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Oscillations in network activity are ubiquitous in the brain and are involved in diverse

cognitive functions. Oscillation characteristics, such as power, frequency, and temporal

structure, depend on both network connectivity and intrinsic cellular properties, such as

ion channel composition. An important class of channels, with key roles in regulating

cell excitability, are h-channels. The h-current (Ih) is a slow, hyperpolarization-activated,

depolarizing current that contributes to neuronal resonance andmembrane potential. The

impact of Ih on network oscillations, however, remains poorly understood. To elucidate

the network effects of Ih, we used a computational model of a generic oscillatory

neuronal network consisting of inhibitory and excitatory cells that were externally driven

by excitatory action potentials and sustained depolarizing currents. We found that Ih
increased the oscillation frequency and, in combination with external action potentials,

representing input from areas outside the network, strongly decreased the synchrony

of firing. As a consequence, the oscillation power and the duration of episodes during

which the network exhibited high-amplitude oscillations were greatly reduced in the

presence of Ih. Our results suggest that modulation of Ih or impaired expression of h-

channels, as observed in epilepsy, could, by affecting oscillation dynamics, markedly alter

network-level activity and potentially influence oscillation-dependent cognitive processes

such as learning, memory and attention.
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INTRODUCTION

Oscillations in electrical activity are a hallmark of many brain networks (Gray et al., 1989; Fisahn
et al., 1998; Csicsvari et al., 2003; van Aerde et al., 2008) and are associated with various cognitive
functions, such as attention (Fries et al., 2001; Dehaene and Changeux, 2005; Buia and Tiesinga,
2006), temporal binding (Gray et al., 1989; Engel et al., 1999, 2001), learning (Miltner et al., 1999;
Caplan et al., 2001), working memory (Raffone and Wolters, 2001; Howard et al., 2003; Haenschel
et al., 2009), and memory consolidation (Axmacher et al., 2006). Network oscillations, as measured
in EEG and extracellular field recordings, are produced by the rhythmic and synchronized firing
of large numbers of cells (Buzsaki and Draguhn, 2004; Börgers et al., 2005; Womelsdorf and Fries,
2007) and are thought to arise from interacting populations of excitatory and inhibitory neurons
(Tiesinga et al., 2001; Börgers and Kopell, 2005; Börgers et al., 2005).
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Interestingly, the amplitude (or power) of ongoing oscillations
often fluctuates strongly, with high-amplitude episodes (HAEs)
alternating erratically with low-amplitude episodes (LAEs; Poil
et al., 2008, 2011; Montez et al., 2009; van Aerde et al., 2009;
Freyer et al., 2011). Oscillation amplitude is proportional to the
number of simultaneously firing cells (Reichinnek et al., 2010;
Pettersen et al., 2012), and LAEs may reflect episodes in which
fewer cells fire or in which they fire less synchronized. Amplitude
fluctuations are observed in EEG recordings of the intact brain
(Montez et al., 2009; Freyer et al., 2011) as well in extracellular
field recordings of slice cultures (van Aerde et al., 2009; Poil et al.,
2011), and are found in many brain areas, including prefrontal
cortex (van Aerde et al., 2009) and hippocampus (Poil et al.,
2011), and many frequency bands, ranging from theta (4–6Hz)
to gamma (25–80Hz) (Kim et al., 2007; Linkenkaer-Hansen
et al., 2007; Mann and Mody, 2009; van Aerde et al., 2009).
Episodes with high oscillation amplitude may provide favorable
conditions for synaptic plasticity (Avella Gonzalez et al., 2014),
and memory-related tasks are often associated with sustained
increases in oscillation amplitude (Palva et al., 2005;Montgomery
and Buzsáki, 2007). Changes in the temporal pattern of amplitude
fluctuations have been observed in Alzheimer’s disease (Montez
et al., 2006) and ADHD (Dockstader et al., 2008).

The origin of amplitude fluctuations in ongoing oscillations
is poorly understood. Using network models of interconnected
excitatory and inhibitory cells (Avella Gonzalez et al., 2012,
2014), we showed that amplitude fluctuations can arise from
a temporary decrease in firing synchrony caused by the
interference between network-generated oscillations and input
originating from areas external to the network. The external
input could come in the form of random spike trains
(Avella Gonzalez et al., 2012) or in the form of oscillating
activity from another network (Avella Gonzalez et al., 2014).
The distributions of HAE and LAE durations in the model
matched those observed in prefrontal cortex (van Aerde
et al., 2008, 2009) and hippocampus (Poil et al., 2011). In
the model, frequency and randomness of the external input
(Avella Gonzalez et al., 2012) as well as network connectivity
(Avella Gonzalez et al., 2014) influenced HAE and LAE
duration.

In general, oscillations in brain networks depend on both
network connectivity and intrinsic cellular properties, such as ion
channel composition. An important class of channels, with key
roles in regulating excitation in neural and cardiac tissues, are
hyperpolarization-activated cation channels (h-channels; Chen
et al., 2002; Biel et al., 2009; Kase and Imoto, 2012). The h-current
(Ih) is a depolarizing, non-inactivating, mixed Na+-K+ current
(with a reversal potential of −30mV) that activates slowly in
response to hyperpolarization and deactivates slowly in response
to depolarization. Because h-channels are partially open at rest,
Ih induces a depolarizing shift in the resting membrane potential
and decreases the resting membrane resistance. Furthermore, Ih
acts as a high-pass filter, opposing slow changes in membrane
potential. Together with the low-pass filtering due to the
membrane time constant, Ih endows the cell with resonance, the
property to respond selectively to inputs at a preferred frequency
(Hutcheon and Yarom, 2000).

In the brain, Ih has important roles in controlling neuronal
excitability (Pape and McCormick, 1989), dendritic integration
(Magee, 1999), synaptic transmission and plasticity (Beaumont
and Zucker, 2000; Nolan et al., 2004), motor learning
(Nolan et al., 2003), and working memory (Wang et al.,
2007). In addition, Ih may be involved in generating or
regulating oscillatory brain activity, such as rhythmic pacemaker
depolarization (McCormick and Bal, 1997; Dickson et al., 2000),
sub-threshold oscillations in the entorhinal cortex (Dickson et al.,
2000; Haas et al., 2007), thalamocortical oscillations (Steriade
et al., 1993; Bal and McCormick, 1996), and oscillations in the
hippocampus (Fisahn et al., 2002; Cunningham et al., 2003;
Neymotin et al., 2013) and the prefrontal cortex (Vijayraghavan
et al., 2007; Wang et al., 2007; Chu and Zhen, 2010). Ih has
also been implicated in epilepsy, and modulation of Ih has
been proposed as a potential attribute of novel anti-epileptic
drugs (Chen et al., 2002). The unique biophysical properties and
multifaceted aspects of Ih, however, make it difficult to elucidate
the network-level consequences of Ih and thus to predict the
effect of Ih on brain oscillations.

Using a computational model of a generic neuronal network,
we here studied the impact of Ih on network oscillations and
in particular its impact on high- and low-amplitude episodes.
In the model, cells were externally driven by sustained current
input as well as trains of action potentials, and oscillations were
generated by the interaction between excitatory and inhibitory
cells (Tiesinga et al., 2001; Börgers and Kopell, 2005; Börgers
et al., 2005). We found that Ih increased the oscillation frequency
and, in combination with external action potential input, strongly
decreased the synchrony of firing, as a result of which the
oscillation power and the duration of episodes with high-
amplitude oscillations were greatly reduced. The impact of Ih was
not bigger when the external action potentials were delivered at
the resonance frequency of the h-channels.

METHODS

To investigate the effect of Ih on amplitude fluctuations in
ongoing oscillations, we built, as in Avella Gonzalez et al. (2012),
a neuronal network consisting of 80 excitatory cells and 20
inhibitory cells, reflecting the ratio of excitatory to inhibitory cell
numbers found in most cortical areas (Markram et al., 2004). The
network was large enough to capture the network dynamics, yet
small enough to be able to run many simulations of 40 s duration
for different input conditions and ion-channel compositions (i.e.,
with and without h-channels). The network was implemented
in the simulation environment NEURON (Hines and Carnevale,
1997), and the results were analyzed in MATLAB.

Cells
Both excitatory and inhibitory cells consisted of a single
compartment with a length and diameter of 20µm. The
membrane contained the Na+ and K+ channels responsible for
action potential generation, as well as leakage channels and h-
channels (Bender et al., 2005; Aponte et al., 2006). The leakage
channels were modeled as a simple resistive component, whereas
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the h-channels and Na+ and K+ channels followed the Hodgkin-
Huxley formalism (Hodgkin and Huxley, 1952a,b).

The change in membrane potential V (inmV) was given by

C
dV

dt
= ICDC − gKn

4(V − EK)− gNam
3h(V − ENa)

−gL(V − EL)− ghl(V − Eh)− gGABA(V − EGABA)

−gAMPA(V − EAMPA)− gAP(V − EAP)

where t is time in ms; C = 10−6F/cm2 is the membrane
capacitance; gK = 800pS/µm2 and EK = −100mV are the
maximal conductance and reversal potential of the K+ channels;
gNa = 1000 pS/µm2 and ENa = 50mV are the maximal
conductance and reversal potential of the Na+ channels; gL = 1
pS/µm2 and EL = −67mV are the conductance and reversal
potential of the leakage channels; and gh = 5 pS/µm2 and
Eh = −30mV are the maximal conductance and reversal
potential of the h-channels. Each cell could receive synaptic input
from other cells in the network, with gAMPA and EAMPA the
synaptic conductance and reversal potential of the excitatory
AMPA channels; and gGABA and EGABA the synaptic conductance
and reversal potential of the inhibitory GABAA channels (for
parameter values, see Section Network). In addition, each cell
could receive two types of external input: a constant depolarizing
current ICDC and a train of external action potentials impinging
onto an excitatory synapse, with synaptic conductance gAP and
reversal potential EAP (for parameter values, see Section External
Drive). Parameter values were based on Jensen et al. (2005) and
Wang et al. (2004). Parameter values of the h-channels were
obtained fromMagee and Carruth (1999).

The dynamics of the gating variables n, m, and h (collectively
denoted by z; note that h refers to a gating variable of the Na+

channel, not to a property of the h-channels) of the Na+ and K+

channels were given by

dz

dt
= αz(V)(1− z)− βz(V)z

where αz(V) and βz(V) are the voltage-dependent functions for
the opening and closing rates. For the n,m, and h variables, these
functions were (Wang et al., 2004; Jensen et al., 2005):

αn(V) = 0.032(V + 52)/(1− exp(−0.2(V + 52)))

βn(V) = 0.5 exp(−0.025(57+ V))

αm(V) = 0.32(54+ V)/(1− exp(−0.25(V + 54)))

βm(V) = 0.28(27+ V)/(exp(0.2(V + 27))− 1)

αh(V) = 0.128(exp(−0.056(V + 50)))

βh(V) = 4/(1+ exp(−0.2(V + 27)))

The dynamics of the gating variable l of the h-channels was given
by (Magee, 1998; Migliore et al., 2004):

τl(V)
dl

dt
= l∞(V)− l

where

τl(V) =
exp(0.033(V + 75))

0.02(1+ exp(0.083(V + 75)))

l∞(V) =
1

1+ exp((V + 81)/7)

Thus, τl(V) has a bell-shaped form with a maximal value at V =
−75mV. The function l∞(V) has a sigmoid shape with a half-
maximum of 0.5 at V = −81mV. It approaches 0 for high V
and 1 for low V ; i.e., the channel is activated by hyperpolarized
membrane potentials.

Resonance
To verify that the model cell with h-channels exhibited
resonance, we replaced the constant ICDC by a sub-threshold
ZAP current (i.e., a sine wave current whose frequency increases
linearly with time) and determined the cell’s transfer impedance
for a broad range of frequencies, using the impedance tool from
NEURON (Hutcheon et al., 1996), available at www.neuron.yale.
edu/ftp/ted/neuron/izap.zip. The impedance is the complex ratio
of the voltage to the current in an alternating current circuit;
impedance thus extends the concept of resistance to situations
with alternating currents. Aside from the ZAP current, the cell
received no other input, thus no synaptic input and AP input.
The ZAP current fluctuated in a sinusoidal way between 0.8 and
1.2 pA and was applied 100ms after the start of the simulation;
the whole simulation lasted 600ms. The frequency of the ZAP
current varied over time from 1 to 1000Hz.

Network
To build the network, we assigned to each cell a probability to
connect to any other cell. As in Avella Gonzalez et al. (2012),
excitatory (E) cells had a probability PEI = 0.65 to connect
to inhibitory (I) cells and a probability PEE = 0.3 to connect
to E cells. Likewise, I cells had a probability PIE = 0.6 to
connect to E cells and a probability PII = 0.55 to connect to I
cells. A connection consisted of a single synapse with a synaptic
conductance as described below.

These connectivity values were chosen so that the network,
in combination with the synaptic conductances (see below),
generated oscillations through a PING (Pyramidal Interneuron
Network Gamma) mechanism (Whittington et al., 2000). In this
mechanism, which underliesmost beta and gamma oscillations in
the brain, the pyramidal cells (E cells) activate the interneurons
(I cells), which in turn suppress the pyramidal cells. The PING
mechanism requires strong connectivity from E to I cells, strong
connectivity from I to E cells, and, to boost synchronous firing,
connectivity among I cells (Whittington et al., 2000).

In the network, the E cells projected excitatory AMPA
synapses onto E or I cells, and I cells made inhibitory GABAA

synapses onto E or I cells. The time course of synaptic
conductance for both excitatory and inhibitory synapses was
given by a mono-exponential function. The synaptic delay for
both types of synapses was 1ms (Bazhenov et al., 2008). The
AMPA synapses had a conductance gEE,EI = 1 pS/µm2, reversal
potential EAMPA = 0mV and decay time constant τE = 2ms
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(Börgers et al., 2005; Geisler et al., 2005; Bibbig et al., 2007).
The GABAA synapses had conductances gII = 10 pS/µm2 and
gIE = 50 pS/µm2, reversal potential EGABA = −80mV and decay
time constant τI = 10ms (i.e., the IPSC decay time constant;
Jensen et al., 2005). These parameters values were as in Bibbig
et al. (2007) and Jensen et al. (2005) and resulted in rhythmic
network activity (Whittington et al., 2000) with a frequency of
about 18Hz, within the frequency range reported for prefrontal
cortex and CA1/CA3 hippocampal areas (Bibbig et al., 2007; van
Aerde et al., 2008, 2009).

External Drive
As in Börgers et al. (2005), each cell could receive two kinds
of external input: (i) a constant depolarizing current ICDC,
representing cholinergic input required to induce the oscillations
generated by the synaptic interactions between excitatory and
inhibitory cells (Tiesinga et al., 2001; Widmer et al., 2006); and
(ii) a train of external action potentials, representing background
input from outside the network (Whittington et al., 1997; Börgers
et al., 2005). As shown in our previous work (Avella Gonzalez
et al., 2012), the minimal condition for producing alternating
episodes of high and low oscillation amplitude is excitatory input
from external trains of action potentials (APs) to I cells and a
constant depolarizing current (CDC) to both E and I cells. This
input protocol was also used here.

For each E and I cell, the amplitude of the current was
randomly chosen from a uniform distribution, but fixed for the
duration of a simulation. The amplitude was in the interval [10.1–
11.3] pA for E cells and in the interval [3.8–6.3] pA for I cells.
These values were based on Börgers et al. (2005) and Johansson
et al. (1992).

Each I cell received a train of external APs impinging onto an
excitatory synapse with conductance gAP = 2.6 pS/µm2, reversal
potential EAP = 0mV and decay time constant τAP = 2ms. The
train of external action potentials had a given randomness and
mean firing rate. The randomness (AP-rand) was denoted by a
number in the interval [0, 1], where 0 indicates no randomness
and 1 indicates full randomness of the Poisson-distributed spike
train. Themean firing rate (AP-mfr) was equal to 1/isi, where isi is
the mean interspike interval. The first external spike occurred at
t = ton; the firing times of all subsequent spikes were computed
using

tn+1 = tn + (1− rand)× isi+ rand × isi× errand()

where errand() is a random number drawn from an exponential
distribution in the interval [0,1]. The first spike was generated
at ton = 80 ms, and all cells received external trains of APs
independently from each other.

Analyzing Network Activity
As in Avella Gonzalez et al. (2012), network activity was analyzed
separately for the excitatory and the inhibitory population.
Results from the excitatory and the inhibitory population turned
out to be very similar, so in most cases we report only about the
excitatory population. To monitor the time domain of network
activity, we constructed firing-rate histograms by counting spikes

in time bins of 6ms, which implies a sample frequency of about
167Hz. A bin size of 6ms practically excluded that more than one
spike occurred per time bin per cell, so the number of spikes was
generally equal to the number of firing cells per time bin.

To analyze the frequency domain of network activity, we
performed a fast Fourier transform using the 6ms-binned firing-
rate histograms (of 40 s of activity). The histograms were first
smoothened by convolving them with an alpha function f (t) =

α2te−αt , where α = 0.27 and t is in 6ms time units (the bin size);
f (t) was evaluated for five consecutive time bins. The convolved
signal was then used as input for the Welch’s periodogram
MATLAB algorithm.

To examine the time-frequency domain of network activity,
we conducted a wavelet analysis on the convolved firing-rate
histogram. We used the Torrence algorithm (Torrence and
Compo, 1998) as implemented in MATLAB and a standard
Morlet function with a frequency range of 0.01–70Hz and 0.1Hz
scaling windows.

To demarcate HAEs and LAEs, we used the same method
as in Avella Gonzalez et al. (2012) (Figure 1). The method first
determines the maximal firing rates in all successive periods of
an oscillation, using a sliding time window of length T, where
T is the oscillation period. The value of T is roughly estimated

FIGURE 1 | Determination of high-amplitude episodes (HAEs) and

low-amplitude episodes (LAEs) in network oscillations. (A) Raster

diagram showing the firing times (indicated by dots) of the excitatory cells. (B)

Corresponding firing-rate histogram. The maximal firing rate (red bar) per

oscillation period T is determined by using a sliding time window of length T. The

time axis is divided into bins of 6ms. (C) A spline polynomial is interpolated

through the maximal firing rates (red bars). Time episodes during which the

curve exceeds the HAE threshold (dashed line) are considered HAEs, otherwise

LAEs (See further Section Analyzing Network Activity). From Avella Gonzalez

et al. (2012).
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as the average time between the time bins in which the firing
rate exceeds the mean firing rate. At the start, the first time
bin t(1) with the highest firing rate is located, which marks the
maximal firing rate in the first period of the oscillation. The
sliding window is then centered around t(1), thus enclosing
the range [t(1)-T/2, t(1)+T/2]. Next, the window is shifted to
[t(1)+T/2, t(1)+T/2+T]. Within this range, time bin t(2) with
the highest firing rate is searched for, which marks the maximal
firing rate in the second period of the oscillation. Subsequently,
the window is shifted to [t(2)+T/2, t(2)+T/2+T] to find time
bin t(3), and so on. When the maximal firing rates in all periods
are determined, a third-order spline polynomial is interpolated
through the maximal firing rates. The interpolated curve is then
used to delineate HAEs and LAEs. When during a particular
time interval, the curve exceeds a given threshold, the interval
is considered a HAE, otherwise a LAE. The HAE threshold is
0.25 × ncells, where ncells is the total number of excitatory or
inhibitory cells. Thus, a HAE is an episode in which at least 25%
of the excitatory or inhibitory cells fired synchronously with a
precision of 6ms (the size of the time bins).

RESULTS

Ih Endows Cell with Resonance
Resonance is the property of a cell to respond selectively to
inputs at a preferred frequency (Hutcheon and Yarom, 2000).
To determine whether the model cell with h-channels exhibited
resonance, we applied a sub-threshold ZAP current (i.e., a sine
wave current whose frequency increases linearly with time) and
determined the cell’s transfer impedance for input frequencies
ranging from 1 to 1000Hz. The impedance is the complex ratio
of the voltage to the current, so high impedance means a high
voltage response. Apart from the ZAP current, fluctuating in a
sinusoidal way between 0.8 and 1.2 pA, the cell received no other
forms of input.

Without h-channels, the cell behaved as a typical low-pass
filter (Figure 2) as a result of the cell’s passive properties
(Hutcheon and Yarom, 2000). The impedance was around 750
M� for frequencies below 10Hz, and became increasingly
lower for frequencies above this value. With h-channels, the
cell acted also as a high-pass filter: for frequencies below 4Hz,
the impedance was markedly lower than without h-channels
(Figure 2). The combination of low-pass and high-pass filtering
resulted in elevated impedance in a window of about 6–15Hz,
with maximum impedance at 11.7Hz (the resonance frequency).

The h-current (Ih) is a slow, hyperpolarization-activated,
depolarizing current that opposes changes in membrane
potential (Chen et al., 2002; Biel et al., 2009; Kase and Imoto,
2012). As the cell hyperpolarizes, Ih activates, which decreases
the hyperpolarization. Conversely, as the cell depolarizes, Ih
deactivates, which attenuates the depolarization. In combination
with the slow kinetics of Ih, this ability of Ih to counter changes
in membrane potential means that Ih acts as a high-pass filter.
At low frequencies, the h-channels have time to open and to
suppress potential changes, whereas at high frequencies there is
not enough time and the potential changes remain unsuppressed.

FIGURE 2 | Cell with h-channels behaves as a band-pass filter. The cell

was stimulated by a sine wave current whose frequency varied between 1 and

1000Hz. In the absence of h-channels (blue line), the frequency response

curve showed the typical low-pass filtering caused by the passive properties of

the cell membrane. In the presence of h-channels (red line), the cell behaved

as a band-pass filter, with elevated impedance in a window of about 6−15Hz

and a peak impedance at about 11.7Hz (resonance frequency).

Together with the passive low-pass filtering caused by the
membrane time constant, the presence of Ih thus endows the cell
with resonance.

Ih Increases Oscillation Frequency
As shown in our previous work (Avella Gonzalez et al., 2012), the
minimal stimulation condition for producing strong fluctuations
in oscillation amplitude is a CDC to both excitatory (E) and
inhibitory (I) cells and excitatory input from external trains of
action potentials (APs) to the I cells. The CDC input represents
cholinergic input, and the AP input reflects synaptic input from
areas outside the network. The amplitude fluctuations arise from
the interference between network-generated oscillations and AP
input (Avella Gonzalez et al., 2012). Before examining how Ih
affects amplitude fluctuations, we investigated the effect of Ih in
a network that produced stable oscillations, without amplitude
fluctuations. Figures 3A–D show a network without h-channels
in which all cells received CDC input but no AP input. The
network produced stable oscillations at a frequency of 17.8Hz.
The oscillations were caused by the interactions between the
excitatory and inhibitory cells and were driven by the CDC input.
In the presence of h-channels, neither the synchrony of cell
firing nor the number of cells firing changed, only the oscillation
frequency increased to 20Hz (Figures 3E–H). The h-channels,
which are partly open at rest, induce a depolarizing shift in the
restingmembrane potential, making it easier for action potentials
to be triggered, which consequently leads to a higher firing rate
and a higher oscillation frequency in the network.

With Ih, Oscillation Generation Does Not
Require External Stimulation
Without any form of external stimulation, i.e., CDC or AP input,
the network without h-channels cannot generate oscillations and
remains silent (Avella Gonzalez et al., 2012). Interestingly, in
the presence of h-channels, the network did not need CDC
or AP input to be able to produce oscillations (Figure 4).
The oscillations, at a frequency of about 10Hz, were more
irregular than in the presence of CDC input (Figure 3), because
not all cells participated in each oscillation cycle (Figure 4A),
generating fluctuations in oscillation amplitude that occasionally
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FIGURE 3 | Ih increases the oscillation frequency. Shown are raster diagram of cell firing (A,E), firing-rate histogram with interpolated spline polynomial (red line)

(B,F), wavelet transform (C,G), and Fourier transform (D,H) of the excitatory population, in the absence (A–D) and presence (E–H) of h-channels in the network. The

dashed line in (B) and (F) indicates the HAE threshold; time episodes during which the spline polynomial exceeds the threshold are considered high-amplitude episodes

(in this case, the whole simulation period is a HAE). All cells received CDC input but no AP input, so there were no transitions to low-amplitude episodes (LAEs).

just dropped below the HAE threshold (Figure 4B). Although
not all cells fired in each oscillation cycle, the firing synchrony
of cells that did fire was the same as in the presence of CDC input
(compare Figure 3A and Figure 4A).

Cells with h-channels can display spontaneous firing because
h-channels are partially open at resting membrane potential,
supplying a depolarizing current that is responsible for starting
an action potential. During the depolarizing phase of the action
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FIGURE 4 | In the presence of Ih, oscillations are generated even without any form of external input (CDC, AP). Shown are raster diagram of cell firing (A),

firing-rate histogram with interpolated spline polynomial (B), wavelet transform (C) and Fourier transform (D) of the excitatory population. The cells fired at a frequency

of about 10Hz. Note that owing to the highly synchronized activity, the Fourier transform (D) also produced a peak at a harmonic frequency (about 20Hz), but there

were no cells that actually fired at that frequency [see (A)]. There are large fluctuations in oscillation amplitude (B) that occasionally just drop below the HAE threshold.

Cells had h-channels but did not receive CDC or AP input.

potential, the h-channels then slowly deactivate, but they become
strongly activated again during the subsequent repolarization
and after-hyperpolarization phase, triggering the next action
potential.

Ih Strongly Reduces HAE Duration
Next, we considered the effect of h-channels in a network that,
in the absence of h-channels, produced irregular fluctuations in
oscillation amplitude. As mentioned, the minimal stimulation
condition for generating amplitude fluctuations is CDC input to
both E and I cells and AP input to the I cells. Figures 5A–D show
the excitatory population (results from the inhibitory population
are very similar; see Supplementary Figure 1) in a network
without h-channels that was stimulated using this minimal
stimulation condition. HAEs are seen to alternate with LAEs
(Figure 5B). During a HAE, cells fired highly synchronously,
yielding high amplitudes in the firing-rate histograms and
high power in the wavelet map (Figure 5C). During a LAE,
the cells fired less synchronously (also fewer cells fired), as
shown by the spreading out of activity over more time bins
(see also Figure 1), leading to low amplitudes in the firing-
rate histograms and low power in the wavelet map. The AP
input disrupts the synchrony of firing, which reduces the
oscillation amplitude, and a LAE commences (Avella Gonzalez
et al., 2012). After some time, the E-I cell interactions drive
the network back to synchrony, and a HAE begins. The
tendency of the E and I cells to synchronize firing (Whittington

et al., 2000) continually competes with the desynchronizing
effect of the AP input, so HAEs constantly alternate with
LAEs.

Figures 5E–H show the same network but then in the
presence of h-channels. The h-channels disrupted the regular
oscillations, with highly desynchronized firing as well as fewer
cells firing, resulting in low amplitudes in the firing-rate
histogram (Figure 5F) and low power in the wavelet map
(Figure 5G). The dynamics of alternating HAEs and LAEs almost
completely disappeared, and the network was in a LAE for almost
the entire duration of the simulation. Although the power was
very low, the peak frequency (27Hz; Figure 5H) was higher than
in the absence of h-channels (18Hz; Figure 5D). Thus, in a
network with HAE-LAE dynamics, the influence of Ih was much
stronger than in a network that generated stable oscillations, in
which introduction of h-channels affected only the oscillation
frequency.

Because the h-channels are partially open at rest, they
induce a depolarizing shift in the resting membrane potential,
enabling the cells to fire even in the absence of input (see
Section With Ih, Oscillation Generation Does Not Require
External Stimulation and Figures 4, 6A). Furthermore, the
h-channels activate in response to hyperpolarization and
deactivate in response to depolarization. As a result, the
excitatory AP input onto the I cells (the condition for
generating HAE-LAE dynamics) disturbs the firing of the I
cells and also increases their firing rate (Figures 6B,D). In
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FIGURE 5 | Ih reduces the duration of high-amplitude episodes (HAEs). Shown are raster diagram of cell firing (A,E), firing-rate histogram with interpolated

spline polynomial (B,F), wavelet transform (C,G), and Fourier transform (D,H) of the excitatory population, in the absence (A–D) and presence (E–H) of h-channels in

the network. Both in (A–D) and in (E–H), all cells received CDC input, while the inhibitory cells received AP input with AP-mfr = 11.7Hz and AP-rand = 1.

turn, the firing of the E cells (and other I cells), which
receive inhibitory connections from the I cells, is prevented
or delayed by the inhibitory input (Figures 6C,E), which
strongly desynchronizes the network, leading to long LAEs
(Figures 5E–G).

Ih Affects HAE Duration for a Wide Range
of AP Input
To investigate whether the randomness and frequency of the AP
input affected its potential to disturb HAE-LAE dynamics and
whether the AP input was more competent when it was delivered
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FIGURE 6 | Spike input disturbs cell firing in the presence of Ih. Single cell simulations illustrating the effect of action potential input, through an excitatory or an

inhibitory synapse, on cell firing. (A) Without any form of input, the cell fired regularly in the presence of Ih. (B) In the absence of Ih, spike input through an excitatory

synapse caused the cell to fire every time it received input. (D) In the presence of Ih, the same spike input disturbed the regular firing shown in (A), e.g., around 127

and 458ms. (C) In the absence of Ih, spike input through an inhibitory synapse caused the cell to hyperpolarize every time it received input. (E) In the presence of Ih,

the same spike input disturbed the regular firing shown in (A). Firing was prevented, e.g., around 118 and 227ms, or delayed, e.g., around 790ms.

at the resonance frequency of the h-channels, we systematically
varied AP randomness (AP-rand = 0, 0.15, 0.4, 0.75, 1.0) and
AP frequency (AP-mfr = 0.1, 1.0, 2.0, 3.0, 5.0, 6.0, 8.0, 11.7,
15.0, 18.0, 23.4, 25.0, 30.0Hz). Figure 7A shows the mean HAE
duration as a function of AP-mfr for different values of AP-rand,
both in the presence and in the absence of h-channels. Without
h-channels, the mean HAE duration on the whole decreased
(and the mean LAE consequently increased) with increasing AP-
mfr, especially for AP-rand > 0.15. In general, a switch from
a HAE to a LAE is more likely when the disruptive influence
of the AP input is bigger (Avella Gonzalez et al., 2012). Thus,
the higher the AP frequency and AP randomness, the shorter
the mean HAE duration. With h-channels, the same trend was
observed, but the mean HAE durations were much shorter than
without h-channels. For AP-rand = 1, the difference between
the HAE durations with and without h-channels was smaller
than for the other values of AP-rand (e.g., compare AP-rand =

1.0 and AP-rand = 0.15 in Figure 7A). For most values of
AP-mfr, the AP input desynchronized the oscillations and/or
reduced the firing rate to such an extent that the mean HAE
was very short (see close up of Figure 7A in Supplementary
Figure 2). Only for the lowest values of AP-mfr (0.1, 1.0, 2.0Hz)
did substantial HAEs occur. Notice that, despite the presence of

resonance in the sub-threshold domain (Section Ih Endows Cell
with Resonance), the AP input did not have a bigger impact when
it was delivered at the resonance frequency of the h-channels
(11.7Hz).

Figure 7B shows the peak frequency of the oscillations as a
function of AP-mfr for different values of AP-rand, both in the
presence and in the absence of h-channels. Without h-channels,
the peak frequency slowly increased with increasing AP-mfr, but
remained near 18Hz for AP-mfr < 18Hz. Around AP-mfr = 18–
24Hz, the oscillation frequency abruptly increased. Comparison
with Figure 7A reveals that around this frequency, the HAE
duration became very short, indicating a strong reduction in
synchronous firing. For AP-mfr > 18–24Hz, the network could
not hold on to its own rhythm, and the firing frequency was
more dictated by the external AP input than by the interactions
between E and I cells. With h-channels, the peak frequency
of the oscillations was higher than without h-channels. The
peak frequency slowly increased with increasing AP-mfr, but
stayed near 20Hz for AP-mfr < 6Hz. Around AP-mfr = 6Hz,
the oscillation frequency jumped to higher values. As in the
case without h-channels, comparison with Figure 7A shows that
around this value HAE duration became very short. For AP-
mfr > 6Hz, the oscillatory activity was strongly disrupted by the
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FIGURE 7 | Ih reduces the duration of high amplitude episodes (HAEs), increases the frequency, and decreases the power of network oscillations.

Shown are the mean HAE duration (A), peak frequency (B), and peak power (C) for different values of the randomness (AP-rand) and frequency (AP-mfr = 0.1, 1.0,

2.0, 3.0, 5.0, 6.0, 8.0, 11.7, 15.0, 18.0, 23.4, 25.0, 30.0Hz) of the external action potential input (AP), both in the presence (red) and absence (blue) of h-channels in

the network. The total simulation time was 40 s.

AP input, and the firing frequency in the network was determined
more by the external AP input than by the E-I cell interactions.

Figure 7C shows the peak power of the oscillations as a
function of AP-mfr for different values of AP-rand, both in the
presence and in the absence of h-channels. For AP-rand > 0,
the peak power was, except for AP-mfr = 0.1Hz, systematically
lower with h-channels than without h-channels. Thus, only when
the disruptive influence of the AP input was relatively small, for
AP-mfr = 0.1Hz, did the presence of h-channels increase the
power of the oscillations. In agreement with Figures 7A,B, the
power quickly dropped to low values for AP-mfr > 18Hz in
the case without h-channels and for AP-mfr > 6Hz in the case
with h-channels. For AP-mfr > 18Hz or AP-mfr > 6Hz, fewer
cells fired and/or they fired less synchronized, so the oscillation
amplitude and thus the oscillation power greatly decreased (i.e.,
the network was in a LAE formost of the time). For AP-rand = 1,
the difference between oscillation power with and without h-
channels was smaller than for the other values of AP-rand (e.g.,
compare AP-rand = 1.0 and AP-rand = 0.15 in Figure 7C). As
with the impact of AP input on HAE duration, notice that the
AP input did not influence oscillation frequency (Figure 7B) or
oscillation power (Figure 7C) more strongly when AP-mfr was at
the resonance frequency of the h-channels (11.7Hz).

Impact of Ih Diminishes with Lower
Channel Conductance
To examine whether lowering the maximal conductance of the
h-channels would also diminish the impact of Ih on mean HAE

duration, peak oscillation frequency and peak oscillation power,
we reduced the maximal conductance to 25% of its default
value. Figure 8 shows HAE duration, oscillation frequency and
oscillation power as a function of AP-mfr for different values of
AP-rand, both without h-channels and with reduced h-channel
conductance (for close up of Figure 8A, see Supplementary
Figure 3). As can be seen by comparing Figures 7, 8, the
difference between presence and absence of h-channels was
smaller with reduced h-channel conductance than with full h-
channel conductance. This holds true for mean HAE duration,
peak oscillation frequency and peak oscillation power. For AP-
rand = 1, for instance, presence or absence of h-channels
did hardly affect the results. When the h-channel conductance
was reduced not to 25% but to only 50 or 75% of its default
value, the influence of Ih was almost as strong as with full h-
channel conductance (results not shown), indicating that Ih has a
pronounced effect on oscillatory dynamics.

DISCUSSION

Using a computational model of a generic neuronal network, we
here studied the impact of Ih on network oscillations generated
by interacting excitatory and inhibitory cells. In particular, we
looked at the influence of Ih on the occurrence of alternating
high-amplitude (HAEs) and low-amplitude episodes (LAEs) in
oscillations. In our previous work (Avella Gonzalez et al., 2012),
we found that the minimal stimulation condition for obtaining
HAE-LAE dynamics is a constant depolarizing current (CDC,
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FIGURE 8 | The effect of Ih on high amplitude episodes (HAEs), frequency, and power of network oscillations diminishes when h-channel conductance

is reduced. The h-channel conductance was reduced to 25% of its default value. Shown are the mean HAE duration (A), peak frequency (B), and peak power (C) for

different values of the randomness (AP-rand) and frequency (AP-mfr = 0.1, 1.0, 2.0, 3.0, 5.0, 6.0, 8.0, 11.7, 15.0, 18.0, 23.4, 25.0, 30.0Hz) of the external action

potential input (AP), both in the presence (red) and absence (blue) of h-channels in the network. The total simulation time was 40 s.

representing cholinergic input) to both excitatory and inhibitory
cells and excitatory input from trains of external action potentials
(APs, reflecting synaptic input from areas outside the network)
to the inhibitory cells. The HAE-LAE alternations arise because
the AP input temporarily disrupts the synchrony of firing and so
reduces the oscillation amplitude (Avella Gonzalez et al., 2012).

In networks lacking AP input, which produce stable
oscillations without HAE-LAE alternations, insertion of h-
channels increased the oscillation frequency, but had no effect
on the synchrony of firing or the number of firing cells. In
networks with AP input and HAE-LAE dynamics, Ih, in addition
to increasing the oscillation frequency, profoundly reduced the
synchrony of firing and consequently decreased the oscillation
amplitude, oscillation power and the mean HAE duration (and
thus increased the mean LAE duration). The effect of Ih on HAE
duration and oscillation frequency and power was not strongly
dependent on the frequency (AP-mfr) or the randomness (AP-
rand) of the external action potentials, and occurred for a wide
range of AP-mfr and AP-rand values. Notably, the impact of Ih
was not bigger when the AP input was delivered at the resonance
frequency of the h-channels. The influence of Ih became less
when the maximal conductance of the h-channels was lowered,
although the conductance had to be reduced quite drastically
before a diminished effect of Ih became noticeable.

Because h-channels are partially open at rest, Ih induces a
depolarizing shift in the resting membrane potential, increasing
the excitability of the cells and enabling them to fire even in

the absence of input. Furthermore, Ih activates in response to
hyperpolarization and deactivates in response to depolarization.
As a result, networks with Ih are much more sensitive to
the disruptive and desynchronising influence of the external
excitatory AP input than networks without Ih, leading to longer
LAEs and shorter HAEs. As shown in our previous work (Avella
Gonzalez et al., 2012), just adding a normal depolarizing current
(e.g., a higher CDC input) instead of Ih yields longer rather
than shorter HAEs, indicating that the special properties of Ih
contribute to the impact of Ih on HAE duration. The effects of
Ih on oscillation dynamics are not dependent on a particular
choice of network parameters. A simulation with a different
proportion of excitatory and inhibitory cells and different
synaptic conductances yielded similar results (Supplementary
Figure 4).

The predictions of themodel could be tested experimentally in
cortical slices cultured on multi-electrode arrays (MEAs). With
MEAs, one can not only record field potentials but also deliver
external electrical signals, so it could be tested whether HAE
duration is reduced more by external input in the presence of Ih
than in the absence of Ih, when h-channels are blocked (Biel et al.,
2009).

In a model of hippocampal CA3, with pyramidal, basket
and oriens-lacunosum moleculare cells, Neymotin et al. (2013)
also studied the impact of Ih on network rhythms. They found
that Ih affected oscillation frequency and power, essentially
through Ih influencing the firing rate of the inhibitory cell
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classes (basket and oriens-lacunosum moleculare cells). Unlike
our study, they did not look at the effect of external input on
synchronized firing (HAE-LAE dynamics) and the modulation
of this effect by Ih.

Synchronized firing between cells is important for correlation-
based, Hebbian synaptic plasticity (Song et al., 2000). Since
HAEs reflect episodes of enhanced firing synchrony, they provide
favorable conditions for synaptic strength modification. The
presence andmaximal conductance of h-channels influence HAE
duration and therefore may affect when learning and memory
formation can take place.

Expression of h-channels differs between anatomical areas,
with distinct neuronal circuits expressing subunits with different
activation kinetics (Santoro and Tibbs, 1999). This differential
expression may contribute to the different HAE and LAE
distributions observed in different brain regions, e.g., the
prelimbic and infralimbic regions of the prefrontal cortex (van
Aerde, 2008; van Aerde et al., 2009; Avella Gonzalez et al.,
2012). The expression of h-channels is not constant over time
but undergoes long-term changes in response to altered network
activity (Chen et al., 2002). In addition, neurotransmitter and
neuromodulatory systems, such as those involving dopamine
and acetylcholine, also influence Ih(Chen et al., 2002). As
our results suggest, this activity-dependent and –independent
modulation of h-channels may affect oscillation frequency and
amplitude fluctuations (HAE-LAE dynamics) and therefore
could potentially influence all processes that depend on neuronal
oscillations, such as synaptic plasticity, learning and memory,
and attention.

Impaired expression of h-channels, with both up- and
downregulation of Ih observed, is associated with the pathology
of epilepsies (Chen et al., 2002; Biel et al., 2009). Upregulation of
Ih was seen in hippocampal CA1 neurons, which, as in ourmodel,

was functionally coupled to an increased probability of action
potential firing and a higher firing frequency (Chen et al., 2001).
Downregulation of Ih was found in absence epilepsy (Ludwig
et al., 2003), a type of epilepsy that is clinically defined by
sudden, brief impairments of consciousness and behavioral arrest
(absences). Downregulation of Ih was also found in temporal
lobe epilepsy (Shah et al., 2004). Interestingly, in both absence
and temporal lobe epilepsy, there is an increased prevalence
of synchronous oscillatory activity in thalamocortical circuits
(McCormick and Contreras, 2001) and entorhinal cortex (Shah
et al., 2004), respectively, in line with our model result that
Ih, in combination with external input, desynchronizes network
oscillations.

Various modulators of Ih, both inhibitors and enhancers,
have been proposed as anti-epileptic drugs (Chen et al., 2002).
Our results indicate opposing effects of changing h-channel
conductance with regard to controlling neuronal firing. Reducing
Ih decreases firing and oscillation frequency but increases the
synchrony of firing and thus increases oscillation amplitude and
power. On the other hand, enhancing Ih increases firing and
oscillation frequency but decreases the synchrony of firing and
thus decreases oscillation amplitude and power.
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