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Differentiating between Parkinson’s disease (PD) and atypical parkinsonian syndromes

(APS) is still a challenge, specially at early stages when the patients show similar

symptoms. During last years, several computer systems have been proposed in order to

improve the diagnosis of PD, but their accuracy is still limited. In this work we demonstrate

a full automatic computer system to assist the diagnosis of PD using 18F-DMFP PET

data. First, a few regions of interest are selected by means of a two-sample t-test. The

accuracy of the selected regions to separate PD from APS patients is then computed

using a support vector machine classifier. The accuracy values are finally used to train

a Bayesian network that can be used to predict the class of new unseen data. This

methodology was evaluated using a database with 87 neuroimages, achieving accuracy

rates over 78%. A fair comparison with other similar approaches is also provided.

Keywords: Bayesian network, support vector machine, 18F-DMFP PET, Parkinson’s disease, multivariate analysis

1. INTRODUCTION

One of the neuropathological hallmarks of Parkinson’s disease (PD; Greenberg et al., 2012) is
a substantial decrease in the dopamine content of the striatum due to the progressive death of
dopaminergic neurons of the nigrostriatal pathway (a neural pathway that connects the substantia
nigra with the striatum). These marks are detectable using neuroimaging techniques, which have
become an ordinary practice in the diagnosis of neurodegenerative disorders as PD. The deficiency
of striatal dopamine can be assessed using a variety of nuclear medicine techniques targeted
to dopamine transporters (DaT). For example, the 123I-ioupane (also known by its tradename
DaTSCAN) is a widely-used radioligand that binds to the dopamine transporters in the striatum
and allows visualizing the presynaptic striatal dopamine deciency state with high sensitivity. This
drug has been successfully used to differentiate PD from healthy controls (Booij et al., 1998;
Winogrodzka et al., 2003; Towey et al., 2011; Illán et al., 2012; Segovia et al., 2012). However,
the effectiveness of DaTSCAN to distinguish PD from atypical parkinsonian syndromes (APS),
such as multiple system atrophy (MSA; Wenning et al., 2013) and progressive supranuclear palsy
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(PSP; Williams and Lees, 2009), is limited due to DaT is reduced
in both cases. Alternative radioligands have been proposed for
this problem. For example, 18F-Fludeoxyglucose (18F-FDG) PET
data, which allow evaluating the glucose metabolism of the
brain, were successfully used to discriminate APS from PD in
Garraux et al. (2013) and Ghaemi et al. (2002). A postsynaptic
striatal deficiency can be also demonstrated by means of specific
radioligands that focus on D2/3 striatal dopamine receptors. 123I-
Iodobenzamide (123I-IBZM) SPECT, 11C-Raclopride PET and
18F-Desmethoxyfallypride (18F-DMFP) PET have suggested for
this purpose (Cordes et al., 1991; Antonini et al., 1997; Stark et al.,
2007; Vernaleken et al., 2007). In addition, the latter was recently
used to separate idiopathic and non-idiopathic parkinsonian
syndromes with high accuracy (la Fougère et al., 2010).

Nowadays, the visual examination of the neuroimages is
combined with modern computer systems that automatically
analyze the data and are able to estimate their class (pathological
or not). In the case of PD diagnosis, the classical approach
addresses the problem directly, i.e., by quantifying the loss of
striatal dopamine neurons (Antonini et al., 1997; Constantinescu
et al., 2011; Garraux et al., 2013). However, modern computer
systems examine the images, looking for the patterns that
characterize the studied disease. Two approaches have been
proposed: univariate and multivariate. On the one hand,
univariate methods analyze each voxel independently, without
considering the interactions between voxels. The most relevant
univariate analysis approach to date is the widely used Statistical
Parametric Mapping (SPM) (Friston et al., 2007). This approach
has been used in a number of neuroimaging studies, including the
diagnosis of neurological disorders (Hosaka et al., 2002; Wang
et al., 2007; Perani et al., 2014). On the other hand, multivariate
approaches consider all the voxel as a whole, evaluating the
correlation of activation across brain regions (Habeck, 2010;
Schrouff et al., 2013). A substantial part of multivariate methods
are based on machine learning algorithms such as decision
trees (Quinlan, 1986) or support vector machine (SVM; Vapnik,
1999). They have been successfully used to assist the diagnosis
of Parkinsonism using different neuroimage modalities (Cordes
et al., 1991; Dodel et al., 2003; Illán et al., 2012; Segovia et al., 2012;
Nair et al., 2013; Mudali et al., 2015). Bayesian approaches (Ben-
Gal, 2008) were also used for this purpose. In Towey et al. (2011),
a naive Bayes classifier is used along with Principal Component
Analysis in order to separate parkinsonian and non-parkinsonian
syndromes. Several Bayesian methods were also evaluated in
Morales et al. (2013), achieving accuracy rates over 90% when
predicting dementia development in PD patients.

In this work, we demonstrate a method based on SVM
classification and Bayesian networks to separate idiopathic PD
from APS using 18F-DMFP PET data. Initially we performed
a selection of the regions of interest (ROIs) for this problem
using a t-test. The selected regions were then evaluated by
means of a SVM classifier. Subsequently, a Bayesian network
was developed using the outputs of the SVM classification
procedure. Finally, the Bayesian network was used to classify
new unseen data. This method was evaluated using a database
with 87 DMFP neuroimages labeled as idiopathic PD, MSA or
PSP. Accuracy rates over 78% were obtained when separating

PD from APS (MSA or PSP), outperforming other previous
approaches.

2. MATERIALS AND METHODS

2.1. Neuroimaging Data
Neuroimaging data used in this work was collected in a
longitudinal study carried out in the University of Munich
(la Fougère et al., 2010). Eighty-seven (87) patients with
parkinsonism, previously confirmed by a 123I-FP-CIT SPECT
scan according to widely accepted criteria (Koch et al.,
2005), were undergone D2/3 receptor imaging with 18F-DMFP.
Sixty (60) min after the radiopharmaceutical injection the
neuroimaging data were acquired by means of a ECAT EXACT
HR+ PET scanner (Siemens/CTI). The emission recording
consisted of 3 frames of 10min each, acquired in 3-dimensional
mode. The resulting images were reconstructed as 128 × 128
matrices of 2 × 2 mm voxels by filtered backprojection using a
Hann filter with a cutoff frequency of 0.5 Nyquist and corrected
for randoms, dead time, and scatter.

The patients were clinically monitored during the following
years. Two years after the data acquisition, the neuroimages were
labeled by experienced clinicians on the basis of last observations.
According to the United Kingdom Parkinson Disease Society
Brain Bank Diagnostic Criteria for Parkinson Disease (Hughes
et al., 2002), the second consensus statement on the diagnosis of
multiple-system atrophy (Gilman et al., 2008) and the established
criteria for the diagnosis of progressive supranuclear palsy
(Litvan et al., 1996), 3 groups were defined: idiopathic PD, MSA,
and PSP patients. Demographic details of the groups are shown
in Table 1.

In order to ensure that any given voxel in different images
refers to the same anatomical position across the brains, all the
images were spatially normalized using the template matching
approach implemented in the SPM software (version 8). An ad-
hoc template was generated for this procedure: First, idiopathic
PD neuroimages were registered to a randomly chosen one. The
resulting images and their hemisphere midplane reflections were
then averaged, obtaining a symmetric image. That way, effects
due patients affected by non-bilateral PD variants are minimized
(Djaldetti et al., 2006). Finally, this image was smoothed and used
as template.

After the spatial normalization, the intensity of the images was
also normalized to a value Imax, obtained by averaging the 0.1%

TABLE 1 | Sex and age information of the groups of patients considered in

this work.

# Sex Age

M F µ σ Range

Idiopathic PD 39 22 17 61.38 11.14 35-81

MSA 24 20 4 68.42 10.73 43-85

PSP 24 12 12 69.29 7.33 55-84

µ and σ stand for the average and the standard deviation respectively.
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of the highest intensities per image, as described in Saxena et al.
(1998).

2.2. Background on Bayesian Networks
Bayesian networks (a.k.a. belief networks) are statistical models
belonging to the family of probabilistic graphical models that
combine principles from graph theory, probability theory,
computer science, and statistics (Ben-Gal, 2008). In particular,
they are directed acyclic graphs (DAG) in which nodes represent
random variables in the Bayesian sense (observable quantities,
latent variables, unknown parameters or hypotheses) and edges
between the nodes represent probabilistic dependencies among
the corresponding random variables. A Bayesian network defines
a unique joint probability distribution given by:

p(x(1), ..., x(M)|y) =
M
∏

m=1

p(x(m)|Pax(m) , y) =
M
∏

m=1

θx(m)|Pa
x(m)

(1)

where x = {x(1), ..., x(M)} and y respectively denote a set of
random variables and a property of them. In our case x represents
the neuroimaging features for a given patient and y is the label
assigned to that patient. θ is the set of parameters that quantifies
the conditional probability distribution in the network and Pax(m)

represents the set of parents of x(m) in the graph.
When the topology and/or the parameters of the network are

unknown, they can be estimated using a set of training data. Two
approaches are commonly used to learn the network structure:
constraint-based and search-and-score. The former starts with
a fully connected graph, and remove edges if certain conditions
are satisfied in the training data. The latter approach performs an
exhaustive search in the space of all possible structures, which are
evaluated using a predefined scoring function.

Once the structure is learned and the parameters are fixed,
the network can be used for inference. In this case, the Bayesian
network encodes a disruption p(x(1), ..., x(M), y) so that, given a
set of features, x(1), ..., x(M), it returns the label y that maximizes
the posterior probability P(y|x(1), ..., x(M)), which is trivially
derived from Equation 1 using the definition of conditional
probability and the chain rule.

2.3. Background on Support Vector
Machines
Support vector machine is a supervised learning method derived
from the statistical learning theory, which was developed by
Vladimir Vapnik in late 90s (Vapnik, 1999). A SVM classifier
builds a function f : R

D → {±1} using the training data
(n D-dimensional patterns, {x1..., xn}, and their class labels,
{y1, ..., yn}) so that f is able to predict the label yi of a new
example xi.

SVM can use kernelized inputs that allow us learning a
nonlinear function or decision boundary. More sophisticated
variants based on multiple kernel learning (MKL) define the
kernel function as the combination of other simpler kernels
(Gonen and Alpaydin, 2011):

k(xixj) = f ({kp(x
p
i , x

p
j )}

P
p=1) (2)

where kernel k is computed as the combination of P kernels
each of which taking a feature representation of data instances:
xi = {x

p
i }

P
p=1 where x

p
i ∈ R

Dp and Dp is the dimensionality of the
corresponding feature representation.

2.4. Selection of Regions of Interest
18F-DMFP has a high binding affinity for dopamine transporters
in the striatal region of the brain. For this reason, neuroimaging
studies based on it usually focuses on that region. However, 18F-
DMFP PET neuroimages contain a substantial part of the total
intensity in regions other than the striatum. In order to reveal
the most important regions to separate idiopathic PD from APS
we carried out an univariate analysis. Specifically we performed
a two-sample t-test comparing both populations under the
hypothesis of data corresponding to idiopathic PD patients have
lower intensity than those fromAPS patients. The test was carried
out using the SPM software (version 8) and a smoothed version
of the neuroimaging data. The full-width at half maximum of
the Gaussian smoothing kernel was fixed at 8mm. The resulting
map, thresholded at p < 0.001 (uncorrected), is shown in
Figure 1.

Finally, the t-test map was matched with the Automated
Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al.,
2002) and the regions of the atlas with the highest
proportion of highlighted voxels in the t-test map were
selected.

2.5. Multivariate Analysis Based on Support
Vector Machines and Bayesian Networks
Once a reduced set of regions of interest has been selected, the
accuracy of each region to discriminate between groups was
computed using a SVM classifier and a leave-one-out (LOO)
cross-validation (CV) scheme. As a result, an accuracy value was
assigned to each region.

The structure of the Bayesian network is then estimated by
means of a Metropolis-Hastings (MH) algorithm (Metropolis
et al., 1953; Hastings, 1970), a Markov chain Monte Carlo
(MCMC) method that converges after about 200 iterations
(see Figure 2) and is more efficient than the more popular
search-and-score approach. This algorithm was implemented
to use the Bayesian information criterion as the score
function to find the optimal structure (Heckerman et al.,
1995).

The parameters of the model were calculated by means
of a maximum a posteriori scheme, which assumes that all
the variables are fully observed. The accuracy of each region
previously computed was used in this procedure as training data.
Figure 3 shows a Bayesian network for a model with 4 regions.
Observe that the labels are included in the graph as an additional
node. This allows using the network for inference (Illan et al.,
2014).

Finally, the Bayesian network was used to classify new
unseen data by selecting the label that maximizes the posterior
probability. If the two possible labels have equal probability
(0.5 in both cases), the label with the most votes was
selected.
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FIGURE 1 | t-test comparing patients with idiopathic PD and atypical parkinsonian syndromes. Regions in orange/yellow are significantly lower (p < 0.001,

uncorrected) in idiopathic PD patients. Observe that most part of the thalamus, anterior cingulate gyrus and pars opercularis are covered by highlighted areas.

FIGURE 2 | Convergence of the ratio of accepted topologies of the

Metropolis-Hasting method used to estimate the structure of a

Bayesian network for a model with 4 regions. The algorithm was trained

using the accuracy of each region to separate idiopathic and non-idiopathic

PD patients.

3. EXPERIMENTS AND RESULTS

The methodology proposed above was evaluated using the
neuroimaging data described in section 2.1. In order to avoid
biased results, a LOO-CV scheme was implemented. Since
another LOO-CV loop was used to estimate the accuracy of the
regions, this resulted in a 2 levels (nested) CV. This strategy has
been suggested as an effective method to evaluate the risk of
a classification procedure (Varma and Simon, 2006), especially
when the database is small. The Bayes Net Toolbox (Murphy,
2001) and LIBSVM (Chang and Lin, 2011) package were
respectively used for structure learning and SVM classification.
They were parametrized to use the default values, including
the cost parameter of the classifier, C, which was fixed to the
commonly accepted value of 1. The SVM classifier used linear
kernels. The pseudo-code that describes all the experiments is
shown in Algorithm 1.

Table 2 shows the accuracy measures obtained by the
proposed method. The results are compared with those obtained
by other methods based on SVM classification: (i) a Voxel-
As-Feature approach, which consists on using all the voxels as
feature, (ii) the classical approach for PD diagnosis consisting on
using only voxels in the striatum area, (iii) a method that uses
the voxels belonging to the selected regions as a whole, (iv) a
multiple classifier approach with a classifier per selected region
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FIGURE 3 | Topology of a Bayesian network for a model with 4 regions.

They were selected using SPM as described in section 2.4. The network

structure was learned using a Metropolis-Hastings algorithm.

and a majority voting strategy, and (v) a multiple kernel learning
algorithm with a kernel per region.

4. DISCUSSION AND CONCLUSIONS

Distinguishing between Parkinson’s disease and atypical
parkinsonian syndromes is still a challenge due to both disorders
have similar symptoms (Litvan, 1999). Still, the methodology
we demonstrated achieved an accuracy rate over 78% and a
good trade-off between sensitivity and specificity. These results
suggest the proposed method is suitable to assist the diagnosis
of PD and confirm the usefulness of DMFP data for this
purpose.

Comparison with previous works in terms of classification
accuracy is difficult because of the lack of studies using DMFP
data for the same purpose. The separation of PD from other
non-idiopathic parkinsonian syndromes have been previously
addressed using multiclass classification procedures and MRI or
PET data with 18F-FDOPA, 18F-FDG or 11C-RACLO (Ghaemi
et al., 2002; Eckert et al., 2004, 2005; Spetsieris et al., 2009;
Garraux et al., 2013). Reported accuracy rates vary from 68.5%
up to 90%. This value depends on the database (the number
of groups, the criteria to assign the labels, etc.) and the
methodology (usually a binary classification is simpler than
a multiclass procedure). The methodology proposed in this
work achieved an accuracy rate of 78.16% and outperformed
other previous approaches in a fear comparison (using the
same data and classification approach), as shown in Table 2.
The relatively low accuracy rates obtained, in general, by
all the methods evaluated in this work is explained by the
neuroimages we used, which correspond to early stages of the
disease. Observe that the neuroimaging data were acquired

Algorithm 1: Evaluation procedure

Input: The image database, D = I1, ..., In, and the labels,
Y = Y1, ...,Yn

Output: Accuracy measures of the method

foreach image i ∈ D do

DT = All the images in D but i
YT = Labels for images in DT

m = Compute t-test map using data in DT and the
groups defined by YT

R = Select ROIs fromm
foreach region r ∈ R do

foreach image j ∈ DT do

DTT = All the images in DT but j
YTT = Labels for images in DTT

C = Train a SVM classifier using DTT and YTT

Sr,j = Test image j in C

end

Sr = Compute accuracy for region r using Sr,j
end

// Create network

G = Learn graph topology using Sr
θ = Compute conditional probability distributions
B = Create Bayesian network using G and θ

// Inference

foreach region r ∈ R do
C = Train a SVM classifier using voxels at region r
from images in DT and YT

Er = Test voxels at region r from image i in C

end

foreach label l ∈ {−1, 1} do
Pl = Compute posterior probability using B and E

end

if P−1 = P1 then

Ŷi = sign
(
∑

Er
)

// Majority voting

else if P−1 > P1 then

Ŷi =−1
else

Ŷi = 1
end

end

Estimate the accuracy measures comparing Ŷ and Y

during the first visit, 2 years before assigning the final
diagnosis that was used to label the data. Furthermore, it is
worth noting that the database was clinically labeled, what
introduced an error due to the intrinsic limitations of the
clinical assessment (Jobst et al., 1998), and the generalization
the of classification procedure should be interpreted from this
perspective.

In addition to the putamen, whose relation with PD is
widely accepted, other regions were identified by the univariate
analysis. Namely, the thalamus, anterior cingulate gyrus and pars
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TABLE 2 | Classification performance of the proposed algorithm compared with other approaches.

Accuracy % Sensitivity % Specificity % Positive Negative

likelihood likelihood

All the voxel in the brain 70.11 61.54 77.08 2.69 0.50

Only striatum 73.56 69.23 77.08 3.02 0.40

Selected regions as a whole 70.11 66.67 72.92 2.46 0.46

Multiple SVM (majority voting) 74.71 74.36 75.00 2.97 0.34

Multiple kernel SVM 75.86 71.79 79.17 3.45 0.36

Proposed method (Bayesian network) 78.16 76.92 79.17 3.69 0.29

opercularis (a subregion of the inferior frontal gyrus) showed
differences when comparing PD and APS patients (see Figure 1).
These three areas has been previously reported as affected by PSP
and not affected by MSA or PD what facilitates separating PSP
patients from the PD group (Zgaljardic and Feigin, 2004; Varrone
et al., 2007; Messina et al., 2011).

One of the main feature of the proposed method is the
combination of univariate and multivariate analyses. Both
approaches are widely used for diagnosis purposes, however,
the former is more suitable for groups comparison while the
latter can be easily used for classification. For that reason, we
used a univariate analysis for the selection of the regions of
interest and a multivariate analysis to separate the groups. This
second analysis was based on SVM classification and Bayesian
networks. The data was first analyzed, region by region, in a
SVM classifier and its outputs were then managed by a Bayesian
network to provide a final output. Thus, the Bayesian network
can be seen as a way of weighting the SVM decisions for the
individual regions. Therefore, this methodology can be used as an
alternative to the majority voting strategy and other approaches
to deal with multiple classifier decisions in systems for a single
classification problem. The main advantage of Bayesian networks
in this context is their ability to take into account the information
about the relations between regions. The obtained results suggest
that this information is useful to separate PD and APS patients.
If reproduced by other studies, it could improve the diagnosis of
these disorders.

As other computer aided diagnosis systems, the method
proposed in this work could be a valuable tool for the clinical
practice. Using a database properly labeled, the system is able
to analyze neuroimaging data from a new patient and estimate
the disorder he/she suffers. However, this procedure should be
supervised by experienced clinicians to corroborate that the
diagnosis estimated by the system is consistent with the patient’s
symptoms.
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