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We investigate the emergence of in-phase synchronization in a heterogeneous network

of coupled inhibitory interneurons in the presence of spike timing dependent plasticity

(STDP). Using a simple network of two mutually coupled interneurons (2-MCI), we first

study the effects of STDP on in-phase synchronization. We demonstrate that, with STDP,

the 2-MCI network can evolve to either a state of stable 1:1 in-phase synchronization

or exhibit multiple regimes of higher order synchronization states. We show that the

emergence of synchronization induces a structural asymmetry in the 2-MCI network such

that the synapses onto the high frequency firing neurons are potentiated, while those

onto the low frequency firing neurons are de-potentiated, resulting in the directed flow of

information from low frequency firing neurons to high frequency firing neurons. Finally, we

demonstrate that the principal findings from our analysis of the 2-MCI network contribute

to the emergence of robust synchronization in the Wang-Buzsaki network (Wang and

Buzsáki, 1996) of all-to-all coupled inhibitory interneurons (100-MCI) for a significantly

larger range of heterogeneity in the intrinsic firing rate of the neurons in the network. We

conclude that STDP of inhibitory synapses provide a viable mechanism for robust neural

synchronization.

Keywords: gamma, STDP, computational, interneuron, plasticity, network synchronization

1. INTRODUCTION

Cortical gamma rhythms (30–80Hz) are correlated with diverse brain functions such as memory
formation (Singer and Gray, 1995), linguistic processing (Pulvermller et al., 1995), and associative
learning (Ritz and Sejnowski, 1997; Miltner et al., 1999). Two commonly known mechanisms
for gamma oscillations are Pyramidal-Interneuronal Network Gamma (PING) and Interneuron
Network Gamma (ING).

Interneurons play critical roles for gamma rhythm generation in both mechanisms. However,
in ING, interneurons are solely responsible for gamma frequency activity (Bartos et al., 2002).
Additionally, there is evidence that interneurons show phase-locked activity with gamma
oscillations (Bartos et al., 2007). In particular, perisomatic inhibition caused by fast-spiking
parvalbumin (PV) immunoreactive basket cell interneurons (Lytton and Sejnowski, 1991) have
been implicated in the generation of cortical and subcortical gamma oscillations (Bartos et al.,
2007).

Previous theoretical works have shown that synchronization is possible in interneuronal
networks (Wang and Rinzel, 1992; van Vreeswijk et al., 1994), however, this synchronization is
not resilient to even slight heterogeneity or noise in the network (Wang and Buzsáki, 1996). In
biological systems, inherent noise and heterogeneities in neuronal firing rates are likely to be
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present. Investigations by Kopell and Ermentrout (2004) have
shown that gap junctions are one way by which interneuronal
network synchronization can be robust against heterogeneities
and noise in the network.

Evidence from literature suggests a strong correlation between
Hebbian learning and Gamma rhythms (Miltner et al., 1999).
Indeed, studies have established a link between glutamatergic
synaptic plasticity and gamma oscillations (Whittington et al.,
1997; Traub et al., 1998). More recently, synaptic plasticity of
inhibitory Gamma-Aminobutyric acid (GABA) synapses was
observed and characterized (Haas et al., 2006). This led us to
question whether inhibitory synaptic plasticity could also play a
role in generation of gamma oscillations.

In our earlier works, we demonstrated that inhibitory plastic
synapses could improve in-phase synchronization in the presence
of firing rate heterogeneity in a simple network of uni-
directionally coupled interneurons (UCI) (Talathi et al., 2008). In
the current paper, we investigate how the presence of synaptic
plasticity can increase the range of firing rate heterogeneity
for which mutually-coupled parvalbumin positive interneuronal
(MCI) networks can synchronize at gamma frequencies. We
begin with analyzing in-phase synchrony of a two interneuron
MCI network (2-MCI) and prove that the analysis holds even
for a much larger network (100-MCI). We demonstrate that
the spike time response curve (STRC) of parvalbumin positive
interneurons exhibit a strong second order component. We
present a novel approach to account for the second order STRC
component in the analysis of 1:1 in-phase synchronization of the
2-MCI parvalbumin positive interneuronal network.

The organization of the paper is as follows: the Methods
Section presents the mathematical model for the network, the
interneuron, and the synapse used in our studies. We analyze
two types of heterogeneity in the interneuronal networks: (1)
temporal heterogeneity; which corresponds to the heterogeneity
in the intrinsic firing rates of the coupled interneurons, and (2)
structural heterogeneity; which corresponds to the heterogeneity
in the synaptic coupling strength. We introduce a few network
measures in order to quantify the network state in terms of
its connectivity and/or synaptic strengths. We then introduce
a novel method for using STRC’s with a strong second order
component to estimate the spike times for a periodically
firing neuron that receives periodic synaptic inputs. Finally, we
introduce the empirical STDP rule (Haas et al., 2006; Talathi
et al., 2008) used in our investigations of the emergence of
synchronization in MCI networks.

In the Results Section, we systematically analyze the
synchronization domain of a 2-MCI system in terms of temporal
and structural heterogeneity. We show how heterogeneity
and initial values of synaptic strengths determine the final
synchronization state of the 2-MCI system. The 1:1 domain of
synchronization identified by this analysis allows us to determine
how STDP must evolve synaptic strengths in order to achieve 1:1
synchronization. We then use the STDP rule and STRC of the
interneuron model to derive a nonlinear map for the evolution of
the 2-MCI system to a state of in-phase synchronization. Finally,
we demonstrate that the principal findings from our analysis of
the 2-MCI network hold for larger MCI networks.

2. MATERIALS AND METHODS

2.1. The Network Model
Each neuron in the network of all-to-all coupled inhibitory
interneurons is modeled based on a single compartment model
for parvalbumin positive inhibitory neuron developed by Wang
and Buzsáki (1996) with a fast sodium channel, a delayed rectifier
potassium channel and a leak channel. The dynamical equation
for the model neuron is given by,

C
dVj(t)

dt
= IDCj + gNam

3
∞h(t)(ENa − Vj(t))

+ gKn
4(t)(EK − Vj(t))+ gL(EL − Vj(t))

+
∑

i

aijgij(t)si(t)(EI − Vj(t)) (1)

where C = 1µ F/cm2. Vj(t) is the membrane potential of the jth

neuron (j = {1, 2, · · ·N}). The external current, IDCj is given as

follows:

IDCj = Iref +

(

j−
N + 1

2

)(

H × Iref /100

N − 1

)

(2)

where, the parameter H controls the degree of heterogeneity in
the intrinsic firing activity of the interneurons in the network.
When H > 0, IDCj < IDCj+1. Since neuron j’s firing period is

determined by IDCj , this means that neuron j fires slower than

neuron j + 1. The actual value of H determines the amount
by which neighboring neurons differ in their IDC-values (and
correspondingly, firing periods), as given in Equation (2). Hence
for a larger H, there is a larger range of firing periods across
the neurons in the network, corresponding to a larger temporal
heterogeneity. The parameter Iref = 1 µA/cm2 in Equation (2)
is set such that the mean intrinsic frequency of firing for the
neurons in the network is≈ 60 Hz (Wang and Buzsáki, 1996). Er
(r = Na, K, L) are reversal potentials of the sodium and potassium
ion channels and the leak channel, respectively. EI , is the reversal
potential of the fast GABAergic inhibitory synapse. gr (r = Na,
K, L) represent the conductance of sodium, potassium, and the
leak channel, respectively. The steady state activation for sodium
current, m∞ = αm/(αm + βm). The inactivation variable for
sodium channel h(t) and the activation variable for potassium
current n(t) satisfy the following first order kinetic equation:
dX(t)
dt

= φ(αX(Vj(t))(1 − X(t)) − βX(Vj(t))X(t)), where X(t) =

h(t), n(t) with φ = 5. The functions αX and βX are given by:

αm(x) =
−0.1(x+ 35)

e−0.1(x+35) − 1

αh(x) = 0.07e−(x+58)/20

αn(x) =
−0.01(x+ 34)

e−0.1(x+34) − 1

βm(x) = 4e−(x+60)/18

βh(x) =
1

e−0.1(x+28) + 1

βn(x) =
0.125

e−(x+44)/88

(3)

The strength of inhibitory synaptic coupling from the pre-
synaptic neuron i onto the post-synaptic target neuron is
modeled via the variable gij(t). In the presence of spike timing
dependent plasticity; the coupling strength evolves depending on
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the plasticity rule as a function of the relative timing of spiking
activity between the neurons i and j. In absence of synaptic
plasticity the synaptic coupling strength is set as:

gij =
g0

N

(

1+
η

100
sgn(i− j)

)

(4)

where |η| ≤ 100. For all the results presented unless otherwise
stated, g0 = 0.1mS/cm2. The parameter η regulates the structural
heterogeneity in the network such that for η 6= 0, there is
asymmetry in the synaptic coupling strengths of the twomutually
coupled neurons. By design, the asymmetry is such that for η > 0,
the strength of synapse from neuron with lower index is smaller
than that of the synapse from neuron with higher index label.
The variable aij defines the topology of the inhibitory neuronal
network such that, for an all-to-all coupled network, we have
aij = 1 ∀i 6= j and aij = 0 otherwise for all i, j = {1, 2, · · ·N}.
The variable si(t) models the fraction of bound neurotransmitters
onto the post-synaptic neuron GABAergic receptors resulting
from a spike elicited by the pre-synaptic neuron i, and satisfies
the following first order kinetic equation, Abarbanel et al. (2003)
and Talathi et al. (2008),

ṡi(t) =
S0(Vi(t))− si(t)

τ̂ (SI − S0(Vi(t))
(5)

The kinetic equation for si(t) involves two time constants, τR =

τ̂ (SI − 1) = 0.1 ms, the docking time for the neurotransmitter
binding and τD = τ̂SI = 10 ms, the undocking time constant
for the neurotransmitter binding. Finally, S0(x) is the sigmoidal
function given by, S0(x) = 0.5(1+ tanh(120(x− 0.1))).

In order to quantify the influence of synaptic plasticity on the
structure of synaptic connectivity in the network, we define the
following network measures:
(a) Link imbalance: The difference in synaptic strengths of the
two coupled neurons,

Lij = −Lji = aijgij − ajigji (6)

(b) Neuronal strength: The sum of synaptic strength of all
outgoing synapses from the neuron i,

Gi =
∑

j

aijgij (7)

For all the networks considered here, the neurons in the network
are labeled in ascending order of input DC current such that label
0 is assigned to the neuron with lowest intrinsic firing rate while
label N − 1 is assigned to neuron with the highest intrinsic firing
rate.

2.2. Spike Time Response Curve
As a measure of the influence of synaptic input on the firing
times of a given neuron i, we define the spike time response

curves (STRC’s) 8ij(τR, τD,ER,Ti0, g, δt) =
Tij−Ti0
Ti0

(Acker et al.,
2004; Oprisan et al., 2004; Talathi et al., 2010), where Ti0 is the
intrinsic period of spiking, and Tij represents the length of the
jth spiking cycle from the cycle j = 1 in which the neuron

receives synaptic input at time 0 < δt < Ti0. A synaptic
perturbation can either advance or delay the occurrence of an
impending spike depending on the bifurcation character of the
neuron (Ermentrout, 1996) and the type of synaptic perturbation
(excitatory vs. inhibitory). The number of firing cycles j, for
which the effect of synaptic perturbation lasts, depends on the
synaptic parameters: the synaptic rise time τR, the synaptic decay
time τD, the reversal potential of the synapse ER, and the synaptic
conductance g. For fast hyperpolarizing inhibitory synapse (ER =

−75 mV), as considered in this study, a synaptic input delays
the time of occurrence of subsequent spike such that 8i1 ≥ 0
∀δt > 0, 8i2 > 0 for δt → Ti0, and 8ij = 0 ∀j > 2
(Talathi et al., 2010). We note that in all further calculations,
unless otherwise mentioned, we suppress the dependence of 8

on τR, τD, ER, and the intrinsic firing period of neuron T0 and
define 8(τR, τD,ER,T0, g, δt) ≡ 8(g, δt).

We begin by estimating STRC’s using the direct method as
follows: consider neuron i, firing regularly with period Ti0. The
neuron is perturbed through an inhibitory synapse at time δt
after the neuron has fired a spike at reference time zero (see
Figure 1A). The spiking time for a neuron is considered to be
the time when its membrane voltage V, crosses a threshold (set
to 0 mV in all the calculations presented here). As a result of
this perturbation, the neuron fires the next spike at time t1,
representing the first cycle after perturbation of length Ti1 6= Ti0.

FIGURE 1 | STRC Calculations. (A) Schematic for determining the STRC

using the standard method. (B) The neuron firing intrinsically at 60 Hz, receives

inhibitory synaptic perturbation with synaptic parameters: ER = −75 mV,

τR = 0.1 ms, τD = 5 ms, and g = 0.1 mS/cm2. The original STRC is shown in

solid colors while the STRC with the included phase correction term (δt*) is

represented by the dotted lines. (C) Schematic of an uni-directionally coupled

two-interneuron network. (D) For H = 30 the neurons exhibit phase-locked 1:1

synchronization. The spike from Neuron 0 (black voltage trace) synaptically

perturbs neuron 1 (magenta voltage trace) at a fixed δt during every firing cycle

of neuron 1. The solid blue lines indicate the spike-time shift calculated using

the STRC that incorporates the correction factor. The dotted blue lines indicate

the spike-time shift calculated using the original STRC’s without any

correction term.
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Depending on the properties of the synapse, i.e., gs, τR, τD, and
ER; the length of subsequent cycles might change. In Figure 1B,
we plot the first two STRC’s 8i1 (solid black line) and 8i2 (solid
magenta line), estimated by using the procedure described above
for δt ∈ [0,Ti0). We note the presence of a non-zero second
order STRC component for the choice of the parameters of the
neuron.

In the direct method for computing STRC’s, we use a
single perturbation to observe the changes in spike times of a
periodically firing neuron. These changes in spike times can be
used to predict future spike times. If 8i2 ≈ 0, then a single
perturbation arriving at δt, following the last spike at reference
time t0, can be assumed to produce a spike time shift such that
the next spike occurs at time t1 = t0+Ti0(1+8i∞(g, δt)), where
8i∞(g, δt) = 8i1(g, δt) + 8i2(g, δt) (Oprisan and Canavier,
2001). When a significant higher order STRC component (8i2) is
present, 8i∞(g, δt) can no longer be expressed as a linear sum of
the first and second order STRC components (Talathi et al., 2010).
With a significant second order STRC component, the neuron
requires at least two firing cycles before it resets to its original
firing period. In such conditions, the assumption of linear second
order STRC correction to the estimated future spike time is no
longer valid (Talathi et al., 2010).

We demonstrate this issue using a 2-UCI network as shown
in Figure 1C. Here, neuron 1, which fires periodically, is also
periodically perturbed by neuron 0 via an inhibitory synapse.
We consider a specific case of the 2-UCI network where firing
rate heterogeneity H = 30 (Equation 2) and phase locked
1:1 synchrony exists. The voltage traces of neuron 0 and 1 are
shown as black and magenta solid curves, respectively. We see in
Figure 1D that when the shift in spike times are predicted using
Ti1 = Ti0(1 + 8i∞(g, δt)), there is a noticeable error between
predicted spike times (blue dotted stems) and the actual spike
times (black solid curve). We next sought to empirically quantify
the error between predicted and actual spike times as a function
of δt.

Previously, Talathi et al. (2008) derived a STRC based
theoretical map for when a 2-UCI network (see Figure 1C)
exhibits steady state 1:1 phase locked synchrony. The map is
expressed as:

T00 − T10 = T1081∞(g01, δts) (8)

where, T00 and T10 represent the firing periods of neurons
0 and 1, respectively, 81∞(g01, δts) is the STRC calculated
for the steady-state perturbation time δts, which is effectively
the spike time difference between the two neurons. The spike
time difference could also be measured directly by observing
simulation results of the 2-UCI network in a state of 1:1
synchrony, which we denote as δt∗. When the STRC’s second
order component is weak, the theoretical predictions match
closely with the simulations and we get δt∗ ≈ δts. However,
when the STRC’s second order component is strong, there is a
noticeable deviation between the map’s δts and simulation’s δt∗.
We term this error as δ̄t = δt∗ − δts.

In order to characterize δ̄t as a function of δts, we need to
observe the 2-UCI network in 1:1 synchrony across a range

for δt∗ and δts. Since, δts and δt∗ are spike time differences of
the theoretical map solution and simulations, respectively for a
particular configuration of the 2-UCI network in 1:1 synchrony,
they cannot be arbitrarily predetermined. Instead, by varying
the temporal heterogeneity parameter H (25 ≤ H ≤ 45), we
can cause the 2-UCI network to exhibit a range of 1:1 phase-
locked synchrony states. Each of these 1:1 synchrony states
allows us to measure the true spike time differences, δt∗, from
simulations and the theoretically estimated spike time difference,
δts, between the two neurons. By noting δts, δt∗, and the
corresponding error δ̄t for every value of H that produces 1:1 in-
phase synchronization in the 2-UCI network, we were able to plot
the error (δ̄t) as a function of δts (see Figure 2A). We noticed that
the relationship between δ̄t vs. δts is approximately linear and can
be approximated via a linear fit as δ̄t = −0.035064×δts+2.2955.
This fitted line allowed us to calculate the approximate correction
factor that has to be added to a given δts in order for the STRC
based solution to match simulation results (see Figure 2B). By
generalizing δts to any perturbation δt, the correction factor can
be expressed as δ̄t = −0.035064 × δt + 2.2955. The correction
factor (δ̄t) then lets us continue expressing the STRC as the linear
sum of its first and second order components:

8i∞(g, δt∗) = 8i1(g, δt
∗)+ 8i2(g, δt

∗) (9)

δt∗ = δt + δ̄t = 0.964936 ∗ δt + 2.2955 (10)

We will assume that all further references to STRC’s in this paper
incorporate the correction term δt∗ that is calculated from the
given δt.

2.3. Spike Timing Dependent Plasticity Rule
We will consider the spike timing dependent plasticity (STDP)
rule for GABAergic synapses, identified at GABAergic synapses
in the entorhinal cortex (Haas et al., 2006), which is similar to
the well-known STDP rule for excitatory synapses (Bi and Poo,
1998). The STDP rule is asymmetric with long-term potentiation
for positive time intervals, 1t, between the timing of post-
synaptic neuron firing and the pre-synaptic neuron firing and
long-term depression for 1t < 0. We assume 1t to be positive
if the post-synaptic spike occurs after a pre-synaptic spike. The
empirical function defining the STDP rule is given as:

1g(1t) = g + g̃(1t) if 1t > 0

= g − g̃(1t) if 1t < 0
(11)

where g̃(1t) = 1
ββ e−β αβ |1t|1tβ−1e−α|1t| and g+ ≥ g−. The

parameters are β = 10 and α = 0.94, which provide a temporal
window of ±20 ms over which the efficacy of the synaptic
plasticity is non-zero (Haas et al., 2006). Figure 3 presents the
learning rule we use for STDP. In all the results presented here,
unless otherwise mentioned, we set g+ = g− = 0.01 and
we assume an additive (linear) update rule for the modification
of the synaptic strengths in the network (Caporale and Dan,
2008). Furthermore, we implement the STDP rule through all-
to-all interactions, whereby after a spike occurs in a given post-
synaptic neuron all the synapses from pre-synaptic neurons
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FIGURE 2 | 2-UCI Simulation and STRC Based Spike Time Calculations. (A) Shows the variation of simulation spike time difference δt* and STRC based map

predicted δts as H is varied. The negative values for δts is due to the inaccuracy of the standard STRC method arising from second order STRC components. (B)

Shows the difference between actual and estimated spike time differences in the 2-UCI network. A linear fit approximately describes the relationship between δ̄t and

δts as: δ̄t = −0.035064*δts + 2.2955.

FIGURE 3 | Schematic of the spike timing dependent plasticity rule.

The parameters are: α = 0.94, β = 10, g+ = g− = 0.01 mS/cm2.

with immediately preceding spikes are potentiated whereas all
the synapses from pre-synaptic neurons with spikes occurring
after the post-synaptic spike are depressed (Bi and Wang, 2002;
Froemke and Dan, 2002; Froemke et al., 2006).

2.4. Synchronization Metric
We will measure the degree of synchronization S in the N-
MCI networks by quantifying the amount of fluctuations in the
network activity (Hansel and Sompolinsky, 1992; Kudela et al.,
2003). Given the values for the membrane potentials Vi(t − kts)
where i = (0, 1, · · ·N−1), k = (0, 1, · · ·M−1), ts is the sampling
time interval and M quantifies the time horizon T = Mts, we
define:

S(N) =
NσV

∑N−1
i=0 σVi

(12)

where σ 2
V represents the variance in the mean field activity of

the network and σ 2
Vi

represents the variance in the membrane
potential of ith neuron in the network measured over a large time

interval T. If we define 〈X〉t =
1
T

∫ t
t−T X(t)dt, then σV and σVi are

given as:

σ 2
Vi

=
〈

V2
i

〉

t
− 〈Vi〉

2
t

σ 2
V =

〈(

1

N

∑

i

Vi

)2〉

t

−

〈

1

N

∑

i

Vi

〉2

t

The properties of S are well-characterized in literature (Golomb
and Rinzel, 1993). S essentially measures the average fluctuations
of the mean membrane voltage of the network over a long
time duration. It is normalized by the sum of individual neuron
membrane fluctuations such that S scales between 0 and 1. In
particular, for a fully synchronized network such that Vi(t) =

V(t) ∀i ∈ [0,N − 1], S = 1, whereas 0 ≤ S < 1 in all other
situations.

3. RESULTS

3.1. Synchronization Manifold of the 2-MCI
Network
In this section, we investigate the structure of the synchronization
manifold of the 2-MCI network as a function of the network
heterogeneity parameters: {H, η}. We emphasize that all of
our results critically depend on the structural heterogeneity
parameter, η (Equation 4) and on the temporal heterogeneity
parameter H (Equation 2). Now, let t0,i (i = 1, 2, · · · ) and t1,j
(j = 1, 2, · · · ) represent the spike times for the two coupled
neurons 0 and 1 in the 2-MCI network (Figure 4A). We define
the mean period 〈TX〉 = limn→∞

tX,n

n (X = 0, 1) and the time
lag δn = t1,n − t0,m between the nearest spike times of the two
neurons. The indexm corresponds to the mth spike from neuron
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0 such that t1,n−1 ≤ t0,m ≤ t1,n. For a given value of H and η,
we numerically solve Equation (1) in order to estimate 〈T0〉 and
〈T1〉. If there existsm, n ∈ N andm 6= 0 and n 6= 0 such that the
ratio:

R =
〈T0〉

〈T1〉
=

m

n
(13)

we label the point {H, η} on the two dimensional hyper-plane
spanned by H and η as the m:n synchronization point. Hence
R describes the order of a synchronized pair of neurons as the
ratio of their firing periods. The results of these calculations for
0 ≤ H < 50 and −50 ≤ η < 50 are summarized in Figure 4A.
For example, the black dots in Figure 4A span the region of 1:1
synchronization. In this situation δn approached a fixed value
δs ≤ 〈TX〉 representing a phase-locked state (see Figures 4B–D).
The regions of higher order synchronization are depicted in
various colors as follows: R = 6:5 (in orange); R = 4:3 (in green);
R = 3 :2 (in blue); R = 5 :3 (in magenta); and R = 2 :1 (in cyan).
An important feature of the structure of the synchronization
manifold is that the range of values of dynamical heterogeneityH
over which the 2-MCI network can sustain 1:1 synchronization
is significantly enhanced as the value of structural heterogeneity

η decreases below zero. In other words, the effect of increasing
H, resulting in an increase in the mismatch between the intrinsic
firing rates of the two coupled neurons, can be compensated
by increasing the strength (S) and simultaneously decreasing
the sensitivity (K) of the neuron with low intrinsic firing rate.
Yet another feature of the synchronization manifold is that the
minimum absolute value of structural heterogeneity |η| required
to sustain 1:1 synchronization in the 2-MCI network increases
monotonically with increasing heterogeneity H. Furthermore,
islands of higher order synchronization states emerge as H
increases for a given fixed value of η. We will see in Section 3.2,
this property of the synchronization manifold will significantly
influence the evolution of the 2-MCI network under the influence
of STDP.

In Figures 4B–D, we plot δn as function of H for the cases
η = {−20, 0, 20}, respectively. We also plot R (magenta dots
in Figures 4B–D, y-axis on the right) as a function of H. We
see from Figure 4C that for a perfectly homogeneous 2-MCI
network, i.e.,H = η = 0, the two coupled neurons exhibit 1:1 in-
phase synchronization. In the absence of structural heterogeneity
(η = 0), the network can sustain 1:1 synchronization for 0 ≤

H < 8. However, as can be seen from Figure 4A, for η = −20,

FIGURE 4 | Synchronization manifold of the 2-MCI network. (A) Synchronization manifold of the 2-MCI network (shown in inset). The Figure shows the domain

of m:n synchronization for the 2-MCI network in the two dimensional plane spanned by the network heterogeneity parameter H, and the network imbalance parameter

η. In (B–D), we plot the time lag δ between the firing times of the two neurons in the 2-MCI network as function of the network temporal heterogeneity parameter H for

three different cases of the network temporal heterogeneity parameter η = {−20,0,20}, respectively. In each Figure, we also plot the ratio of mean firing periods of the

two neurons R (magenta dots).
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the range of values for H over which the network can sustain 1:1
synchronization is enhanced to 1 < H < 15. When η < −30, we
note that the range of H-values for 1:1 synchronization does not
include H = 0, which suggests that the structural heterogeneity
is such that the network tends to exhibit master-slave dynamical
structure wherein the influence of one neuron (neuron 0 in this
case) on to the target neuron (neuron 1 in this case) is much
stronger than in the vice versa case. In the case when η = 20,
the bias toward master-slave dynamics is significantly stronger
with neuron 1 being the driver neuron and neuron 0 being the
slave neuron. This is because, not only is neuron 1 firing at an
intrinsically greater rate than neuron 0, but also the synaptic
drive onto neuron 0 is stronger, which further slows the firing
rate of neuron 0. The network is therefore unable to exhibit
1:1 synchronization. At the same time, the domain of higher
order synchronization such as 2:1 synchronization is significantly
enhanced.

In summary, the key conclusion from this analysis is that
the 2-MCI network can sustain 1:1 synchronization for a wide
range of heterogeneity in the intrinsic firing rates of the coupled
neurons for an appropriate choice of structural heterogeneity in
the network, i.e., by increasing strength of neuron 0 relative to
the strength of neuron 1 and decreasing the sensitivity of neuron
0 relative to that of neuron 1, to trigger an effective structural
imbalance η < 0.

3.2. STDP Induced Emergent
Synchronization in 2-MCI Network
We will now investigate the effect of STDP on the dynamics of
a heterogeneous 2-MCI network. For all the results presented
in this section, we will begin with a structurally homogeneous
network i.e., initial η = η0 = 0 and investigate the influence
of STDP on the network dynamics for various values for H. For
a given value of 0 ≤ H < 50, we numerically solve Equation
(1) beginning with a random set of initial conditions Vi (i= 0,
1) in the range [−70,−50] mV. We perform simulations (each
simulation run is for 5 s) for each of the two cases: (1) no
STDP learning, with static synaptic conductance values g01 =

g10 = g0/2 and (2) with STDP learning, following the additive
rule given in Equation (11). The initial synaptic conductance

values are set to be the same as for the static case. For each
simulation run, after the network has evolved into an asymptotic
state (asynchronous firing or the state of m:n synchronization)
we estimate the ratio R (see Equation 13). The results of these
calculations are summarized in Figure 5, where we plot R as
function of H and the color code represents the fraction P of
the simulations generating a given value of R. For example, from
Figure 5A, we see that the 2-MCI network exhibits a stable state
of 1:1 synchronization for 0 ≤ H < 9. The network also
exhibits narrow bands of stable higher order synchronization for
larger heterogeneity values (as seen in Figure 4A). It is clear from
Figure 5A that many of these states of stable synchrony are global
attractors for the network, i.e., the state of stable synchronization
is achieved independent of the initial conditions (P = 1) on the
membrane potentials of the neurons in the network.

3.2.1. STDP Induced 1:1 Synchronization
In the presence of STDP, the synaptic coupling strengths evolve
such that, the range of heterogeneity values over which the
network can sustain stable states of 1:1 synchronization (P = 1)
is enhanced to include the range 0 ≤ H < 24 (see Figure 5B).
In Figure 6A, we plot the mean value (and the standard error)
of synchronization metric S as function of H. We note that
S = 1 for the range of H-values over which the network can
sustain a globally stable attractor state of 1:1 synchronization,
representative of the case when the network is fully synchronized
(i.e., 1:1 in-phase synchronization). As noted in Section 3.1, in
absence of STDP, only the homogeneous 2-MCI network can
exhibit fully synchronized state (also see the black curve in
Figure 6A). Finally, as can be seen from Figure 5A, while the
likelihood for the 2-MCI network to exhibit 1:1 synchronization
is zero (P = 0) for H > 8, with STDP learning (Figure 5B) the
likelihood for the 2-MCI network to sustain 1:1 synchronization,
P 6= 0, for the range of 0 ≤ H < 27, albeit the likelihood
for the network to sustain 1:1 synchronization decreases with
increasing H.

In order to understand how the structural properties of
the 2-MCI network change as the network evolves to a state
of 1:1 in-phase synchronization under the influence of STDP,
in Figure 6B, we plot the time evolution of η for the case

FIGURE 5 | 2-MCI Synchronization Ratio probability for η0 = 0. (A) Shows the probability of the 2-MCI network to reach different orders of synchronization

without STDP. (B) Shows the probability for different orders of synchronization with STDP. The range of H for which the network can synchronize is significantly

enhanced for the 1:1 domain and higher orders.
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FIGURE 6 | 2-MCI Synchrony metric. (A) A measure of the synchrony metric when STDP is enabled (black) and without STDP (magenta) for the range 0 ≤ H ≤ 50.

(B) Shows the evolution of η for an example initial case of {η0 = 0,H = 10}. In the inset we show the corresponding voltage traces of the neurons after reaching

in-phase synchronization.

H = 10. The inset of the Figure shows a sample time-trace of
the membrane potential of the two neurons after the network
has evolved into the asymptotically stable state of 1:1 in-phase
synchronization. The network is initially structurally symmetric,
i.e., η0 = 0. The STDP learning begins at time t = 200 ms,
immediately after which, the network imbalance begins to evolve
ultimately reaching a steady state value η ≈ −40.

Starting from η0 = 0, the network evolves vertically
downwards in terms of the two-dimensional plot of the
synchronization manifold in Figure 4A, such that the synaptic
strength of the slower firing neuron is enhanced while at the
same time its sensitivity is decreased. As noted earlier (Section
3.1), this is the type of structural heterogeneity required for the
2-MCI network to sustain 1:1 synchronization for H > 8. This
evolution of the 2-MCI network to a preferred state of 1:1 in-
phase synchronization is critically dependent on the form of the
learning rule that corresponds to 1g > 0(< 0) for 1t >

0(< 0), respectively. This form of the learning rule implies that
for a given synapse, every time the post-synaptic neuron fires,
the strength of synapse will increase where as every time the
pre-synaptic neuron fires, the synaptic strength will decrease.
For the configuration of the 2-MCI network with H = 20,
neuron 1 has a greater intrinsic firing rate than neuron 0 such
that in absence of STDP, on average 〈T1〉 < 〈T0〉. Thus, after
STDP is active, the synapse g01 (with neuron 1 being the post-
synaptic neuron for the synapse) increases more often than it
decreases and consequently η fluctuates with an increased bias
toward η < 0 until the network evolves into the domain of 1:1
synchronization (see Figure 4A) at which point 〈T1〉 = 〈T0〉.
Since 1g 6= 0 for 1t 6= 0, the network continues to evolve
toward the fixed point δ = 0 corresponding to the stage where
η monotonically decreases (Figure 6B) until the network reaches
a stable state of 1:1 in-phase synchronization. Hence in the case
of 1:1 synchrony, STDP evolves the structural heterogeneity (η)
such that it compensates for any temporal heterogeneity (H > 0).

3.2.2. STDP Induced m:n Synchronization
We can see from Figure 5B that for H > 24, under the influence
of STDP, the state of 1:1 synchronization is not a global attractor

of the 2-MCI network, i.e., P < 1. The network can evolve to
states of higher order synchronization depending on the initial
conditions on the membrane potentials of the neurons. It is also
clear from Figure 5B that the likelihood (i.e., the fraction of
simulation runs) for the network to evolve to a state of higher
order synchronization increases with increasing H. For example,
for H > 45, the probability for the network to evolve to a state of
stable 2:1 is 1.

The synchronization manifold of the static 2-MCI network
(Figure 4A) provides an insight into the reason for 1:1
synchronization not being the global attractor of the 2-MCI
network under the influence of STDP learning. As discussed in
Section 3.2.1, the STDP rule modulates the synaptic strengths
such that the 2-MCI network evolves from a structurally balanced
state of η0 = 0 toward a structurally imbalanced state with η < 0
in order to compensate for H 6= 0. However, for H ≥ 24,
the synchronization manifold of the 2-MCI network exhibits
multiple domains of higher order synchronization states for η <

0 and there is a likelihood for the network to enter these domains
of higher order synchronization before the network can reach the
state of 1:1 synchronization. As H increases beyond H = 18, the
number of higher order synchronization states increase and at
the same time the domain of 1:1 synchronization moves further
away from the balanced state of η0 = 0 and correspondingly
the likelihood of the network to evolve to 1:1 synchronization
decreases, as is evidenced from Figure 5B.

3.2.3. Analysis of Emergent 1:1 In-phase Synchrony

in the 2-MCI Network
In this section, we analyze the stability of the emergent 1:1 in-
phase synchronization in the 2-MCI network under the influence
of STDP by deriving a nonlinear map for the evolution of the
time lag δ between successive spike times of the two neurons in
the 2-MCI network using the framework of STRC’s. We consider
the specific case of the network configuration with parameters:
H = 10 and η0 = 0. Following from the results presented
in Section 3.1, for the choice of network heterogeneity and
imbalance parameters, in the absence of STDP, the two neurons
in the 2-MCI network will fire asynchronously, with mean firing
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rate of neuron 1 greater than that of neuron 0. Invoking STDP in
this situation will, on average, cause the strength S0 of neuron 0
to increase, while at the same time it will cause the sensitivity K0

of neuron 0 to decrease. This is because, more often than not,
the fast firing neuron 1 will emit more than one spike during
each period of spiking from neuron 0. Each firing of neuron 1
(the post-synaptic neuron to synapse from neuron 0 to neuron 1),
in turn, increases the strength of synapse g01 through the STDP
rule. By the same token, the strength of synapse g10 will decrease
creating an effective network imbalance η < 0. Thus, starting
from a structurally balanced network Inet = 0, the network will
evolve vertically downwards in the two dimensional η−H plane.
As seen from Figure 6, for the specific case of H = 10 beginning
with η0 = 0, the network will eventually evolve into the domain
of 1:1 synchronization.

In order to understand how the synaptic strengths evolve
within the domain of 1:1 synchronization to the final stable
state of 1:1 in-phase synchronization, we use the mathematical
framework of STRC’s to derive a nonlinear map for the evolution
of the time-lag δ and the synaptic strengths gij (i, j = {0, 1}).
We assume that once the network enters the phase locked state
of 1:1 synchronization with 〈T0〉 = 〈T1〉, the phase locked state
remains quasi-static as the synaptic strength continues to evolve
toward the asymptotic state of 1:1 in-phase synchronization.
In Figure 7, we present a snapshot of sequence of spikes from
the two neurons after the neurons have entered the domain of
1:1 synchronization. Following from Figure 7, if t0,n and t1,n
represents the timing of nth spike originating from neuron 0 and
neuron 1 in the 2-MCI network, respectively, then the subsequent
spike from the two neurons will emerge at times: t0,n+1 and t1,n+1

such that:

t0,n+1 = t0,n + T00

[

1+ 80∞

(

g10,n, (t1,n − t0,n)
)]

t1,n+1 = t1,n + T10

[

1+ 81∞

(

g01,n, (t0,n+1 − t1,n)
)]

g01,n+1 = g̃01,n + 1g(t1,n+1 − t0,n+1)

g10,n+1 = g̃10,n + 1g(t0,n+1 − t1,n) (14)

where g̃01,n = g01,n + 1g(t1,n − t0,n+1) and g̃10,n = g10,n +

1g(t0,n− t1,n), respectively. In writing Equation (14), we assume
that gij,n is the conductance of synapse from the pre-synaptic
neuron i to the post-synaptic neuron j, immediately after nth
spike is emitted from the post-synaptic neuron. We further
assume that STDP induced change in synaptic conductance is
instantaneous. The nonlinear map for the evolution of the time-
lag δn = t1,n − t0,m (index m corresponds to the mth spike
from neuron 0 such that t1,n−1 ≤ t0,m ≤ t1,n) and the synaptic
conductances gij,n can be obtained from Equation (14) as:

αn = T00

[

1+ 80∞(g10,n, δ̃n)
]

− δ̃n

δn+1 = T10

[

1+ 81∞(g01,n, α̃n)
]

− α̃n

g01,n+1 = g01,n + 1g(−αn)+ 1g(δn+1)

g10,n+1 = g10,n + 1g(−δn)+ 1g(αn) (15)

where δ̃ = δ mod T00 and α̃ = α mod T10.

FIGURE 7 | 1:1 Phase locked synchrony in a 2-MCI network. This figure

illustrates the evolution of consecutive spike times {δ, α} during phase locked

1:1 synchronization. The corresponding changes in {g01,g10} due to the

STDP rule are also shown. We use this concept of 1:1 phase locked

spike-time and STDP evolution to derive the map defined in Equation (15).

To determine whether Equation (15) can predict 1:1 in phase
synchronization for the 2-MCI network under the influence of
STDP learning, we apply the discrete map for the specific cases of
the 2-MCI network with heterogeneity H = 10 and H = 20 with
initial conditions g01,0 = g10,0 = g0/2 corresponding to the case
η0 = 0 and δ0 = 0.

The results are presented in Figure 8. For the case H = 10,
we see from Figure 8 that η evolves to a steady state value of
η = −44, with δs = 18.8, αs = 0.1 ms, g01 = 0.073 mS/cm2

and g10 = 0.027 mS/cm2. The mean period of the synchronized
network (described in Section 3.1) is 〈T0〉 = 〈T1〉 = 18.9 ms.
For the special case of 1:1 synchrony, we will refer to the network
period as:

〈

T0/1

〉

= 〈T0〉 = 〈T1〉 (16)

Upon simplifying (Equation 15) for the 1:1 steady-state, one can
derive a straightforward relationship between δs and

〈

T0/1

〉

as:
〈

T0/1

〉

= δs + αs. We see that when αs ≈ 0 then
〈

T0/1

〉

= δs
which is the in-phase 1:1 solution. Though the discrete map
correctly predicts the existence of a steady state fixed point
solution, a minor discrepancy in the discrete map solution for
steady state value of η exists. There is a difference in η of ≈4
between the map’s solution and to the solution obtained by
numerically solving Equation (1) under the influence of STDP.
This discrepancy stems from the linear approximation of the
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FIGURE 8 | Map evolution of η. We validate that under STDP, the map

evolves to stationary values of η that allow in-phase synchronization. For

H = 10 the map predicts η = −44 (as compared to η = −40 for 2-MCI

simulations). For H = 20 the map predicts η = −82 (as compared to η = −80

for 2-MCI simulations).

correction factor δ̄t as a function of δt, as described in Section
2.2 regarding STRC’s.

For the case H = 20, the steady state solution for the
discrete map evolves to an in-phase solution at η = −82. As H
approaches 27 and η = 0, the map fails to evolve to a steady state
solution as expected. The map cannot accurately predict higher
order synchronization, as Equation (15) is specifically derived
for the 1:1 phase locked synchronization domain. From these
findings we conclude that the discrete map for the temporal
evolution of the spike time lag δ and the structural heterogeneity
η is able to correctly predict the existence of a stable fixed point
solution for 1:1 synchronization of the 2-MCI network under the
influence of STDP learning.

We next determine if the 1:1 in phase is stable. First, we
performed linear stability analysis of the discretemap in Equation
(15) for the fixed point in-phase solutions {δs, αs, g01s, g10s} =

{18.8, 0.1, 0.073, 0.027}. We find that all the eigenvalues are real
and {λδ, λα} < 1, indicating stability. However, {λg01 , λg10} =

1. These eigenvalues suggest that while the in-phase solution
is stable for static synapses, with STDP the system may be
marginally stable or unstable. In order to determine if the system
was marginally stable at the in-phase solutions, we examined the
Jordan form of the linearized state matrix and observed that the
Jordan blocks corresponding to unit eigenvalues were scalar. This
served as theoretical confirmation for local stability of the system
with STDP present.

Additionally, we numerically analyzed the sensitivity of the in-
phase solutions reached through STDP. We tested the sensitivity
of the solutions by varying the initial conditions of the state
variables in Equation (15). In Figure 9A we show the evolution
of the 1:1 in-phase map period of the 2-MCI network:

〈

T0/1

〉

= δS
for different initial values of η0 and H = 0. We see that for
η0 = 0 and even η0 = 40,

〈

T0/1

〉

evolves to the stable in-phase
period of 18.9 ms, which is the exact in-phase period predicted
by the 2-MCI simulations. Themap stably evolves to the in-phase

solution even for an initial value that is 200% greater than the
solution point.We also confirm that

〈

T0/1

〉

evolves to the in-phase
period for different initial spike time lag (δ0) values of {0, 4, 8, 12}
ms. This is illustrated in Figure 9B. These numerical analyses
confirm that the in-phase state of the 2-MCI system is indeed
locally stable.

3.3. STDP Induced Emergent
Synchronization in 100-MCI Network
In this section we examine how STDP allows larger MCI
networks to synchronize. We consider a homogeneous all-to-
all coupled network of 100 neurons with temporal heterogeneity
H = 10. In the absence of STDP, Figure 10A shows a raster of
the spike times (magenta) when the network fails to synchronize.
On enabling STDP, the network is able to reach perfect in-phase
synchronization as shown by the black rasters in Figure 10A. In
Figure 10B we show the fraction of η values before (magenta)
and after STDP (black). We can see that STDP evolves the η-
values toward a slightly positive-skewed Gaussian distribution
with a mean of -20. As we have seen in the previous sections,
STDP tends to evolve the synapses such that η decreases. As η

decreases, the spike times become closer to each other (within
the 1:1 synchronization domain). When η is sufficiently negative,
the spike time differences are almost zero. This causes the STDP
to suddenly stop evolving, causing the distribution of η to appear
positively skewed.

In Figure 11, we show how increasing H affects the
ability of the 100 neuron MCI network to exhibit in-phase
synchronization. In the absence of STDP, the synchronization
measure S very quickly drops with increased H. However,
when STDP is enabled, the network is able to sustain in-phase
synchronization for H < 20. For H > 20, the network’s
synchronization measure gradually decreases.

We also look at the other network metrics that we defined
in the methods section. In Figure 12, we show the network link
imbalance and neuronal strengths. The link imbalance measures
the difference in synaptic strengths of coupled neurons in the
network. It is expressed as a matrix Lij = aijgij − ajigji, where
i and j refer to the pre-synaptic and post-synaptic neurons,
respectively, and [aij] ∈ [0, 1] refers to the connectivity between
neuron i and j. For a network with homogenous synaptic
strengths, L is a zero matrix. When the network evolves under
STDP to in-phase synchronization, we notice in Figure 12A

that the network imbalance shifts from a zero matrix to a skew
symmetric matrix whose main diagonal is zero (indicating no
self-synapses). For i < j, Lij > 0 and for i > j, Lij <

0. This indicates that STDP evolves such that the strength of
synapses from slower neurons onto faster neurons are larger in
value. This observation is further reinforced by the neuronal
strength metric (Gi =

∑

j aijgij) shown in Figure 12B. Here,

the sum of the strengths of outgoing synapses for every neuron
is presented. Without STDP, all neurons project equal synaptic
influences on each other. With STDP, as consistent with our
earlier observations, the slowest neuron number 0 has the largest
synaptic influence on the rest of the network while the fastest
firing neuron number 100 has the weakest synaptic influence on
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FIGURE 9 | Numerical stability analysis of the 2-MCI map. (A) The evolution of the map’s predicted synchrony period
〈

T0/1

〉

for different initial conditions of η0.

(B) The evolution of the map’s synchrony period
〈

T0/1

〉

for different initial conditions of δ.

FIGURE 10 | STDP based synchronization in a 100-MCI network. (A) Shows a raster of the spike times with STDP (black) and without STDP (magenta). (B) The

corresponding distribution of η-values with STDP (black) and without STDP (magenta).

FIGURE 11 | 100-MCI Synchrony metric. Here we measure the measured

synchrony of the 100-MCI network for a range of 0 ≤ H ≤ 50. In-phase

synchronization is significantly enhanced for a wide range of 0 ≤ H ≤ 18 when

STDP is enabled (magenta).

other neurons. This shows that with STDP, the slower neurons
can control the firing rate of the faster neurons thus increasing
the chances of attaining synchronization. Our 100-MCI network

investigations suggest that STDP is an effective mechanism that
allows in-phase synchronization for a wide range of neuron
firing rate heterogeneity. It also suggests that STDP induced
synchronization may not be significantly affected by the scale of
the MCI network.

4. DISCUSSION

In this study we investigated if STDP in mutually coupled
interneuronal networks can induce stable in-phase
synchronization at gamma frequencies. We first investigated
the domains of synchronization for a 2-MCI network in terms
of structural and temporal heterogeneity, given by {η,H}. We
identified the 1:1, in-phase and higher order synchronization
domains for a static 2-MCI network. We noted that in general,
as H increased, η had to decrease in order to maintain 1:1 and
in-phase synchronization. The decrease in η corresponds to
the case of g01 increasing while g10 decreases. This in turn,
indicated that, for 1:1 and in-phase synchrony, the slower
neuron 0, suppresses the faster neuron 1, such that their periods
match. In the case of higher order synchronization such as 2:1
synchronization, the faster neuron fires more than once for every
single time the slower neuron fires. Here, the period of the slower
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FIGURE 12 | Network metrics. (A) Link imbalance of the 100-MCI network when H = 10. The synaptic strength differences between pairs of neurons are color

coded. In general synapses originating from slower neurons (lower numbers on x-axis) have a positive network imbalance value. (B) The neuron strength metric

measures the total outgoing synaptic strength for each neuron. With STDP, neuron strength linearly decreases in the direction of slowest firing neuron to the fastest

neuron, indicating greater synaptic influences of slower neurons.

neuron is significantly increased due to suppression by the faster
neuron.

Previous work by White et al. (1998) has shown that
synchronization in MCI networks are susceptible to even
slight increase in firing rate heterogeneity. Our group had
shown that STDP was one way by which stable synchronous
oscillations could be achieved in UCI and 2-MCI networks
(Talathi et al., 2008). This was based on the findings of
Haas et al. (2006), that reported STDP was present in
inhibitory synapses in the second layer of the entorhinal
cortex. Experimental measurements provided the STDP learning
rule (Haas et al., 2006) that was used in computational
experiments by Talathi et al. (2008). We demonstrated that
in the presence of firing rate heterogeneity, STDP resulted in
significant enhancement of network synchronization. A STRC
based theoretical map was derived to verify the stability of UCI
in-phase synchronization.

In other works, STRC’s have been used to calculate future
spike times based on periodic synaptic perturbations from other
neurons. Most of these studies assumed that the STRC’s displayed
weak second order components. For example in the work done by
Talathi et al. (2008), due to weak second and higher order STRC
components, the total spike time change for periodic synaptic
perturbations was represented as 8i∞(δt, g) = 8i1(δt, g) +

8i2(δt, g). Where, δt was the time of perturbation after every
spike in each firing cycle. In the course of our investigations
we observed that a fast firing Wang-Buzsaki neuron (Wang and
Buzsáki, 1996) with inhibitory synaptic input, produced STRC’s
with a significant second order component. This in turn indicated
that calculating spike time shifts using the 8i∞ term would lead
to incorrect predictions.

Recently, Talathi et al. (2009) demonstrated an empirical
approach for predicting spike times when higher order STRC’s
were present. However, this method was specific for shunting
synapses. The approach used in this paper is more generic. We
considered cases where a 2-UCI network exhibited synchrony
for a certain set of parameters. Then the error between
predicted spike times and actual spike times were noted, and an

approximately linear relationship between perturbation time δt
and error in spike-times δ̄t was observed. Using this relationship
we derived a correction factor for the perturbation time, which
when incorporated into STRC calculation, allowed the term 8i∞

to more precisely describe spike time shifts.
In this work, we performed an in-depth analysis on the

synchronization of 2-MCI network and eventually, a 100-MCI
network. We utilized the same STDP learning rule form as used
by Talathi et al. (2008). We also use a more biophysically relevant
fast spiking interneuronmodel of Parvalbumin-expressing basket
cells (Wang and Buzsáki, 1996). As in our previous work, the
STDP mechanism implemented makes two assumptions: (1)
Only the spike time difference between neighboring pairs of
spikes was considered. (2) The effects of STDP modulation were
linearly summed. These assumptions allowed us to obtain an
analytical form of the STDP rule.

We began our study on the 2-MCI network by identifying the
synchronization domain in terms of the structural and firing rate
heterogeneity parameters {η,H}, respectively. We showed that
decreasing η could compensate for increasingH (up to an extent),
in terms of maintaining 1:1 and in-phase synchronization. We
also identified higher order synchronization domains for the
2-MCI network. The synchronization manifold of the 2-MCI
network provided us with an understanding of the direction in
which η would have to evolve in a 2-MCI network, in order to
attain 1:1 or in-phase synchronization, as H increased.

In the presence of STDP, for η0 = 0, the 2-MCI network
was found to evolve to in-phase synchronization for a significant
range of H < 25. We determined that for H > 25, STDP
had a higher probability to evolve the network toward higher
order synchronization. Regardless, STDP enhanced the domain
of synchronization not only for 1:1 synchronization, but also for
higher order synchronization. This also indicated that depending
on the initial conditions of η0, STDP could variably evolve the
network to different orders of synchrony.

In order to determine if the 1:1 and in-phase synchronization
states of the network were stable, we mathematically analyzed the
2-MCI network and derived a STRC based map for predicting
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1:1 and in-phase synchronization. We first validated the map by
ensuring that the predicted spike time differences ({δ, α}) were
the same as that of the static 2-MCI simulations, within the 1:1
synchronization domain. We then observed the map’s evolution
of η with STDP for an initial η0 = 0 and H = 10. We found that
the predicted value of η for in-phase synchronization, was around
44 which was close to the 2-MCI STDP evolution of η = 40.
The slight discrepancy in the values of η most likely arose from
the linear approximation of the STRC correction term δ̄t as a
function of δts. Having validated that the map behaves closely
to the 2-MCI simulations, we performed linear stability analysis
on the discrete mathematical map expressed in Equation (15).
Our findings indicated that the eigenvalues for the spike times
{δ, α}were stable (< 1). However, the eigenvalues corresponding
to the STDP evolution of {g01, g10} were marginally stable. To
prove that system was at least locally stable, we performed further
numerical analyses. Specifically, we examined the evolution of
the map with STDP for different initial conditions of δ and
η. We observed that the map’s predicted 1:1 synchronization
period (

〈

T0/1

〉

≈ δ) and confirmed that it evolved to the
period of the 2-MCI simulation in-phase synchronization, for
a range of initial conditions. In fact η had to be increased
significantly (η ≥ 20) beyond the stable value η = −40 in
order for themap to fail to evolve to the in-phase synchronization
regime.

We next examined how the scale of MCI networks affects
STDP induced synchronization. We constructed and simulated
a 100-MCI structurally homogeneous network (η0 = 0) with
and without STDP for H = 10. In accordance with our
previous results, we found that without STDP, the structurally
homogeneous network was completely desynchronized. On
enabling STDP, the 100-MCI network was able to exhibit in-phase
synchronization for a significantly increased range of temporal
heterogeneity H < 18. It must be noted that as η is only defined
for any given pair of mutually coupled interneurons, in a larger
100-MCI network (without self synapses) the total number of
synaptic pairs are 4950, and each pair has an associated η that
describes the structural heterogeneity. We observed that with
STDP, the distribution of η evolved toward a normal distribution
with a slight positive skew. This small positive tail of η-values
indicates that the distribution of η evolved toward the negative

direction and ceased evolving when in-phase synchronization
was reached.

All of our results suggest that STDP is a very viable mechanism
for the formation of interneuronal gamma (ING) oscillations.
The original firing rates of the free running interneurons (H = 0)
are approximately 60Hz. In the 2-MCI network, we observed that
the firing rates were in the ranges of 52 and 53 Hz, for 1:1 and
in-phase synchronization, respectively. The 100-MCI network
was also able to sustain 50 Hz in-phase synchronization. These
frequencies are well within the gamma band and prove that an
ING mechanism in conjunction with interneuronal STDP might
be a strong candidate for stable gamma oscillations in cortical
and even hippocampal regions (Bragin et al., 1995). A future
research endeavor would be the inclusion of fast firing excitatory
pyramidal cells network along with our MCI model to confirm
that the ING mechanism can indeed drive pyramidal cells to

synchronize at gamma frequencies. Additionally, it would be of
great interest to see if and how STDP can induce 1:1 and in-
phase synchronization in non-MCI networks with more random
architectures. In conclusion, this work provides further evidence
that for significant heterogeneity in firing rates, STDP may be a
viable alternative to other synchronization mechanisms such as
gap junctions (Traub et al., 2001).
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