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We used a musculoskeletal model to investigate the possible biomechanical and

neural bases of using consistent muscle synergy patterns to produce functional motor

outputs across different biomechanical conditions, which we define as generalizability.

Experimental studies in cats demonstrate that the same muscle synergies are

used during reactive postural responses at widely varying configurations, producing

similarly-oriented endpoint force vectors with respect to the limb axis. However, whether

generalizability across postures arises due to similar biomechanical properties or to

neural selection of a particular muscle activation pattern has not been explicitly tested.

Here, we used a detailed cat hindlimb model to explore the set of feasible muscle

activation patterns that produce experimental synergy force vectors at a target posture,

and tested their generalizability by applying them to different test postures. We used three

methods to select candidate muscle activation patterns: (1) randomly-selected feasible

muscle activation patterns, (2) optimal muscle activation patterns minimizing muscle

effort at a given posture, and (3) generalizable muscle activation patterns that explicitly

minimized deviations from experimentally-identified synergy force vectors across all

postures. Generalizability was measured by the deviation between the simulated force

direction of the candidate muscle activation pattern and the experimental synergy force

vectors at the test postures. Force angle deviations were the greatest for the randomly

selected feasible muscle activation patterns (e.g., >100◦), intermediate for effort-wise

optimal muscle activation patterns (e.g., ∼20◦), and smallest for generalizable muscle

activation patterns (e.g., <5◦). Generalizable muscle activation patterns were suboptimal

in terms of effort, often exceeding 50% of the maximum possible effort (cf. ∼5% in

minimum-effort muscle activation patterns). The feasible muscle activation ranges of

individual muscles associated with producing a specific synergy force vector was

reduced by ∼45% when generalizability requirements were imposed. Muscles recruited

in the generalizable muscle activation patterns had less sensitive torque-producing

characteristics to changes in postures. We conclude that generalization of function

across postures does not arise from limb biomechanics or a single optimality criterion.

Muscle synergies may reflect acquired motor solutions globally tuned for generalizability

across biomechanical contexts, facilitating rapid motor adaptation.
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INTRODUCTION

It has been suggested that the nervous system may use a
repertoire of fixed muscle patterns called muscle synergies,
or motor modules, that can be flexibly combined to achieve
functional motor goals. Muscle synergies have been shown
to account for experimentally-observed variability in muscle
activity across different motor behaviors in various species
(Raasch and Zajac, 1999; Hart and Giszter, 2004; Ting and
Macpherson, 2005; D’Avella et al., 2006; Chvatal et al., 2011; Roh
et al., 2012). Each muscle synergy is hypothesized to produce a
consistent biomechanical task (Giszter and Kargo, 2000; McKay
and Ting, 2008). The level of recruitment of each muscle synergy
during any given behavior is dependent on the spatiotemporal
requirements of the task-level goal (Safavynia and Ting, 2013).
For example, muscle synergies used for standing balance in cats
and humans produced ground reaction force vectors that have
distinct functions for controlling the center of mass (Ting and
Macpherson, 2005; Chvatal et al., 2011). Muscle synergies used
in human walking are associated with biomechanical sub-tasks
such as body support, forward propulsion, or leg-swing (Neptune
et al., 2009; Allen and Neptune, 2012; Lacquaniti et al., 2012).

Muscle synergies may represent robust motor solutions
that are globally tuned for generalizability, which is defined
as the ability to use same muscle activation pattern to
produce functional motor outputs across different conditions.
Generalizable motor solutions may simplify control and allow
rapid adaptation to novel tasks (Wagner et al., 2007; Giszter
and Hart, 2013; Tsianos et al., 2014; Minai, 2015; Ting et al.,
2015). Experimental evidence suggests that the structure, or
pattern of muscle synergies are robust across a variety of motor
behaviors and biomechanical conditions. In cats, consistent
muscle synergies and the ground reaction forces they produce
(Ting and Macpherson, 2005) explained the reactive balance
responses across a variety of postures (Torres-Oviedo et al.,
2006). In humans, common muscle synergies are observed
across variations in standing postures, reactive balance strategies
(Torres-Oviedo and Ting, 2010; Chvatal et al., 2011), walking
with altered loads (McGowan et al., 2010), reaching in various
dynamic, and postural conditions (D’Avella et al., 2006), as well
as during isometric force generation in multiple directions at
different postures in human arm (Roh et al., 2012). Further
evidence suggests that muscle synergies may even be shared
across different motor tasks, such as feet-in-place and step
responses during reactive balance (Chvatal et al., 2011), reactive
balance and walking (Chvatal and Ting, 2013), forward and
backward locomotion (Raasch and Zajac, 1999; Ting et al., 1999),
and a range of different hindlimb motor tasks in frogs, such
as jumping, swimming, kicking, and reflexive wiping (Hart and
Giszter, 2004; Cheung et al., 2005, 2009; D’Avella and Bizzi, 2005;
Roh et al., 2011).

However, the degree to which the generalization of muscle
synergy functions across conditions results from properties of the
biomechanical vs. neural control system has not been explicitly
tested. Some studies suggest that biomechanical constraints may
largely define the structure of muscle synergies (Kutch and
Valero-Cuevas, 2012) such that generalization of function simply

reflect similar biomechanical constraints across conditions. On
the other hand, other studies suggest that muscle activation
patterns reflected in muscle synergies arise from optimality
criteria (Todorov, 2004; Steele et al., 2013; De Groote et al.,
2014) that may specify similar solutions across conditions.
However, experimental evidence suggests that there is no single
muscle activation pattern used across individuals despite similar
motor outputs (Torres-Oviedo et al., 2006; Torres-Oviedo and
Ting, 2007; Clark et al., 2010; Chvatal et al., 2011; Frère and
Hug, 2012). Our recent work suggests that muscle activity
for performing a motor task in a single condition is largely
unconstrained (Sohn et al., 2013; Simpson et al., 2015). Instead,
a large number of “good-enough” solutions can be identified
to perform any motor task (Raphael et al., 2010; Loeb, 2012),
demonstrating our ability to take advantage of the highly
redundant motor solution space. We showed that a wide
range of activation levels for individual muscles is feasible for
generating experimentally-observed endpoint forces in a static
cat hindlimb model, suggesting that neither biomechanics nor
single optimality considerations can fully explain experimentally-
observed variations in muscle activation patterns and muscle
synergies across subjects (Herzog and Leonard, 1991; Buchanan
and Shreeve, 1996; Van Der Krogt et al., 2012; Sohn et al., 2013).
It is likely that multiple criteria are required to explain neural
principles for determining muscle synergy patterns (Ganesh
et al., 2010).

Based on prior experimental findings demonstrating the
generalizability of muscle synergy forces based on individual-
specific muscle synergies across postures (Ting and Macpherson,
2005; Torres-Oviedo et al., 2006), we previously showed that the
rotation of the muscle synergy force vectors can be predicted
by applying a common simulated muscle synergy pattern across
different postures (McKay and Ting, 2008). While the rotation
of force vectors with respect to limb axis were largely similar
across widely varying muscle synergy patterns that produced the
same force, the differences in the generalizability of different
feasiblemuscle synergy patterns was not explicitly tested. Further,
we predicted that functional requirements for generalizability
would narrow the range of possible muscle activation patterns
for muscle synergies such that the selection of a particular muscle
synergy could be influenced by its ability to satisfy biomechanical
task constraints across a range of limb postures.

Here, we used a musculoskeletal model of the cat hindlimb
to investigate the degree to which biomechanical properties of
the limb vs. neural control mechanisms underlie the consistent
muscle synergies observed across different limb postures. Rather
than identifying muscle synergy patterns through numerical
factorization analysis of a set of experimentally-measured or
theoretically-derived muscle activation patterns (Tresch et al.,
2006; Kutch and Valero-Cuevas, 2012; Steele et al., 2013, 2015;
De Groote et al., 2014), we examined the set of biomechanically
feasible muscle activation patterns to achieve a particular
function (McKay and Ting, 2008, 2012; Sohn et al., 2013).
Specifically, we explored the full set of candidate muscle
activation patterns that could produce muscle synergy force
vectors, i.e., experimentally-derived force vectors that were
co-modulated with recruitment level of a particular muscle
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FIGURE 1 | Experimental data and model. (A) Experimental synergy force vectors (FW1∼5) in cat Bi from Torres-Oviedo et al., (2006). A common set of muscle

synergies (W1∼W5) explained reactive balance behavior in cats across different postural configuration and produced consistent endpoint force vectors with respect to

limb orientation. The extensor synergy force vector (red) and the flexor synergy force vector (yellow) that were largest in magnitude and had the most consistent

direction across cats were selected for the study. (B) Musculoskeletal model of the cat hindlimb (Burkholder and Nichols, 2004) with seven rotational degrees of

freedom (3 at the hip, 2 each at the knee and ankle) and 31 muscles. In this static model, the pelvis was fixed to the ground and the endpoint (MTP joint) was

connected to the ground via gimbal joint.

synergy during postural responses (Figure 1A). We use the term
“muscle synergy” or “synergy force vector” when referring to
experimental data used to motivate the study, and “muscle
activation pattern” when referring to candidate vectors of muscle
excitation that generate specific target endpoint forces in the
model. This approach allowed us to test the principles by which
the nervous system may select muscle activation patterns with
generalizable function across different biomechanical conditions,
which manifest as consistent muscle synergies associated with
consistent synergy force vectors across multiple biomechanical
conditions.

We tested two mutually exclusive hypotheses about how
generalizability of muscle activation patterns across different
biomechanical conditions may arise. First, we hypothesized that
generalizability is a property of limb biomechanics such that
all possible muscle synergy patterns generalize their function
across postures. Second, we hypothesized that generalizability
is a property of an optimal (e.g., minimum-effort) solution
for each posture, such that optimal muscle synergies found
across postures have similar patterns and functions. Finally,
we hypothesized that generalizability reflects the selection of
specific muscle synergy pattern that provides similar functions
across postures over other muscle synergy patterns that
do not generalize across postures. This hypothesis predicts
that muscle synergy patterns that generalize their function
across different biomechanical configurations are sub-optimal
for producing a force at any single configuration. Further,
generalizability constraint will reduce the range of possible
muscle synergy patterns. To test these hypotheses, we examined
muscle activation patterns, representing candidate coordination
pattern for muscle synergies, that produced the experimentally-
observed ground reaction force vectors across shortest, short,
preferred and long stances. For each posture, we generated
muscle activation patterns that produced the experimentally-
observed force vector in that posture according to three different
selection criteria: randomly selected feasible muscle activation
patterns, a minimum-effort (min-E) muscle activation pattern,
and a generalizable muscle activation pattern that minimizes

deviations from the experimentally-observed force vectors across
all postures. We found that only a few selected muscle activation
patterns could generalize their output force direction across
postures. Our results demonstrate that functional demands for
generalization of muscle synergies across postures can affect the
selection of muscle activation patterns, and does not arise from
limb biomechanics or a single optimality criterion alone.

MATERIALS AND METHODS

In summary, we used a detailed musculoskeletal model of the
cat hindlimb to test the generalizability of theoretically possible
muscle synergy patterns across postural configurations based
on three different selection methods: (1) randomly selected
feasible muscle activation patterns, (2) optimal muscle activation
patterns minimizing muscle effort for a given posture (i.e.,
min-E muscle activation pattern), and (3) generalizable muscle
activation patterns that explicitly minimized deviation from the
experimentally-observed forces across all postures. For each
posture, we generated muscle activation patterns that produced
the experimentally-observed force vectors at a target posture. We
then tested generalizability of these muscle activation patterns
by applying them to three other stance postures and examining
the resulting endpoint force vectors in the model. We assessed
generalizability of each muscle activation pattern in terms of
angular deviations in the resulting force vectors from the
experimentally-observed force vectors at each test posture. We
further tested whether feasible range of activation in individual
muscles for producing the experimentally-observed force vector
at preferred posture is reduced with a generalizability constraint.

Experimental Data and Musculoskeletal
Model
Experimental Synergy Force Vector
Experimentally-observed force vectors were taken from a
previous study investigating reactive balance behavior in cats
(Torres-Oviedo et al., 2006). Cats stood quietly at four different
postures with varying fore-hindlimb stance distances: shortest,
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short, preferred and long (Macpherson, 1994). Across all stance
postures, five muscle synergies (W1∼W5) in each cat robustly
explained active changes in muscle activity and hindlimb forces
in response to multi-directional horizontal support-surface

perturbations. Experimental synergy force vectors (
⇀

FWi ) were
found by extracting three-dimensional endpoint force vector
components that were co-modulated with recruitment level of
eachmuscle synergy. These synergy force vectors rotated with the
limb axis across postures (Figure 1A). In this study we examined
two synergy force vectors the extensor synergy force vector

(
⇀

FW1 ; Figure 1A, red) and the flexor synergy force vector (
⇀

FW2 ;
Figure 1A, yellow) because they had the largest magnitudes and
the most consistent force directions across cats and postures,
providing active loading and unloading of the limb during
postural responses to perturbations (Torres-Oviedo et al., 2006).

Cat Hindlimb Model
We used a previously developed three-dimensional
musculoskeletal model of the cat hindlimb (Figure 1B;
Burkholder and Nichols, 2004). Details of this model are
described elsewhere in both static (McKay et al., 2007; Sohn
et al., 2013) and dynamic conditions (Bunderson et al., 2008,
2010). Briefly, the model included seven degrees-of-freedom
at anatomical joints (3 at the hip, 2 at the knee, 2 at the ankle)
and 31 hindlimb muscles (list and abbreviations in Table 1).
The posture of the model was matched to kinematics of each cat
at each of the stance configurations (McKay and Ting, 2008).
Across postures, difference in joint angles were mostly in the
sagittal plane (25∼40◦ in hip, knee, and ankle extension/flexion
angle). The pelvis was fixed to ground and the endpoint was
defined at the metatarsal-phalangeal joint (MTP), which was
connected to the ground via gimbal joint. At static equilibrium,
the model defined a linear mapping between muscle activation
and endpoint force:

RFAFL
⇀
a = JT

⇀

F End, (1)

where R is the moment arm matrix (7×31), FAFL is the diagonal
matrix (31 × 31) of scaling factors for active muscle force

generation,
⇀
a is the muscle activation vector (31 × 1), J is the

geometric Jacobian (3 × 7), and
⇀

F End is the endpoint force
vector (3 × 1). Muscle moment arm (R), geometric Jacobian (J),
and muscle parameters required to characterize active muscle
force generation (FAFL), i.e., maximum isometric force and
force-length relationship (Zajac, 1989), were acquired using
Neuromechanic, a previously developed and freely-available
software package (Bunderson et al., 2012).

We used Hill-typemuscle model with inelastic tendons, which
are typically employed in static analyses of force production
(Kuo and Zajac, 1993; Valero-Cuevas et al., 1998; Valero-
Cuevas, 2000; McKay et al., 2007). Static properties of the
musculo-tendon actuator were characterized by four muscle-
specific parameters: peak isometricmuscle force, optimalmuscle-
fiber length, optimal muscle fiber pennation angle, and tendon
slack length, based on measured architectural properties of cat
hindlimb muscles (Sacks and Roy, 1982; Roy et al., 1997). Muscle

TABLE 1 | Muscles included in the hindlimb model and abbreviations.

Name Abbreviation

Adductor femoris ADF

Adductor longus ADL

Biceps femoris anterior BFA

Biceps femoris posterior BFP

Extensor digitorum longus EDL

Flexor digitorum longus FDL

Flexor hallicus longus FHL

Gluteus maximus GMAX

Gluteus medius GMED

Gluteus minimus GMIN

Gracilis GRAC

Lateral gastrocnemius LG

Medial gastrocnemius MG

Peroneus brevis PB

Pectineus PEC

Peroneus longus PL

Plantaris PLAN

Iliopsoas PSOAS

Peroneus tertius PT

Pyriformis PYR

Quadratus femoris QF

Rectus femoris RF

Sartorius SART

Semimembranossus SM

Soleus SOL

Semitendinosus ST

Tibialis anterior TA

Tibialis posterior TP

Vastus intermedius VI

Vastus lateralis VL

Vastus medialis VM

fiber lengths were set at 65% of optimal fiber length for all
muscles at preferred posture so that muscles operated on the
ascending slope on force-length relationship curve and were
operating at ranges below optimal fiber length across all postures.
However, because no compliance was assumed in tendons, at
certain extreme postures such as long stance some muscles could
operate at ranges on the force-length relationship curve where
active force generation capability was very low.

The experimental synergy force vectors at each of the four
stance postures in each of two cats (Bi and Ru) were used as
the task constraint at each target posture. These forces vectors
represent the active response of the cats following perturbation,
measured as the change in the ground reaction force from the
background level (Jacobs and Macpherson, 1996). Thus, pattern
of muscle activation that produce the experimental synergy
force vector at target posture can be regarded as candidate
coordination pattern for muscle synergy, which also represents
active change in muscle activity in response to perturbations
(Ting and Macpherson, 2005). Muscle activation patterns that
produced the experimental synergy force vector at target posture
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were found using the static linear model mapping muscle
activation vector to net joint torque requirement for given task
(Equation 1). The generalizability of muscle activation patterns
were tested at all postures by simulating the resulting endpoint
force vectors using Neuromechanic; the full dynamic model was
forward integrated for 1ms such that reaction forces satisfying
the kinematic constraints were computed but before acceleration
and thus other inertial and velocity-dependent forces were
developed.

Candidate Muscle Synergy Patterns Based
on the Three Selection Criteria
Feasible Muscle Activation Patterns
In order to test whether generalizability is a property of all
possible muscle activation patterns and thus a property of limb
biomechanics, we tested whether muscle activation patterns
randomly distributed within the feasible set of solutions at one
posture can generalize their function to other postures. We
first generated set of 200 feasible muscle activation patterns by
finding the nearest solution (least-square projection) to each of

the 200 random patterns (
⇀
a
0
) that were uniformly distributed

within the feasible muscle activation ranges (Sohn et al., 2013)
for producing experimental synergy force vectors at each target

posture (
⇀

F
Posture

Wi
, where i stands for either the extensor or

the flexor synergy). This optimization problem was solved
using quadratic programming (quadprog in Matlab; MathWorks,
Natick, MA):

minimize

(

⇀
a −

⇀
a
0
)T (

⇀
a −

⇀
a
0
)

,

subject to RFAFL
⇀
a = JT

⇀

F
Posture

Wi
, and lbm ≤ am ≤ ubm, (2)

where the lower (lbm) and upper bounds (ubm) of individual
muscles were determined from the feasible muscle activation
range. In order to ensure that the feasible muscle activation
patterns span the full range of possible effort levels (sum-squared
activation, i.e.,

∑

a2; Crowninshield and Brand, 1981) at each
target posture, we included 50 additional muscle activation
patterns that were generated by linearly scaling the difference in
muscle space between the two solutions that had the minimum
and maximum possible effort level.

These 250 feasible muscle activation patterns were tested at
all postures and the resulting force angle deviations (△θPostureWi

,
where i stands for either the extensor or the flexor synergy)
were computed. Force angle deviations were computed using
the angle defined by the inverse cosine of the normalized dot
product between the experimental synergy force vector at each

test posture (
⇀

F
Posture

Wi
) and simulated endpoint force (

⇀

F
Posture

End ) at
each test posture:

△θ
Posture
Wi

= cos−1(

⇀

F
Posture

Wi

⇀

•F
Posture

End
∥

∥

∥

∥

⇀

F
Posture

Wi

∥

∥

∥

∥

∥

∥

∥

∥

⇀

F
Posture

End

∥

∥

∥

∥

) (3)

Minimum-Effort Muscle Activation Pattern
To test whether a muscle activation pattern that is optimized
in terms of effort at a single posture can be generalized across
postural configurations, we assessed force angle deviations of
an optimal muscle activation pattern at each posture across
all of the postural configurations. The minimum-effort (min-
E) muscle activation pattern was selected based on the criteria
used most often in musculoskeletal modeling (Erdemir et al.,
2007), minimizing sum of squared muscle activations (Equation
4; Crowninshield and Brand, 1981; Anderson and Pandy,
2001; Thelen et al., 2003). For each min-E muscle activation
pattern, we used quadratic programming to identify a unique
muscle activation vector that minimized sum of squared muscle
activations while satisfying the experimental synergy force vector
at target posture:

minimize
⇀
a
T ⇀
a (which is equivalent to

∑

a2),

subject to RFAFL
⇀
a = JT

⇀

F
Posture

Wi
, and lbm ≤ am ≤ ubm, (4)

Force angle deviations of the min-E muscle activation pattern at
test postures were computed as in Equation 3 and were compared
to those of muscle activation patterns selected from other criteria.

Generalizable Muscle Activation Pattern
To determine whether a single muscle activation pattern can
be found that can generalize its output force across different
conditions, we explicitly searched for a single solution that best
generalized experimental synergy force vectors across postures.
We formulated a non-linear optimization problem to identify
a unique muscle activation pattern that produced experimental
synergy force vector at each posture while minimizing the
deviation from experimentally-observed synergy force vector at
all test postures:

minimize
∣

∣

∣
△θ

Shortest
Wi

∣

∣

∣
+

∣

∣

∣
△θ

Short
Wi

∣

∣

∣
+

∣

∣

∣
△θ

Preferred
Wi

∣

∣

∣
+

∣

∣

∣
△θ

Long
Wi

∣

∣

∣
,

subject to RFAFL
⇀
a = JT

⇀

F
Posture

Wi
, and lbm ≤ am ≤ ubm (5)

This non-linear optimization problem was solved using fmincon
in Matlab. In order to ensure convergence to a global
minimum solution, we performed the search using random
initial conditions. Due to the computational intensity of forward
simulations, we used 100 initial conditions in which activation
levels of individual muscles were uniformly distributed across the
feasible muscle activation range. After 100 searches converged to
each minimum (Equation 5), we estimated the global minimum
by selecting the solution in which the cost was the smallest
across all initial conditions. Further analyses of the generalizable
muscle activation pattern were based on this global minimum
solution. Across conditions, 97± 6.8% of the searches converged
to solutions with costs not larger than 0.01% of the global
minimum. To examine possible redundancy in muscle space we
further examined distribution of muscle activation across these
near-minimal solutions.
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Analyses
Comparison of Generalizability of Muscle Activation

Patterns across Selection Criteria
For each synergy force vector, we tested whether muscle
activation patterns selected from different criteria differ in
generalizability using pairwise Wilcoxon rank-sum tests, which
are non-parametric tests for comparing between two groups
(selection criteria). The dependent variables were force angle
deviation at each test posture for each of selection criteria, i.e.,
(1) the mean force angle deviation for each set of the 250
feasible muscle activation patterns (n = 24; 2 cats × 4 target
postures× 3 test postures), (2) the force angle deviation for min-
E muscle activation patterns (n = 24), and (3) the force angle
deviations for generalizable muscle activation patterns (n = 24).
Significance was evaluated at α = 0.05, adjusted with a Bonferroni
correction for multiple comparisons, i.e., α = 0.017 (=0.05/3).
We also compared force angle deviations after removing outliers.
We identified and removed the outliers in each group using
interquartile range with Tukey’s method (Tukey, 1977). We
then conducted the same pairwise Wilcoxon rank-sum test with
significance evaluated at α=0.017 with Bonferroni adjustment.

Effort Level of the Generalizable Muscle Activation

Patterns
We evaluated effort level of the generalizable muscle activation
pattern and compared it to the min-E muscle activation pattern
at each posture. The effort level of each muscle activation pattern
was normalized to that of the maximum-effort possible at each
posture, which was found using optimization similar to Equation
4 but with a cost function that maximized effort.

Effect of Torque Requirement on Similarity in Muscle

Activation Patterns across Postures
We tested whether different torque requirement across postures
affected the spatial activation pattern of min-E or generalizable
muscle activation pattern. We examined spatial similarity of
muscle activation patterns across postures selected either from
min-E criteria or generalizability criteria. In particular, we
computed the similarity in terms of the cosine of the angle
between 31-dimensional vectors of muscle activation patterns in
all possible combinations:

[cos θ ]⇀
a
Posturei

,
⇀
a
Posturej =

⇀
a
Posturei

•
⇀
a
Posturej

∥

∥

∥

∥

⇀
a
Posturei

∥

∥

∥

∥

∥

∥

∥

∥

⇀
a
Posturej

∥

∥

∥

∥

(6)

We computed coefficient of determination (R2, Pearson
coefficient of correlation, evaluated at significance level α =

0.05) between cosine of the angle between muscle activation
pattern vector pairs (Equation 6) and cosine of the angle between
corresponding joint torque requirement vector pairs.

Effect of Generalizability on Feasible Muscle

Activation Ranges at Preferred Posture
We tested whether a functional requirement for generalizability
across tasks restricts the feasible range of activation in individual
muscles to achieve the task at a target posture. We computed

the feasible bounds on individual muscles (Sohn et al., 2013)
for which a muscle activation pattern satisfied production of
experimental synergy force vectors at preferred stance posture
while deviations in force directions at test postures were kept
within a given tolerance (Tol). To examine how restrictions in
feasible muscle activation range changes with increasing demand
for generalizability, we varied tolerance at three test postures
to +10, +5, and +2% of the force angle deviations of the
generalizable muscle activation pattern found at preferred stance
posture.

Theminimum allowable activation for generalizability (Genlbm)
in each muscle was found by solving a non-linear optimization:

Genlbm : Find
⇀
a such that am is minimized,

subject to RFAFL
⇀
a = JT

⇀

F
Preferred

Wi
,lbm ≤ am ≤ ubm, and

△θ
Posture
Wi

≤ Tol for shortest, short, and long stance

postures (7)

Similarly, the maximum allowable activation for generalizability
(Genlbm) in each muscle was found by solving a non-linear
optimization:

Genubm : Find
⇀
a such that am is maximized,

subject to RFAFL
⇀
a = JT

⇀

F
Preferred

Wi
, lbm ≤ am ≤ ubm, and

△θ
Posture
Wi

≤ Tol for shortest, short, and long stance

postures (8)

In total, 62 independent optimizations were run (two bounds for
each of 31 muscles), resulting in 62 muscle activation patterns for
each synergy force vector.

We further tested whether muscles with torque-producing
characteristics that were insensitive to changes in posture were
preferentially recruited in the generalizable muscle activation
pattern. We first computed the sum-squared difference (SSD)
in torque-producing capability of muscles (i.e., m-th column of
RFAFL matrix from Equation 3) between the preferred stance
posture and each of the three test postures:

−−−⇀
SSD m

=
∑

(RFAFL|
Preferred
m − RFAFL|

Posture
m )

2
(9)

To identify task-relevant changes, we then weighted the
differences in torque-producing capacity of muscles at each
posture by the sign andmagnitude of the required torques for the
experimental muscle synergy force vector at the target posture

(
⇀
τ Required = JT

⇀

F
Preferred

Wi
). The task-relevant torque-producing

sensitivity was defined by the dot product between the
−−−⇀
SSD m

and
⇀
τ Required, normalized by themagnitude of each vector, which

was identical to the cosine of the angle between the two vectors:

[cos θ]−−−⇀
SSD m

,
⇀
τ Required

=

−−−⇀
SSD m

⇀
•τRequired

∥

∥

∥

−−−⇀
SSD m

∥

∥

∥

∥

∥

∥

⇀
τ Required

∥

∥

∥

(10)
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This weighted each muscle’s torque-producing sensitivity based
on the relative contributions of the muscle to the joint torque
requirements. We examined distribution of torque-producing
sensitivity of the muscles and qualitatively compared them
with respect to recruitment levels in the generalizable muscle
activation pattern.

RESULTS

In summary, we found that only some of the feasible muscle
activation patterns could generalize their force output across
postures, demonstrating that generalizability is not a necessary
consequence of limb biomechanics. For each case we were able
to find a single muscle activation pattern, which we refer to
as the generalizable muscle activation pattern, that produced
the experimental synergy force vector at target posture and
also approximated the direction of the experimental synergy
force vectors at the three test postures. The generalizable muscle
activation patterns were always suboptimal at each posture in
terms of effort, but more generalizable than the min-E muscle
activation patterns. Further, we found that generalizability
restricts feasible muscle activation ranges of individual muscles,
especially for muscles with torque-producing capability that are
sensitive to change in postures.

Generalizability of Muscle Activation
Patterns at Test Postures
Randomly selected feasible muscle activation patterns did
not generalize their function across postures, suggesting that
generalizability is not a property of biomechanics of the limb.
For example, force angle deviations of the set of 250 feasible
muscle activation patterns for the extensor synergy force vector
at preferred stance target posture were 40 ± 16◦ (mean ± std)
when tested at shortest stance in cat Bi (Figure 2A left, gray
force vectors in column “Shortest”). Feasible muscle activation
patterns for the flexor synergy force vector at preferred stance
target posture were even less likely to be generalizable, especially
when tested at long stance: force angle deviations were 124 ±

38◦ in cat Bi (Figure 2A right, column “Long”). Overall, force
angle deviations of the feasible muscle activation patterns across
all conditions had median of 17◦ (interquartile range: 9.7–112◦)
for the extensor synergy force vector (Figure 2B left, gray outline)
and 53◦ (interquartile range: 21–95◦) for the flexor synergy force
vector (Figure 2B right, gray outline). The force angle deviations
of the feasible muscle activation patterns for the extensor synergy
force vector at long stance target posture were large (>140◦)
at all test postures in both cats (Figure 2B left, circles in first
column). The feasible muscle activation patterns for the flexor
synergy force vector in cat Bi also had large force angle deviations
(>100◦) at shortest stance target posture (Figure 2B right, open
triangles in first column) and preferred stance target posture
(Figure 2B right, open diamonds in first column) at some test
postures. However, there were no outliers for both extensor and
flexor synergy force vectors.

The min-E muscle activation patterns were not generalizable
across postures in most conditions. For example, in cat Bi force
angle deviation of the min-E muscle activation pattern for the

flexor synergy force vector at preferred stance target posture
was 40◦ when tested at shortest stance (Figure 2A right, black
force vector with dotted lines in column “Shortest”). On the
other hand, force angle deviation of the min-E muscle activation
pattern for the extensor synergy force vector at preferred
stance target posture was only 4.0◦ when tested at long stance
(Figure 2A left, black force vector with dotted lines shown in
column “Long”). The force angle deviations of the min-E muscle
activation patterns across all target postures and cats had median
of 14◦ (interquartile range: 8.1–22◦) for the extensor synergy
force vector (Figure 2B left, black outline) and 22◦ (interquartile
range: 12–32◦) for the flexor synergy force vector (Figure 2B
right, black outline). In cat Bi, the force angle deviations of the
min-E muscle activation patterns for the extensor synergy force
vector at long stance target posture were large (>150◦) at all test
postures (Figure 2B left, open circles in middle column), and
were identified as outliers. Similarly, the force angle deviation of
the min-E muscle activation pattern for the flexor synergy force
vector at shortest stance target posture in cat Bi was identified
as an outlier when tested at long stance (Figure 2B right, open
triangle in middle column).

Force angle deviations of the generalizable muscle activation
patterns were generally small (<12◦). For example, in cat Bi force
angle deviation of the generalizable muscle activation pattern
for the extensor synergy force vector at preferred stance target
posture was less than 3◦ when tested at short stance (Figure 2A
left, blue force vector in column “Short”), and always less than
7◦ across all test postures. On the other hand, the generalizable
muscle activation pattern for the flexor synergy force vector at
preferred stance target posture was 12◦ when tested at shortest
stance (Figure 2A, blue force vector in column “Shortest”), which
was the largest across all test postures. Across all conditions, force
angle deviations of the generalizable muscle activation patterns
hadmedian of 3.3◦ (interquartile range: 1.0–5.1◦) for the extensor
synergy force vector (Figure 2B left, bar with blue outline) and
6.1◦ (interquartile range: 4.1–8.8◦) for the flexor synergy force
vector (Figure 2B right, bar with blue outline). The force angle
deviations of the generalizable muscle activation patterns for the
extensor synergy force vector at long stance target posture in cat
Bi was identified as outliers at all test postures (Figure 2B left,
open circles in last column).

Force Angle Deviation Comparison across
Selection Criteria
The force angle deviations of the generalizable muscle activation
patterns were smaller than both the feasible and the min-E
muscle activation patterns in all of the statistical comparison that
we made, including when outliers were removed. Force angle
deviations of the generalizable muscle activation patterns were
lower than the feasible and the min-E muscle activation patterns
(p < 0.017) for both extensor and flexor synergy force vectors
(Figure 2B). On the other hand, mean force angle deviations
of feasible muscle activation patterns were not statistically
different from that of the min-E extensor force muscle activation
patterns (p = 0.14 before and p = 0.028 after removing the
outliers, respectively; Figure 2B, left). However, the mean force
angle deviations of the feasible flexor force muscle activation
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FIGURE 2 | Generalizability of muscle activation patterns from different selection criteria. (A) Force angle deviations of muscle activation patterns for the

extensor (left, red lines) and flexor (right, yellow lines) synergy force vectors at preferred stance target posture in cat Bi. Endpoint force vectors in the test postures are

shown with gray lines for the 250 feasible muscle activation patterns, black dotted line for the min-E muscle activation pattern, and blue line for the generalizable

muscle activation pattern. The feasible and min-E muscle activation patterns had large force angle deviations, compared to the generalizable muscle activation

pattern, and thus could not generalize their function across postures. (B) Comparison of force angle deviations of muscle activation patterns from different selection

method. Force angle deviations of the generalizable muscle activation patterns were always significantly smaller (*p < 0.017) than the feasible and min-E muscle

activation patterns across all conditions before and after removing the outliers. Difference between the feasible and min-E muscle activation patterns were not

significant for the extensor synergy force vector, and significant for the flexor synergy force vector.

patterns were larger than the min-E muscle activation patterns
(Figure 2B, right).

Effort Level of the Generalizable Muscle
Activation Patterns
The generalizable muscle activation patterns were always
suboptimal in terms of effort. The relative effort level of the
generalizable muscle activation pattern was greater than the min-
E muscle activation pattern in all conditions. For example, in cat

Ru, effort levels of the generalizable muscle activation patterns
for both extensor and flexor synergy force vectors for preferred
posture were around 50% of maximum effort, compared to the
min-E muscle activation patterns that were less than 5% of
maximum effort (Figure 3B right, blue solid lines vs. black dotted
lines). Relatively small difference between the effort level of the
generalizable and the min-E muscle activation patterns could be
found, e.g., for extensor synergy force vector at shortest, short,
and preferred stance target postures in cat Bi (Figure 3B left, red
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dots on blue solid lines and black dotted lines). Greater effort
of the generalizable muscle activation pattern was due to high
activation levels in some of the muscles. In particular, activation
levels of more than three muscles were at the physiological
maximum activation in the generalizable muscle activation
patterns for most conditions (e.g., Figure 3A, last row in right
column) except for extensor synergy force vectors in cat Bi at
shortest, short, and preferred stance target postures (Figure 3A,
first to third rows in right column).

Effect of Required Torque on Similarity in
Muscle Activation Patterns across
Postures
The difference in muscle activation patterns across postures was
correlated to differences in joint torque requirements across
postures for the min-E muscle activation patterns (R2 = 0.59 ±
0.27) but not the generalizable muscle activation patterns (R2 =

0.10 ± 0.09). The highest R2-value for the min-E muscle
activation patterns was found with the flexor synergy force vector
in cat Bi, which was 0.85 (p < 0.05). In contrast, for the
generalizable muscle activation pattern for the flexor synergy
force vector in cat Bi, R2 was only 0.12 (p = 0.51) betweenmuscle
activation pattern and joint torque requirements across postures.

Effect of Generalizability Constraint on
Feasible Muscle Activation Ranges at
Preferred Posture
The requirement for generalizability across different postures
restricted feasible muscle activation ranges. Feasible muscle
activation ranges for the extensor and the flexor synergy
force vector at preferred posture were reduced by 43 ± 32
and 48 ± 37%, respectively, across all conditions when force
angle deviation was allowed to vary by 10% compared to the
generalizable muscle activation pattern (Figure 4, green boxes).
In general, restrictions were greater with decreased tolerance, e.g.,
5% (Figure 4, blue-green boxes) or 2% (Figure 4A, blue boxes),
which could happen in several different ways. For example, for
the extensor synergy force vector in cat Bi, some muscles had an
increased lower bound: e.g., SOL and TA (Figure 4B), indicating
that these muscles were “necessary” for generalizability. On the
other hand, upper bounds were decreased in some muscles: e.g.,
ADL and FDL (Figure 4C), showing that they were “constrained”
with generalizability requirement. Somemuscles had very narrow
feasible range of activation but nevertheless recruited because
of a non-zero lower bound: e.g., BFP and VL (Figure 4D),
indicating that they were necessary due to task requirements.
Some muscles had wide feasible activation ranges: e.g., GMIN
and PEC (Figure 4E), indicating that redundancy remains even
with generalizability requirement.

Muscles with torque-producing characteristics that were less
sensitive to change in posture were more likely to be recruited
in the generalizable muscle activation patterns (Figure 5, blue
dots). Overall, 80 ± 3.1% of the muscles that were recruited
(activation>0) in the generalizable muscle activation pattern
had relatively low (<0.3) torque-producing sensitivity (Figure 5,
X-axis) across all conditions. In particular, muscles that were

recruited in the generalizable muscle activation pattern with high
activation level had very low torque-producing sensitivity. For
example, activation levels of muscles PSOAS, SOL, and TA for
the extensor synergy force vector at preferred stance in cat Bi
(Figure 5, blue dots) were greater than 0.5 and had torque-
producing sensitivity lower than 0.1. Some muscles that had high
torque-producing sensitivity were recruited in the generalizable
muscle activation patterns most likely due to task demands and
not the generalizability requirement: e.g., BFP and VL (Figure 5,
blue dots circled with dotted lines).

DISCUSSION

Our results reject two alternative hypotheses about the origin
of generalizability of muscle synergies observed experimentally,
i.e., ability to use same muscle activation pattern to produce
functional motor output across different conditions. First we
ruled out the possibility that generalizability of functional muscle
synergies arises strictly as a property of the biomechanics
of the musculoskeletal system across postures. Our results
demonstrate a wide range of possible muscle activation patterns
at each posture, many of which do not generalize well in their
function when tested across postures. Thus, generalizability is
not granted merely by anatomical arrangement and function of
limb musculature (Kutch and Valero-Cuevas, 2012). We next
ruled out the possibility that generalization of function across
postures is a by-product of minimization of effort that render
similar muscle synergy patterns across postures. By showing that
the optimal muscle activation patterns based on a minimum-
effort criteria do not generalize their function across postures
we demonstrate that a single optimization criterion (Todorov,
2004) may not be sufficient for the nervous system to organize
the spatial structure of muscle synergies. Instead, our analyses
suggest that experimentally-identified muscle synergy patterns
may arise from explicitly searching for muscle activation patterns
that robustly coordinate the limb across postures. This supports
our hypothesis based on experimental observations that muscle
synergies represent motor patterns selected from among many
possible solutions to meet multiple criteria. In contrast to
selecting optimal muscle coordination patterns at each condition,
selecting more generalizable muscle synergy patterns could
reduce the complexity of descending motor control signals
necessary for movement.

Our results suggest that muscle synergies may be selected
based on generalizability of function produced by muscle
activation pattern across multiple conditions. The robustness
of muscle synergies that can be generalized across conditions
that vary in biomechanical constraints (Hart and Giszter, 2004;
Cheung et al., 2005; D’Avella and Bizzi, 2005; Chvatal and
Ting, 2013) may support the neural origin hypothesis of muscle
synergies, a topic that has been widely debated (Tresch and
Jarc, 2009; Hart and Giszter, 2010; Kutch and Valero-Cuevas,
2012; Bizzi and Cheung, 2013). While the latitude the nervous
system has in selecting muscle activation pattern for a single sub-
maximal task is wide (Martelli et al., 2013, 2015; Sohn et al., 2013;
Simpson et al., 2015; Valero-Cuevas et al., 2015), consideration
of biomechanical constraints from multiple conditions narrows
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FIGURE 3 | Muscle patterns and effort levels of the min-E and generalizable muscle activation patterns. (A) Muscle patterns of the min-E and generalizable

muscle activation patterns found for the extensor synergy force vector at each target posture in cat Bi. Each bar represents recruitment level of individual muscle in the

min-E (left column, black bars) and the generalizable (right column, blue bars) muscle activation patterns. (B) Effort level comparisons of the generalizable muscle

activation pattern (dots on blue solid lines) and the min-E muscle activation pattern (dots on black dotted lines) at each target posture for the extensor (red circles) and

flexor (yellow circles) synergy force vectors. Effort levels were normalized to the maximum possible effort level in each target posture. The generalizable muscle

activation patterns were always suboptimal in terms of effort.

the range of possible muscle activation patterns that can be
generalized across conditions (Loeb, 2000; Keenan et al., 2009;
Rácz et al., 2012). We showed that only a few of the redundant
muscle activation patterns that satisfy a single task constraint
can generalize to other conditions and meet the subsequent
task constraints. Tight regulation in force production was
required for muscle activation patterns to be generalized in
certain conditions, indicating that identifying motor solutions
that can be generalized across conditions cannot be guaranteed
by satisfying a single task constraint or biomechanical changes
corresponding to each task. Thus, muscle synergies may reflect
acquired motor solutions that are globally tuned for robustness

(e.g., posture-independent) across multiple local conditions,
possibly selected from the overlapping region of the solution
manifolds from multiple task requirements (Ajemian et al., 2013;
Berger et al., 2013; Sadtler et al., 2014).

As biological adaptation processes need to consider robustness
and control cost over long time horizons (Clune et al., 2013), it is
unlikely that spatial patterns of muscle synergies are organized
based on the single optimality principle such as minimizing
effort. Rather, muscle synergies may be optimal in a more
global sense. They may result from a balance between multiple
goals and criteria such as generalizability (Tsianos et al., 2014),
computational efficiency or the facilitation of motor learning
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FIGURE 4 | Feasible muscle activation ranges (FMAR) with generalizability constraint. (A) Restrictions on the FMAR for the extensor synergy force vector at

preferred stance target posture in cat Bi. Absolute FMAR is shown as the area between the bold traces that represent the upper and lower bounds. Blue dots show

activation level of individual muscles in the generalizable muscle activation pattern. Light blue, blue-green, and green boxes inside the absolute FMAR show the

feasible range of activation when force angle deviations at the test postures were allowed to vary by 2, 5, and 10% larger than the generalizable muscle activation

pattern. Examples of restrictions on FMAR of the muscles with increased lower bound (B), decreased upper bound (C), narrow FMAR (D), and wide range that were

left with great deal of redundancy (E).

(Mussa-Ivaldi andGiszter, 1992;Mussa-Ivaldi et al., 1994; Giszter
et al., 2007; Berniker et al., 2009; Byadarhaly et al., 2012;
McKay and Ting, 2012; Berger et al., 2013). Such solutions need
only be “good enough (Loeb, 2012),” rather than optimal, and
may have been acquired over an extended period of learning
and refinement (McKay et al., 2007; Loeb, 2012; Lacquaniti
et al., 2013; Wu et al., 2014). However, muscle synergies may
be near optimal with respect to any single criterion. Many
modeling studies have shown that spatial organization of muscle
synergies resemble muscle activation patterns obtained from
optimal control process such as minimizing errors or control
effort (Todorov and Jordan, 2002; McKay and Ting, 2012; Steele
et al., 2013; De Groote et al., 2014), or that exploits natural limb
dynamics (Berniker et al., 2009). By providing predictable input-
output behavior, muscles synergies can be flexibly combined and
modulated both spatially and temporally according to the task-
level goals (Ting and Macpherson, 2005; Lockhart and Ting,
2007; Torres-Oviedo and Ting, 2007; Chvatal and Ting, 2013;
Safavynia and Ting, 2013), or across different tasks (Hart and
Giszter, 2004; Cheung et al., 2005; D’Avella and Bizzi, 2005).
Furthermore, muscle synergies themselves can evolve over time.

New muscle synergies can be developed (Dominici et al., 2011;
Lacquaniti et al., 2013) or learned (Kargo and Nitz, 2003; Rückert
and D’Avella, 2013). Alternatively, spatiotemporal recruitment of
pre-existing or acquiredmuscle synergies can be adapted to novel
task requirement or challenges (Cheung et al., 2009; Clark et al.,
2010; Berger et al., 2013). Thus, muscle synergiesmay allow direct
control of reliable motor functions that can be used to rapidly
adapt motor behavior (Ting and McKay, 2007; Alessandro et al.,
2013; Tsianos et al., 2014; Ting et al., 2015).

Wide feasible muscle activation ranges at a given posture
provide further evidence that neural selection is involved in
shaping muscle synergies. Rather than using musculoskeletal
models to search for specific muscle synergy solutions (Kutch
and Valero-Cuevas, 2012; Steele et al., 2015), we investigated
the set of biomechanically possible muscle activation patterns
that could be candidates for muscle synergy solutions as a
method to evaluate the role of neural constraints in the
appearance of low-dimensional structures in muscle activation
patterns. Within the set of muscle activation patterns that were
relatively generalizable (e.g., 2∼10% larger force angle deviations
than that of the generalizable muscle activation pattern), there
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FIGURE 5 | Torque-producing sensitivity. Torque producing sensitivity of

the muscles (histogram shown with red bars) and recruitment level in the

generalizable muscle activation pattern (blue dots) for the extensor synergy

force vector at preferred stance target posture in cat Bi. Muscles with low

torque-producing sensitivity were more likely to be recruited in the

generalizable muscle activation pattern, e.g., PSOAS, SOL, and TA.

was sufficient latitude in feasible muscle activation levels that
could explain observed individual variations in muscle synergy
structure. Further, during searches for a generalizable muscle
activation pattern, many local minima were found near the
global minimum. For example, for the flexor synergy force
vector at long stance in cat Ru, there was variability in the
activation of muscle PEC (coefficient of variation was 83%) in
77% of the search solutions that started from one hundred initial
conditions and converged with cost (i.e., sum-squared force
angle deviations across all test postures) not larger than 0.01%
of the global minimum. Across all conditions, the variability of
solutions near the global minimum depended upon the posture
and the animal, with anywhere from 0 to 6 muscles exhibiting
coefficient of variation of 12% on average. This redundancy may
explain inter-subject variability in muscle synergy patterns that
produce essentially same biomechanical output (Torres-Oviedo
et al., 2006; Clark et al., 2010; Chvatal and Ting, 2012), as
well as deviations of optimal predictions from experimentally-
observed muscle patterns (Buchanan and Shreeve, 1996; Thelen
and Anderson, 2006). Variability in muscle synergy patterns
across individuals may therefore reflect individual differences in
habits or preferences (Ganesh et al., 2010; De Rugy et al., 2013),
or additional selection criteria regarding energetics (Alexander,
2005; Neptune et al., 2008; Huang and Kuo, 2014) or stability
(Bunderson et al., 2008; Liao et al., 2013; Sohn et al., 2013).
Our findings may have further implications to more general
principles learning motor solutions to novel task by generalizing
the function of previously acquired solutions (Tsianos et al.,
2014), reflecting the redundant nature of motor control (Loeb
and Tsianos, 2015).

In this study, quantitative comparisons of simulated muscle
activation patterns to experimentally-derived muscle synergies
(Torres-Oviedo et al., 2006) were not possible due to practical

reasons. However, the major contributors to each muscle synergy
were predicted by simulated muscle activation patterns, i.e.,
extensors (e.g., VL) for the extensor synergy force vector
and flexors (e.g., SART) for the flexor synergy force vector.
Further, the minimum-effort solutions exhibited less muscle
co-activation than experimental muscle synergies, whereas
generalizable muscle activation patterns had more co-activation.
However, we note that our minimum-effort solutions for a
single force direction appear to have less muscle co-activation
than muscle synergies extracted from simulated movement
patterns or repertoires (Raasch and Zajac, 1999; Steele et al.,
2013; De Groote et al., 2014). But, similar to prior studies,
direct comparison of muscle activation patterns are not possible
because experimentally-measured muscles are only a small
sample of all muscles in the model, and we do not have absolute
measure of muscle activation, i.e., the level of EMG associated
with maximal contraction force is unknown (McKay and Ting,
2008, 2012; Steele et al., 2013, 2015; De Groote et al., 2014).

We believe that our model-derived estimates of the range
of biomechanically-feasible muscle activation patterns that
generalize their function across postures is conservative. We
used a generic musculoskeletal model (Burkholder and Nichols,
2004) without scaling to animal-specific morphologies, and used
common muscle parameters for all conditions. As a result, some
muscles in extreme conditions (e.g., long stance) operated at
non-physiological ranges andmay have caused non-physiological
behaviors in our models such as maximal activation in the
identified patterns, or large task errors (De Rugy et al., 2013).
However, previous studies showed that constraining muscle fiber
to more physiological lengths increases muscle feasible activation
ranges (Burkholder and Lieber, 2001; Sohn et al., 2013). Further,
using subject-specific musculoskeletal models would likely keep
muscles within more physiological operating ranges across
postures. Adding compliant tendons would also reduce the
torque-producing sensitivity of muscles across postures. Other
non-linearities such as history-dependence of muscle force
generation (Herzog et al., 2000; Hooper and Weaver, 2000;
Campbell and Moss, 2002; Siebert et al., 2007) in addition to
intrinsic proprioceptive feedback mechanisms have also shown
to provide more functional robustness at whole limb level
across wider range of biomechanical conditions (Nichols, 1989;
Nishikawa et al., 2007; Shemmell et al., 2010). Thus, the set of
muscle activation patterns that are generalizable is likely to be
wider as the model parameters are refined to be more realistic,
allowing for a more continuous and redundant solution space
across postures (Zajac, 1989;Wilson and Lichtwark, 2011; Valero-
Cuevas et al., 2015).
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