SGM captures
well the average behavior of the experimental muscle
excitations.

Validation in Scenario 2
i. Evaluation of the XP block output. Table 4 shows that

the XPs determined in scenario 2 approximated well the
shape (r > 90%) and timing (time shift < 7.3%) of the
experimental non-negative factors for both the known and
unknown subject groups.
Evaluation of the weightings predictor block output.

Figure 8 shows a summary of the weighting prediction in
scenario 2 for the known subject group. The yellow shaded
areas highlight the predominantly recruited muscles in each
component. Across a total of 700 comparisons (i.e., seven
subjects, four components, and 25 conditions), the SSM
showed a significant higher correlation and a significant
lower RMSE (p < 0.01) than the SGM.

ii. The weightings predicted for the unknown subjects group
correlated with the experimental weightings (median ±

interquartile range) with r = 78.7 ± 45.7% for the SSM and
70.9 ± 32.6% for the SGM, and a RMSE of 0.08 ± 0.12 for
the SSM and 0.10 ± 0.08 for the SGM, over a total of 200
comparisons (2 subjects, 4 components, 25 conditions).

iii. Evaluation of the MEP estimator block output. When
compared to the experimental data of the known subjects
group, MEPs were predicted with a correlation (median ±

interquartile range) of r =87.9 ± 12.3% for the SSM and r =

87.9 ± 12.1% for the SGM, over a total of 2625 cases (i.e.,
seven subjects, 15 muscles, 25 conditions), and the RMSE
was 0.07 ± 0.07 for the SSM and 0.08 ± 0.06 for the SGM.
No statistically significant differences were found between
modes. Figure 9 shows a summary of the results obtained
when the model was evaluated using the data from the
unknown subjects group. In this group, the prediction was
also similar with both modes (r > 85% and RMSE < 0.09),
with no statistically significant differences between modes.
Figure 9 shows a summary of the results obtained when
the model was evaluated using the data from the unknown
subjects group. In this group, the prediction was also similar
with both modes (r > 85% and RMSE < 0.09), with no
statistically significant differences between modes.

Discussion

In this study, we first employed a descriptive analysis to
investigate how muscle modularity varied across 25 treadmill
locomotion conditions including five speeds and five elevations
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FIGURE 6 | Performance assessment of the weight predictor block in scenario 1. The plots depict histograms of the average (median ± interquartile range)

correlation coefficient (r) and root mean square error (RMSE) between the estimated and experimental weightings.

FIGURE 7 | Performance of the muscle excitation profiles (MEP) predictor block developed in scenario 1. The plots depict histograms of the average

(median ± interquartile range) correlation coefficient (r) and root mean square error (RMSE) between the estimated and experimental MEPs.

across seven healthy individuals. We then created a predictive
model that synthetized the observed regularities into a compact
computational representation using Gaussian fitting and non-
linear regression.

Current descriptive studies in the literature had never
analyzed the modular structure of muscle excitations during
locomotion across the large repertoire of conditions reported in
this study. Importantly, our results showed that the average time
shifts in the non-negative factors peaks were always less than 4%
of the gait cycle across all conditions and subjects (Table 1). These
results are consistent with what previously reported (Ivanenko
et al., 2004) where time shifts in the extracted factor peaks were
within 9% of the gait cycle in average. Based on these results
Ivanenko and colleagues concluded that the extracted factors
were robust during locomotion and that they were not highly
dependent on locomotion conditions including: speed, step cycle

duration and limb mechanical loading. In the light of these
results, we modeled excitation primitives as Gaussian curves that
preserve shape and timing across all considered elevations and
speeds.

The muscle excitations were represented at the muscle-
specific weightings level, which varied linearly or quadratically
across conditions (Figures 4, 5). Our results were consistent,
in terms of motor components and modularity, with previous
descriptive work investigating muscle synergies during ground-
level locomotion (Cheung et al., 2005; Ivanenko et al., 2006a;
Neptune et al., 2009; Lacquaniti et al., 2012; Duysens et al., 2013;
Walter et al., 2014) and across a subset of speeds (Ivanenko et al.,
2004; Cappellini and Ivanenko, 2006).

The descriptive analysis provided a viable way to synthetize
the observed modulations into a predictive model. The subject-
invariant and condition-invariant non-negative factors were
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parameterized as a function of the gait cycle using Gaussian
curves (Equation 1 and Figure 8). On the other hand, the
variations observed in the discrete muscle weightings could
be captured using a regression function (Equation 3). Results
from scenario 1 (Section Predictive Modeling, Validation in
Scenario 1, Figures 6, 7) highlighted the predictive model
ability of estimating muscle modularity and excitations under
novel locomotion conditions (elevations and speeds) and
subjects (Figures 8, 9). Results also showed that the SGM well

TABLE 4 | Correlation and time shift between the predictive model XPs

and the experimentally obtained non-negative factors (mean ± standard

deviation).

Component Known subjects Unknown subjects

(7 subjects) (2 subjects)

r (%) Time shift (%) r (%) Time shift (%)

1 93.9 ± 3.9 5.7 ± 7.9 96.4 ± 4.3 4.6 ± 2.8

2 93.4 ± 4.8 6.8 ± 8.3 98.4 ± 1.5 1.9 ± 1.1

3 90.1 ± 6.3 6.6 ± 5.3 93.2 ± 7.5 3.6 ± 3.0

4 91.1 ± 6.4 7.31 ± 9.8 93 ± 6.7 3.3 ± 5.9

captured the features describing average muscle modularity and
excitations across all subjects and locomotion conditions. On the
other hand using the SSM enable higher accuracy on a trial-by-
trial basis, since its estimations tend to be more skewed toward
higher correlation values as seen in Figure 6. Themain advantage
of the SGM is that it operates as a pure function of speed and
ground-elevation (i.e., without collecting any experimental EMG
data), whereas the SSM model is customized to a specific subject
by using experimentally collected EMG data from baseline
locomotion. This is a minimal calibration dataset (only baseline
condition is needed), which enables applicability to a range of
input speeds and elevations.

Predicting muscle excitations using regression on time-
varying signals involves the use of complex neural-networks
and supervised machine learning methods, which have the
disadvantages of (1) hiding the underlying modular structure
of multi-muscle control and (2) further constraining the
computational requirements needed for learning as well as its
application. In this, the generalizability of the chosen machine
learning method would decrease as a function of its complexity,
i.e., number of neurons and connecting layers in a neural-
network (Wang and Buchanan, 2002; Valero-Cuevas et al.,
2009). Recent studies in the literature employed the theory

FIGURE 8 | Comparison of the generic XPs and the estimated the weightings in scenario 2 to the experimental data of the known subject group.

Experimentally obtained muscle modularity (non-negative factors and weightings) was well approximated by the predictive model. The estimation of weightings was

better for highly active muscles in each component (yellow shaded plots). The y axes in all the plots are normalized between 0 and 1. The plots in the first row depict

the XPs and the other plots show the weightings. In the plots for the elevations (speeds), the experimental weightings were averaged across speeds (elevations). For

the GM and SM, the mean weightings are shown.
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FIGURE 9 | Comparison of the output of the muscle excitation profiles (MEP) estimator block in scenario 2 to the experimental results for all tested

muscles for the data of the unknown subjects group. The results show that the estimated muscle excitation profiles closely approximated the experimental ones

in both modes (the SM and GM). The y axes are normalized between 0 and 1.

behind muscle synergies to establish predictive models of
muscle function (Rückert and d’Avella, 2013; Gopalakrishnan
et al., 2014). The work in (Gopalakrishnan et al., 2014) aimed
to provide a novel method for extracting muscle synergies
from joint moment estimates. This was based on using
musculoskeletal modeling and inverse dynamics to solve for the
muscle excitation primitives and muscle weightings required
to track target joint moments during locomotion tasks at two
different speeds. It is worth stressing that the study made
the assumption that muscle weightings were expected to be
invariant across locomotion speeds while excitation primitives
were expected to vary. This is in contradiction with respect
to what our descriptive analysis found (See Section Descriptive
Analysis) as well as with respect to previous descriptive work
of muscle synergies across different locomotion conditions,
which state that excitation primitives are considered to be
invariant across locomotion speeds, while muscle weightings
undergo locomotion speed-related modulation (Hansen et al.,
2004; Ivanenko et al., 2004, 2006b; Cappellini et al., 2010).
The work in (Rückert and d’Avella, 2013) aimed to provide

a theoretical and computational framework that exploited
similarities and shared synergies across different motor tasks
to enable robust motor skill learning in multi-body dynamic
systems. This was done by using superposition of a set of
basis functions for determining movement trajectories in the
considered dynamic models. These previous studies directly
employed dynamic simulation of the human musculoskeletal
system, thus making them comparable to our earlier work on
synergy-driven musculoskeletal modeling (Sartori et al., 2013) as
well as to other related work (McGowan et al., 2010; Allen and
Neptune, 2012; Walter et al., 2014).

The work we now propose does not employ musculoskeletal
modeling. It first employs a descriptive analysis for identifying
the muscle synergies underlying experimental lower extremity
electromyograms. Afterwards, it synthetizes the experimentally
observed synergies into a predictive model using Gaussian-fitting
and non-linear regression. Our proposed descriptive analysis and
predictive model encompass a larger repertoire of locomotion
conditions than what has been reported in literature. We argue
that our proposed approach will be central for informing
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muscle excitation-driven musculoskeletal simulations of a large
repertoire of human locomotion conditions (also see Section
Applicability of the developed MEP Model), a scientific area
where the theory of muscle synergy is increasingly gaining
importance (McGowan et al., 2010; Allen and Neptune, 2012;
Rückert and d’Avella, 2013; Sartori et al., 2013; Gopalakrishnan
et al., 2014; Walter et al., 2014).

Finally, our proposed model has the advantage from similar
approaches that it is synthesized from experimental data and
parameterizes an extensive set of continuous muscle excitations
using two discrete numbers (desired speed and elevation) and
a set of baseline weightings. This was possible since the set of
generic XPs encoded the temporal modulation shared by all
the muscles, while the weightings encode the muscle-specific
excitation amplitude across the conditions. As a result, our
proposed predictive model is convenient for implementation,
even in systems with limited computational resources (e.g.,
embedded devices). The system only needs to store a set of
parameters (expression coefficients) and execute basic scalar
and matrix operations. To the best of our knowledge, there
is no other model characterized with the similar flexibility,
which accommodates many muscles and conditions. In addition,
it explicitly preserves the modular structure underlying the
observed muscle activation profiles. This is important since
both the synthesized XPs and the estimated weightings are
of interest for potential applications, as discussed in the next
section.

Applicability of the Developed MEP Model
Our proposed predictive model offers many advantages in
different applications domains. We will outline 4 specific
applications that will be the objective of future research:

i. Functional electrical stimulation (FES) controller: The
proposed predictive model can be used to implement control
strategies in neuroprostheses for restoringmotor functions in
patients with neurological conditions. It can provide MEPs
across a large variety of locomotion conditions, which can
serve as the templates for designing stimulation profiles of
an FES system on targeted muscles during the gait cycle.
This is an important aspect as the main challenge behind
developing FES-controllers is the inability of determining
desired neuromuscular excitation patterns for a large number
of muscles across a wide range of locomotion conditions.
There are studies in literature in which stimulation profiles
were designed by mimicking experimentally recorded EMGs,
but they considered only a limited set of muscles and
conditions (e.g., single muscle O’Keeffe et al., 2003, speed
modulation Byrne et al., 2007). The model presented here
would enable this approach to be generalized to multi-muscle
systems, in which the stimulation profiles could be updated
online based on the parameters (desired speed and elevation)
supplied by the higher levels of control. Also, by exploiting
the concept of muscle modularity, the model could be used
as an event-based guideline to deliver the stimulation at the
correct time to only relevant muscles as discussed by Piazza
et al. (2012).

ii. Assessment and biofeedback: The estimated muscle
modularity (XPs and weightings) could be used as a healthy
benchmark to guide and evaluate the rehabilitation of
human locomotion (Galeano et al., 2014). Due to the
low computational requirements, these procedures could
be implemented online (e.g., during rehabilitation). For
example, during treadmill or robotic training the current
walking speed and elevation can be measured using
kinematic sensors and the predictive model can provide
reference muscle synergies characterizing healthy walking
in the current condition. The reference can be compared
to the actual synergies extracted online from the patient
muscle activity in order to assess the recovery and/or provide
biofeedback to the patient, facilitating the convergence
toward a healthy pattern.

iii. Modeling: In the context of movement analysis,
neuromusculoskeletal modeling has been widely used
to understand how neuromuscular control contributes to
produce dynamic musculoskeletal movement (Zajac et al.,
2002; Pandy and Andriacchi, 2010; Fregly et al., 2012). In
this scenario, surface EMG envelopes have been used to
directly drive individual musculotendon units in subject-
specific models that can predict dynamically consistent
joint moments, forces, and motions (Lloyd and Besier,
2003; Buchanan et al., 2004; Barrett et al., 2007; Sartori
et al., 2012; Gerus et al., 2013). This however necessitates
the availability of experimental EMG data. Alternatively,
optimization has been used as a way to solve for the
redundancy in the musculoskeletal system (Anderson and
Pandy, 2001; Erdemir et al., 2007; Seth and Pandy, 2007).
However, these methods rely on pre-defined optimization
criteria that do not necessarily generalize across locomotion
conditions. Furthermore, static optimization-based methods
are currently unable to predict neuromuscular mechanisms
including physiological muscle pre-activation and co-
activation ratios (Tax et al., 1990; De Serres and Milner,
1991; Buchanan and Lloyd, 1995; Norton and Gorassini,
2006; Menegaldo and Oliveira, 2011). In this context, our
proposed model can provide an initial pattern of synthetic
muscle excitations that well describe the electrophysiology
underlying the condition-specific locomotion. These
patterns can be used as an initial feedforward solution to
inform hybrid musculoskeletal simulations. These reproduce
the musculoskeletal dynamics underlying a given motor
task by minimally adjusting the initial feedforward muscle
excitations (Sartori et al., 2014). This will enable generating
dynamic musculoskeletal simulations of locomotion that
are consistent both dynamically (i.e., match experimental
joint dynamics) and electrophysiologically (i.e., match
experimental EMG data) with no need for recording
experimental EMG signals (predictive model in SGM) or
with minimal experimental EMG (predictive model in SSM).

iv. Biped robotic control: The proposed model can be used
to provide further solutions for synthetizing human-like
locomotion in simulation or in artificial bipedal systems
(Degallier and Ijspeert, 2010). In this context, the predictive
model can generate prototype patterns of the human-like
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feedforward motor commands in muscle space (predictive
model) or joint actuator space (predictive model informing
the musculoskeletal simulation), which can be used for
designing a biologically inspired control. The predictive
model could serve as an efferent component within the
overall control structure, which also implements afferent
loops. Furthermore, the XPs provide level-of-recruitment
profiles which are impulsive and timed relative to the gait
cycle and/or events and are thereby similar to the central
pattern generator components in the human motor control
and robotics (Ijspeert, 2008; Degallier and Ijspeert, 2010).
Certainly, all the above-mentioned scenarios require future
research work and systematic validation.

Conclusions

The primary contributions of our study are that (1) it
characterized how muscle modularity varies across a large
spectrum of locomotion conditions (5 speeds and 5 elevations),
and (2) used the observed modular structure to design
a predictive framework that was validated across novel
conditions and individuals. The developed predictive model is
computationally efficient and therefore convenient for real-time
operation. It can provide muscle-specific excitations as well as

the modular structure (excitation primitives and weightings)
underlying the desired locomotion condition. The results showed
that the model could be used in two different modes to
predict a large repertoire of excitation for up to 15 muscles for
one leg during locomotion in different elevations and speeds.
We developed a subject-generic mode, which does not need
collecting experimental data, and a subject-specific mode, which
only needs collecting data for a baseline condition. This allowed
us to synthesized the neuromuscular mechanisms underlying
locomotion with important implications in neurorehabilitation
technologies. Open-access of the model implementation is
provided for further analysis at https://simtk.org/home/p-mep/.
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