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In neural systems, synaptic plasticity is usually driven by spike trains. Due to the

inherent noises of neurons and synapses as well as the randomness of connection

details, spike trains typically exhibit variability such as spatial randomness and temporal

stochasticity, resulting in variability of synaptic changes under plasticity, which we call

efficacy variability. How the variability of spike trains influences the efficacy variability

of synapses remains unclear. In this paper, we try to understand this influence under

pair-wise additive spike-timing dependent plasticity (STDP) when the mean strength

of plastic synapses into a neuron is bounded (synaptic homeostasis). Specifically, we

systematically study, analytically and numerically, how four aspects of statistical features,

i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity

of cross-correlations, as well as their interactions influence the efficacy variability in

converging motifs (simple networks in which one neuron receives from many other

neurons). Neurons (including the post-synaptic neuron) in a converging motif generate

spikes according to statistical models with tunable parameters. In this way, we can

explicitly control the statistics of the spike patterns, and investigate their influence onto

the efficacy variability, without worrying about the feedback from synaptic changes onto

the dynamics of the post-synaptic neuron. We separate efficacy variability into two parts:

the drift part (DriftV) induced by the heterogeneity of change rates of different synapses,

and the diffusion part (DiffV) induced by weight diffusion caused by stochasticity of spike

trains. Our main findings are: (1) synchronous firing and burstiness tend to increase DiffV,

(2) heterogeneity of rates induces DriftV when potentiation and depression in STDP are

not balanced, and (3) heterogeneity of cross-correlations induces DriftV together with

heterogeneity of rates. We anticipate our work important for understanding functional

processes of neuronal networks (such as memory) and neural development.
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1. INTRODUCTION

Neuronal spike trains typically exhibit spatial randomness and
temporal stochasticity. For example, firing rates are long-
tailed distributed in many brain areas (Shafi et al., 2007;
O’Connor et al., 2010; Buzsáki and Mizuseki, 2014), spatio-
temporal correlations within neuronal population often exhibit
rich structures (Funahashi and Inoue, 2000; Kohn and Smith,
2005; Dragoi and Buzsáki, 2006; Schneidman et al., 2006); and
two neurons will not emit the same spike train even if they
are receiving exactly the same stimuli (Allen and Stevens, 1994;
Mainen and Sejnowski, 1995; Shadlen and Newsome, 1998). The
spatial randomness may emerge from the randomness of the
connection details (Ostojic et al., 2009; Roxin et al., 2011), and
the temporal stochasticity may be due to the inner stochasticity
of neurons and synapses (Allen and Stevens, 1994; Mainen and
Sejnowski, 1995; Shadlen and Newsome, 1998), both of which
are inherent properties of neurons, synapses or networks so
that the exact spike patterns of the network cannot be fully
determined by its inputs. Note that the inputs of a network
may exhibit spatial heterogeneity and temporal fluctuation; here,
by spatial randomness and temporal stochasticity, we mean the
spatial heterogeneity and temporal fluctuation of spike patterns
that emerge from the inner randomness and stochasticity of the
network. As synaptic plasticity depends on the spike times in
the pre- and post-synaptic spike trains (Dan and Poo, 2006;
Caporale and Dan, 2008; Markram et al., 2012), these variabilities
of spike trains should result in the variability of synaptic changes
during plasticity, which we call efficacy variability in this paper
(See Section 2.1 for more discussions on efficacy variability).
When the synapses are fixed, downstream neurons may work
under the variability of spike trains by reading out the coded
information through spatial and temporal averaging; however,
how the variability of the spike trains influences the ability of the
neuronal population to facilitate information processing under
synaptic plasticity remains poorly understood.

Efficacy variability may have important influence on the
function of a network after plasticity. For example, suppose a
function of a neuronal network, say memory (Mongillo et al.,
2008) or spike sequence generation (Long et al., 2010), requires
a connection pattern in which a few synapses (foreground
synapses) have stronger efficacies than the others (background
synapses). When the efficacy variability is small, both the
foreground and background synapses tend to be uniform around
their mean values, respectively: thus the connection pattern is
clear-cut. However, when the efficacy variability is large, some
foreground synapses can be very weak and some background
ones can be very strong, which destroys the connection pattern
even if the mean strength of the foreground synapses is still
larger than that of the background ones (Figure 1A). As another
example, synaptic competition and elimination is a classical
scenario for the formation of neural network structure during
development, when synapses compete with each other for
strength and those that are too weak will disappear (Cancedda
and Poo, 2009). In this case, efficacy variability quantifies the
degree of competition. If we suppose that the total synaptic
strength before elimination is constrained by, say, synaptic

homeostasis (Watt and Desai, 2010), then when the efficacy
variability is small, only a few synapses are below the elimination
threshold and get eliminated, and those left also have similar
strength; when the efficacy variability is large, a larger portion
of synapses get below the elimination threshold, while the
remaining ones have a wider efficacy distribution with also a
larger mean value than the case of small efficacy variability
(Figure 1B). This is consistent with the scenario found in the
early development of auditory cortex (Clause et al., 2014): if the
spontaneous activity of the medial nucleus of the trapezoid body
(MNTB) is modified using genetic methods, then its feedforward
projection to the lateral superior olive (LSO) becomes denser and
weaker, which suggests that the normal pattern induces stronger
efficacy variability than the genetically modified one.

Under temporal stochasticity and spatial heterogeneity, spike
trains may exhibit a variety of statistical features, which form
rich spike pattern structures. Groups of neurons may spurt
firing activity (synchronous firing) (Kamioka et al., 1996; Buzsáki
and Draguhn, 2004; Bartos et al., 2007), the spike train of
a single neuron can be bursty or regular (auto-correlation
structure) (Softky and Koch, 1993; Schwindt and Crill, 1999;
Jacob et al., 2012), firing rates of cortical neurons are typically
long-tailed distributed in vivo (heterogeneity of rates) (Shafi
et al., 2007; O’Connor et al., 2010; Buzsáki and Mizuseki,
2014), and spike trains of different neurons also reveal rich
degrees of interdependence (heterogeneity of cross-correlations)
(Funahashi and Inoue, 2000; Schneidman et al., 2006; Ostojic
et al., 2009; Trousdale et al., 2012, see Figure 2A). As synaptic
plasticity is driven by spike trains, spike pattern structure must
have strong influence on efficacy variability, thereby inducing
neuronal networks with sharply different structures even under
the same population rate. How spike pattern structures influence
the efficacy variability of synapses remains unclear. In this
study, we will move a step forward along this direction by
studying this influence under a conventional pair-wise additive
STDP (Gerstner et al., 1996), which involves potentiation of the
synapse when presynaptic spikes precede postsynaptic spikes,
and depression for the reverse ordering (Figure 2B). Neuronal
networks with STDP alone are not stable due to effects of
positive resonance which results in runaway excitation; and a
neuron may conserve its activity level by adjusting its total
input strength, which is called synaptic homeostasis (Turrigiano
and Nelson, 2004; Turrigiano, 2011). In this study, we model
synaptic homeostasis by supposing that the mean strength of
all the synapses input to a neuron is dynamically bounded (see
Figure 2C, Equation 7 in Section 2).

Synaptic efficacies under STDP can be regarded as particles
doing 1-dimensional random walks driven by the stochastic
processes of spike trains: a synapse gets depressed at the time
when a pre-synaptic spike arrives at the axonal terminal, and
gets potentiated at the time when a post-synaptic spike is
back-propagated to the dendritic end. A group of particles
doing random walks starting from the same point can have
displacement variability either because that they have different
trial-averaged drift velocities with each other, or because of
diffusion. Similarly, the efficacies of two synapses can also get
dissimilar because of two reasons. One is that they have different
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FIGURE 1 | Biological implications of efficacy variability. (A) Connection patterns used for, say, memory (left column), or spike sequence generation (right

column) are defined as a few synapses (red) being stronger than the others (blue). In the left column, a network of excitatory neurons stores a memory using its

attractor dynamics after the intra-connections within a subpopulation (here, neurons 1–4) are strengthened (the inhibitory population that keeps the total activity of the

network is not shown). When the efficacy variability is small (upper row), this subpopulation will exhibit persistently high activity if a sufficiently large number of neurons

in the subpopulation have high activities initially, so the memory is retrieved. When the efficacy variability is large (lower row), this memory retrieval will fail even if the

mean strength of the intra-connections (red) is stronger than that of the other ones (blue). In the right column, when the efficacy variability is small (upper row), the

network is able to generate spike sequence from neuron 1 to neuron 4; but when the efficacy variability is large (lower row), it cannot generate such sequence even if

the mean strength of the red synapses is larger than that of the blue ones. Widths of arrows indicate synaptic strengths. (B) Efficacy variability causes different

network structures by controlling the degree of synaptic competition. When the efficacy variability is small (upper), only a few synapses are weaker than the elimination

threshold (black dashed vertical line) and get eliminated during neural development, so most synapses are left and their strengths tend to be uniform; when the

efficacy variability is large (lower), more synapses are eliminated, and the left ones are more heterogeneous and also stronger than the upper case on average. Dashed

arrows represent eliminated synapses.

tendencies to be potentiated or depressed. For example, the first
(second) pre-synaptic neuron tends to fire spikes before (after)
the first (second) post-synaptic neuron. The other reason is the
variability of the synaptic changes caused by the stochasticity of
the spike trains, which can be accumulated with time, inducing
dissimilarity even if the two synapses have the same tendency
to be potentiated or depressed. In general, the total variance
(TotalV) can be written as the summation of the variance
caused by heterogeneity of learning rates (DriftV, short for “drift
variance”) and the variance caused by diffusion (DiffV, short for
“diffusion variance”) (see Equation 3 in Section 2)

TotalV = DriftV+ DiffV. (1)

During plasticity, DriftV is usually caused by the spatial
heterogeneity of spike trains. For example, in classical Hebbian
learning, synapses sharing the same presynaptic neuronmay have
different learning rates depending on the firing rates of the post-
synaptic neurons; if the plasticity is spike-timing dependent, the
heterogeneity of cross-correlations can induce different learning
rates even if the firing rates are the same. Because of the
inner stochasticity of neurons and synapses, even two neurons
receiving exactly the same stimuli emit different spike trains,

causing DiffV. In our STDP model, synaptic updatings do not
depend on current synaptic weights, and the contributions of all
spike pairs are added together; what’s more, we do not consider
synaptic bounds, and assume that synapses are free of bounds
for simplicity. These make DriftV ∝ t2 and DiffV ∝ t during
time t of running, so that the synaptic variances caused by drift
velocities and diffusion in our model have the same order of
time-dependence as those in Brownian motion.

In this paper, we systematically study how the four aspects
of spike pattern structures, i.e., synchronous firing, auto-
correlation structure, heterogeneity of rates and heterogeneity
of cross-correlations as well as their interactions, influence
efficacy variability under STDP and synaptic homeostasis using
converging motifs (i.e., simple networks in which one neuron
receives frommany other neurons). See Figure 2 for the concepts
above. The activities of all the neurons in converging motifs
(including the non-central neurons and the central neuron, see
Figure 2D) are generated using statistical models (Section 2.3),
which explicitly control different aspects of pattern structure
while keeping population rate constant.

The reason why we study converging motifs here is that in
a recurrent network, all the synapses input to a neuron form
the links of a converging motif, and all the synapses of the
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FIGURE 2 | Schematic of key concepts in our modeling work. (A) The four aspects of pattern structure studied in this paper. By “synchronous firing”, we

typically mean the spurt of firing activity of a population. For stationary spike trains, “auto-correlation structure” reflects the burstiness/regularity of the spike trains,

which is quantified by coefficient of variance (CV) in this paper. Here, by “burstiness”, we typically mean the irregular structure of spike trains, instead of the regular

burstiness in the spike patterns of, say, central pattern generator. For spike trains with synchronous firing, we consider three-types of “auto-correlation structure” to

reflect the burstiness/regularity features of the spike patterns (see Figure 8). By “heterogeneity of rates”, we mean that the time-averaged firing rates are different for

different neurons. By “heterogeneity of cross-correlations”, we mean that different pre-synaptic neurons of a neuron tends to fire spikes at different times relative to the

spikes of the neuron. For example, in the right-bottom subplot, before a spike of neuron 2, neuron 1 tends to fire before neuron 3. (B) The STDP time window used in

our work. The synapses are updated according to the time difference between when the post-synaptic spike is back-propagated to the dendritic end and when the

pre-synaptic spike arrives at the axonal terminal. τdelay is the difference between the axonal delay and the dendritic delay. In this paper, we generally discuss the case

when τdelay > 0 (i.e., the axonal delay is larger than the dendritic delay); and for the convenience of discussion, we set the dendritic delay to be zero, so τdelay is the

axonal delay. The case when τdelay < 0 is then discussed in Section 3.8. The STDP updatings of all spike pairs are summed together. (C) Synaptic homeostasis. The

synapses input to a neuron are subject to a bound on their mean strength: when their mean strength is different from this bound, all the incoming synapses of that

neuron will undergo an adjustment. (D) Converging motif, on which we conduct all the simulations in this paper. We call the neuron that receives from many neurons in

a converging motif to be the central neuron, and call the other neurons the non-central neurons; we then call the spikes emitted by the central neuron (or non-central

neurons) to be central spikes (or non-central spikes). Synaptic homeostasis is imposed onto the central neuron of a converging motif. Modeling details are presented

in Section 2.

recurrent network can be considered as the union of the links in
all the converging motifs. Under synaptic homeostasis, the mean
synaptic strengths in these converging motifs are almost the
same, therefore, the efficacy variability of the recurrent network
is approximately to be the mean of the efficacy variability of
all the converging motifs in it (see Equation 8 in Section 2).
Therefore, converging motifs are basic units to understand the
efficacy variability of a recurrent network.

Using statistical models (see Section 2.3), we generate spike
patterns with different statistical features (such as coefficients
of variance (CV), firing rate distributions, distributions of the
spike number that a neuron fires during a synchronous event,
and so on), and then study how they influence the efficacy
variability of converging motifs. These spike generating models
do not aim to generate spike trains with precise pre-determined

spatio-temporal characteristics (see, for example, Krumin and
Shoham, 2009; Macke et al., 2009; Gutnisky and Josić, 2010),
but instead aim to implement physical intuitions on spatio-
temporal characteristics in a simple way. For example, we use
Gamma processes with different shape parameters to model
bursty or regular spike trains, and use lognormal distributions
to model heterogeneity of rates. Note that in our study,
the spike trains of the central neuron are not generated by
integrating its inputs, but instead are also generated according
to statistical models, independent of the synaptic weights in
converging motifs. In this way, we can explicitly control the
statistical features of both the central and non-central spike
trains using statistical models, and study their influences onto
the efficacy variability without worrying about the feedback of
the synaptic changes onto the spike train of the post-synaptic
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neuron as usually happens in biologically more realistic
models.

The spike trains of both the central and non-central neurons
are generated according to the same model, so that they have
similar auto-correlation structure and synchronous firing rate
fluctuation. This makes our results particularly suitable to
understand the efficacy variability of a recurrent network without
hidden feedforward dynamics (Ganguli and Latham, 2009). For
example, in a random excitatory-inhibitory network that works
in the balanced state (van Vreeswijk and Sompolinsky, 1996,
1998), spike trains exhibit irregularity and stochasticity due to
being driven by fluctuation. If the dynamics of the network
is unstable to perturbations of population firing rates, then
oscillation may emerge (Brunel and Hakim, 1999; Brunel, 2000),
resulting in synchronous firing (Figure 2A). If its dynamics
is unstable to heterogeneous perturbations, then the neurons
may fire with strong burstiness (Ostojic, 2014) (auto-correlation
structure). Due to the heterogeneity of the input degrees and
nonlinear current-rate relationship of neurons, their firing
rates are typically long-tailed distributed (Roxin et al., 2011)
(heterogeneity of rates). Cross-correlations between neurons
may result from connectivity details such as unidirectional
connections or input sharing (Ostojic et al., 2009) (heterogeneity
of cross-correlations). In this paper, we aim tomimick these spike
patterns using statistical models, thereby gaining understanding
on their influence onto the efficacy variability of a network.
In another paper that will be published soon (Bi and Zhou,
in preparation), we will study the influence of spike pattern
structures onto the efficacy variability of recurrent networks
by implementing sophisticated spike shuffling methods onto
the spike patterns self-organized by recurrent LIF networks,
thereby examining the results of this paper in a biologically more
plausible manner.

The Results part of this paper is organized as follows. We
will first study how auto-correlation structure, synchronous
firing, heterogeneity of rates and their interactions influence
DiffV and DriftV (Sections 3.1–3.6), then discuss the influence
of heterogeneity of cross-correlations onto DriftV (Section
3.7). Under STDP, the main effect of heterogeneity of cross-
correlations is to change the drift velocities of different
synapses by different degrees, thereby influencing DriftV; so we
don’t seriously consider how heterogeneity of cross-correlations
influence DiffV, except for briefly discussing it in Supplementary
Materials Section S6. In this paper, we generally discuss the case
when τdelay > 0 in STDP (i.e., the axonal delay is larger than
the dendritic delay, see Figure 2B); and for the convenience of
discussion, we set the dendritic delay to be zero, so τdelay becomes
the axonal delay. The case when τdelay < 0 is then discussed
in Section 3.8. The results of this paper are then summarized in
Section 3.9.

2. MATERIALS AND METHODS

2.1. The Definition of Efficacy Variability
In this subsection, we give the exact definition of efficacy
variability, explain the meanings of DiffV and DriftV, and

show our general strategy to study efficacy variability using
simulations.

Suppose a set of synapses W in a neuronal network N .
Now we run a plasticity process in N for several trials (or on
several ensembles), and construct a matrix 1W, each column
of which represents the weight changes of W in one trial,
and different columns represent different trials. Then we define
efficacy variability of W during the plasticity process to be the
variance of the elements of the matrix 1W, i.e., VarS,T(1W), in
which the subscript S represents integrating over row index, i.e.,
structural index, and T represents integrating over column index,
i.e., trial index.

The law of total variance says that if the probability space
of Y is decomposed into several subspaces labeled by X, then
the variance of Y in the whole space is equal to the summation
of the variance of the expectations in these subspaces and the
expectation of the variances in these subspaces, i.e.,

Var(Y) = Var(E(Y|X))+ E(Var(Y|X)) (2)

Using the law of total variance, efficacy variability can be written
as

VarS,T(1W) = VarS(ET(1W))+ ES(VarT(1W)) (3)

Here, ET(1W) represents the trial expectations of the changes of
all the synapses inW ; and VarS(ET(1W)) is the variance of these
trial expectations, representing DriftV. VarT(1W) represents the
trial-to-trial variances caused by diffusion, and ES(VarT(1W)) is
the average of these variances over all the synapses, representing
DiffV. Equation 3 is the formal writing of Equation 1 in the
introduction.

The law of total variance can decompose VarS,T(1W) in
another way:

VarS,T(1W) = VarT(ES(1W))+ ET(VarS(1W)) (4)

Here VarT(ES(1W)) is the trial-to-trial variability of the mean
synaptic change of the whole network. But a real biological
process only allows a single trial, so this trial-to-trial variability
cannot contribute to biological functions except for individual
differences. Fortunately, usually VarT(ES(1W)) ∼ O(1/|W|),
with |W| being the number of synapses in W . So when
|W| is large enough, Equation 4 becomes VarS,T(1W) ≈
ET(VarS(1W)), which means that the trial expectation of
the efficacy variance (i.e., ET(VarS(1W))) can be used to
approximate the efficacy variability VarS,T(1W). Under this
insight, Equation 3 becomes

ET(VarS(1W)) ≈ VarS(ET(1W))+ ES(VarT(1W))

= DriftV+ DiffV (5)

In our simulations, we use ET(VarS(1W)) to quantify efficacy
variability. As wementioned in the introduction, DriftV is usually
caused by the spatial heterogeneity of spike trains, and DiffV
is by temporal stochasticity. Methodologically, when we analyze
DiffV, we set the spatial properties of spike trains (here, firing
rates of neurons and cross-correlations between neuronal pairs)
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homogeneous, so that DriftV = 0. When we analyze DriftV, we
use the fact that DriftV ∼ O(t2) and DiffV ∼ O(t) after time t
of running, so the efficacy variability after a sufficiently long time
largely reflects DriftV.

2.2. Converging Motifs, STDP and Synaptic
Homeostasis
Converging motifs are simple networks in which one neuron
receives inputs from many other neurons (Figure 2D). We call
the neuron that receives from many neurons in a converging
motif to be the central neuron, and call the other neurons the
non-central neurons; we then call the spikes emitted by the central
neuron (or non-central neurons) to be central spikes (or non-
central spikes). All the simulations in this paper are conducted
on converging motifs.

In this paper, the STDP updating caused by a pair of pre- and
post-synaptic spike (here, non-central and central spike) at tpre
and tpost is

1w(tpre, tpost) =























Ap exp(−
tpost−(tpre+τdelay)

τSTDP
),

tpost > tpre + τdelay

−Ad exp(−
(tpre+τdelay)−tpost

τSTDP
),

tpost < tpre + τdelay

(6)

with τdelay being the difference between the delay caused by the
propagation of pre-synaptic spike along the axon and the delay
caused by the back-propagation of the post-synaptic spike along
the dendrite. τdelay > 0 (or τdelay < 0) if the axonal delay is larger
(or smaller) than the dendritic delay. In this paper, we generally
discuss the case when τdelay > 0 (i.e., the axonal delay is larger
than the dendritic delay); and for the convenience of discussion,
we set the dendritic delay to be zero, so τdelay becomes the axonal
delay. The case when τdelay < 0 is then discussed in Section
3.8. The contribution of all pairs of pre- and post-synaptic spikes
are added together. τSTDP = 20ms throughout the paper, and
τdelay = 1ms by default. For simplicity, synaptic weights in this
paper are free of boundaries.

Under synaptic homeostasis, the synaptic efficacies are
updated every 1T time according to

wa(t + 1T) = wa(t)+ ǫ(wbound −
1

Nin

Nin
∑

c=1

wc(t)), (7)

with wa being the synaptic efficacy between the ath non-central
neuron and the central neuron,Nin being the in-degree of central
neuron, wbound being the ground line of synaptic homeostasis,
and ǫ being the plasticity rate. Therefore, synaptic homeostasis
dynamically bounds the mean strength of the synapses to the
central neuron, and it does not change the efficacy variability of a
converging motif due to its additive nature.

According to the law of total variance Equation 2, the efficacy
variability of a large recurrent network can be written as

Varab(1wab) = Vara(Eb∈∂a(1wab))+ Ea(Varb∈∂a(1wab)), (8)

with 1wab being the synaptic change from neuron b to neuron
a, and ∂a being all the neurons that input to neuron a in
the network. If synaptic homeostasis Equation 7 is imposed
onto the synapses input to each neuron in the network,
Vara(Eb∈∂a(1wab)) ≈ 0, especially if the plasticity rate is high
(i.e., ǫ ≈ 1 in Equation 7). Therefore, the efficacy variability of
the recurrent network is approximately the mean of the efficacy
variability of all the convergingmotifs in it. This is the reason why
we study converging motifs in this paper.

2.3. Spike Generating Models
Here are the statistical models we use to generate the spike trains
of the neurons in a converging motif (Figure 2D). The spike
trains of the central neuron and the non-central neurons are
generated according to the same model, mimicking the dynamics
of converging motifs embedded in a recurrent network without
hidden feedforward dynamics (Ganguli and Latham, 2009).

2.3.1. Model Auto
This model generates spike trains with stationary firing rate,
whose auto-correlation structure (burstiness/regularity) can be
controlled.

Spikes trains are Gamma processes with inter-spike intervals
following the distribution

p(x|α, β) =
1

Ŵ(α)βα
xα−1e−x/β

The rate of the Gamma process is β/α, and the coefficient of
variance is 1/

√
α.

We use α to control the burstiness/regularity of the spike train,
while adjusting β to keep the firing rate at 20 Hz. The spike train
becomes more bursty when α is smaller, and more regular when
α is large.

2.3.2. Model Sync
This model generates synchronous firing patterns whose
broadness of the distribution of spike number per neuron per
synchronous event can be explicitly controlled.

In this model, a synchronous event lasts for τcross. The spike
number per neuron per synchronous event is distributed the
same as the spike number of an underlying Gamma process
within an interval of length τcross. The rate of the Gamma process
is p/τcross and its coefficient of variance is CVSpikeNum. So the
mean value of the distribution of spike number per neuron
per synchronous event is p, and this distribution is narrow
if CVSpikeNum is small, and gets broadened when CVSpikeNum

increases. If a neuron is to fire M spikes in a synchronous event,
then the spike times of these M spikes will be randomly and
uniformly chosen within this time interval of duration τcross. The
occurrence of synchronous events is a Poisson process with rate
r0/p, so that the firing rate of a neuron is kept at r0 = 20Hz when
p changes.

2.3.3. Model Long Tail
This model generates long-tailed distributed firing rates for the
non-central neurons in a converging motif, the firing rate of the
central neuron is always kept at r0 = 20Hz.
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The firing rates of the non-central neurons are lognormal
distributed as

p(x|m, s) =
1

sx
√
2π

exp[−
(ln x−m)2

2s2
]

The mean of this distribution is at exp(m + s2

2 ). Parameter s is
used to control the shape, whilem is accordingly adjusted to keep
the mean at r0 = 20Hz. This distribution is a δ function when
s = 0, and gradually becomes long tailed when s increases.

This model generates homogeneous Poisson processes by
default, but it can be also combined with other models to
introduce heterogeneity of rates into the spike patterns with other
aspects of pattern structure.

2.3.4. Model Sync-Auto-LongTail
In this model, the firing rates of the non-central neurons follow
log-normal distribution with mean r0 = 20Hz (with r0 being
the firing rate of the central neuron) and shape parameter
s . A synchronous event lasts for τcross, and the mean spike
number per neuron per synchronous event is p. The occurrence
of synchronous events is a Gamma process with coefficient of
variance CVevents and rate r0/p, so that the population firing
rate is kept at r0 when p changes. The spike train of a neuron
with firing rate ri is generated as follows: we generate a Gamma
process with rate pri/r0 and coefficient of variance CVrescale, and
divide the Gamma spike train into bins of length τcross. Then we
randomly shuffle the order of these bins to destroy possible spike
dependency between adjacent bins, and the piece of spike train
within the jth bin after shuffling is to be the piece of spike train of
the neuron within the jth synchronous event.

In this model, the auto-correlation structure of the occurrence
of synchronous events (see Figure 10) is controlled by the
parameterCVevents, while the auto-correlation structure of a spike
train in the rescaled time is controlled by the parameter CVrescale.

3. RESULTS

3.1. The Scheme to Investigate the
Influence of Synchronous Firing and
Auto-correlation Structure onto DiffV
When the firing rates of neurons and the cross-correlations
between neurons are homogeneous, synchronous firing and
auto-correlation structure influence efficacy variability as a DiffV
effect. To understand how these two pattern statistics influence
DiffV, we write the total change of the ath synapse as

1wa =
∑

k=p,d

1wa,k =
∑

k=p,d

∑

i

∑

j

1wa,k(ti, tj|a,i,k), (9)

with 1wa,p being the total potentiation value on the synapse,
1wa,p(ti, tj|a,i,p) being the potentiation value pairing the ith spike
of central neuron and the jth spike of the ath non-central neuron
(the index of j depends on a, i, and k, see below), and 1wa,d

and 1wa,d(ti, tj|a,i,d) being the corresponding depression values.
The index of i starts from the beginning of the spike train of

the central neuron; but the indexing of j, however, is a little
complicated, and depends on a, i and k. In our modeling work,
axons have delay τdelay (τdelay = 1 ms by default), and the
sign of STDP updatings depends on the time difference between
ti − τdelay and tj|a,i,k. For the potentiation process (k = p) of the
ath non-central neuron, we let j start from the spike immediately
before ti − τdelay in the spike train, and go backward along the
spike train; for the depression process (k = d), we let j start
from the spike immediately after ti − τdelay, and go forward
along the spike train (Figure 3A). In the following discussions,
we sometimes do not explicitly write the dependence of j on a, i
and k for simplicity.

Using Equation 9, we can rewrite the variance of efficacy
changes per spike like this:

Vara(1wa)/N̄0 = Vara(
∑

k=p,d

∑

i

∑

j

1wa,k(ti, tj))/N̄0 = cII ·cI ·d

(10)
with N̄0 = r0T being the expectation of the spike number of the
central neuron during simulation time (r0 is the firing rate of the
central neuron, and T is the duration of simulation), and

cII =
Vara(

∑

k

∑

i

∑

j 1wa,k(ti, tj))
∑

k Vara(
∑

i

∑

j 1wa,k(ti, tj))
(11)

cI =
∑

k Vara(
∑

i

∑

j 1wa,k(ti, tj))
∑

k

∑

i Vara(
∑

j 1wa,k(ti, tj))
(12)

and

d =
∑

k

∑

i

Vara(
∑

j

1wa,k(ti, tj))/N̄0 (13)

Apparently, dmeans the mean efficacy variability contributed by
a single spike of the central neuron. To understand cII , note that

Vara(1wa) =
∑

k=p,d

Vara(
∑

i

∑

j

1wa,k(ti, tj))

+ 2ρPD

√

Vara(
∑

i

∑

j

1wa,p(ti, tj)) · Vara(
∑

i

∑

j

1wa,d(ti, tj))

(14)
with ρPD = Corra(

∑

i

∑

j 1wa,p(ti, tj),
∑

i

∑

j 1wa,d(ti, tj))

being the correlation coefficient between the total potentiation
and depression value imposed on the same synapse. Therefore,

cII = 1+ ρPDfPD (15)

with

fPD =
2
√

Vara(
∑

i

∑

j 1wa,p(ti, tj)) · Vara(
∑

i

∑

j 1wa,d(ti, tj))
∑

k Vara(
∑

i

∑

j 1wa,k(ti, tj))

(16)
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FIGURE 3 | The scheme we use to understand the influence of synchronous firing and auto-correlation structure onto DiffV. (A) The indexing of j (see

text). The non-central spikes of the same color have the same j index (indicated by the numbers). The dashed vertical line represents the separation of the potentiation

and depression process caused by the black spike of the central neuron. Synapses between the central and non-central neurons have axonal delay τdelay . (B) d

represents the mean efficacy variability caused by a single central spike in the potentiation process plus that in the depression process. (C) cI represents the efficacy

variability contributed by the correlation between synaptic changes caused by adjacent central spikes. (D) cII represents the efficacy variability contributed by the

correlation between the total potentiation and depression value imposed on the same synapse.

being the coupling factor. Similarly,

cI = 1+
∑

k

∑

m<n

ρm,n;kfm,n;k (17)

with ρm,n;k = Corra(
∑

j 1wa,k(tm, tj),
∑

j 1wa,k(tn, tj))

being the correlation coefficient between the synaptic changes
contributed by the mth and nth spikes of the central neuron,
which is particularly non-zero for two central spikes adjacent in
time, and

fm,n;k =
2
√

Vara(
∑

j 1wa,k(tm, tj)) · Vara(
∑

j 1wa,k(tn, tj))
∑

k

∑

i Vara(
∑

j 1wa,k(ti, tj))

(18)
being the coupling factors.

Therefore, we can see that there are three factors that
are important to understand the efficacy variability Vara(1wa)
(Figures 3B–D):

(1) The mean efficacy variability contributed by a single spike of
the central neuron, which is represented by d.

(2) The correlation between the synaptic changes caused by
adjacent spikes of the central neuron, which contributes to
Vara(1wa) through cI .

(3) The correlation between the total potentiation and
depression value imposed on a synapse, which contributes
to Vara(1wa) through cII .

In the following discussions, we will generate spike patterns with
different synchronous firing and auto-correlation structure with
homogeneous firing rates and cross-correlations using spike-
generating models, and investigate how the efficacy variability
as well as d, cI and cII change with model parameters; then we

will discuss the physical pictures underlying these phenomena,
aiming to giving the readers an intuitive understanding on how
synchronous firing and temporal structure influences DiffV.

3.2. The Influence of Auto-correlation
Structure onto DiffV in Stationary Spike
Trains
We used Gamma processes (Model Auto in Section 2) to model
the auto-correlation structure of stationary spike trains (whose
firing rates do not change with time). We changed the shape
parameter α of the Gamma processes while conserving the firing
rates at r0 = 20Hz. The coefficient of variance (CV) of a
Gamma process is CV = 1/

√
α. When CV gets larger, spike

trains are burstier; whenCV gets smaller, spikes are more regular.
We found that both burstiness and strong regularity in auto-
correlation structure increased the efficacy variability, and the
efficacy variability gets its minimal value when CV is around
0.3 ∼ 0.7 (Figure 4A), which is the rangemost neurons lie within
in vivo (Softky and Koch, 1993).

Spike trains in this model are stationary processes, and we also
let Ap = Ad in our model, with Ap and Ad being the strengths of
the exponentially decayed STDP windows for potentiation and
depression (see Figure 2B). Therefore,

(1) the variance caused by potentiation and depression processes
should be equal. From Equation 16, this means that fPD = 1,
so that cII can link with ρPD in a direct way:

cII = 1+ ρPD (19)

(2) Vara(
∑

j 1wa,k(ti, tj)) does not change with the i index.

From Equations 17 and 18, this means that cI can link with
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FIGURE 4 | The influence of auto-correlation structure onto DiffV in stationary spike trains. (A) Variance per spike (ET [Vara (1wa )]/N̄0, see Equation 10) as a

function of CV, when spike trains are generated according to Model Auto (see Section 2). (B) d as a function of CV. Left inset: when the non-central spike trains are

regular, the non-central spikes move left or right almost simultaneously. Right inset: when the non-central spike trains get bursty, each spike can move with a larger

freedom, thereby contributing to the increase of DiffV. Black lines in the insets represent the central spike train, and colored (here, red) lines represent the non-central

spike trains: the same color scheme is also used in the insets of the following panels. (C) cI as a function of CV. Left inset: when the spike trains are regular, the

synaptic updatings caused by adjacent central spikes are correlated because of transient cross-correlation. Right inset: when the central spike train gets bursty, the

synaptic updatings caused by adjacent spikes in the same bursting events are correlated. Dashed arrows of the same color in the two insets represent similar

synaptic updatings during STDP. (D) cII as a function of CV. Left inset: when the non-central spike trains are regular, the spikes that potentiate and depress the

synapses move left or right almost simultaneously, which correlates the total potentiation and depression values. In this inset, the red spike train cause weaker

potentiation and stronger depression than the blue spike train. Right inset: when the spike trains are bursty (here, CV = 2), the spike number of a non-central neuron

(horizontal coordinate) is positively correlated with the total potentiation (blue) value and negatively correlated with the total depression (red) value. In (A–D), error bars

represent s.e.m., the converging motif has 200 non-central neurons. Parameters for STDP: Ad = Ap = 1 (see Figure 2B and Equation 6 in Section 2). All synaptic

efficacies were 0 at the beginning, and simulations were run for 100 s biological time, with 32 trials.

ρm,n;k in a direct way:

cI = 1+
∑

k

∑

m<n ρm,n;k
N0

(20)

with N0 being the spike number of the central neuron.
Equations 19 and 20 mean that in this model the change of cI

and cII with model parameters directly reflect the change of the
correlations.

To understand Figure 4A, we investigated how d, cI and cII
change withCV (Figures 4B–D).We found that dmonotonically
increases with CV (Figure 4B), cI gets its minimum when CV
is around 0.3 ∼ 0.7, and gets large both when CV is too large
or too small (Figure 4C), and cII monotically decreases with
CV (Figure 4D). With the help of Equations 19 and 20, we can
understand their changes with CV , and thus gain insight on the
reason for the change of DiffV with CV .

3.2.1. Understanding the Change of d with CV
To understand the change of d with CV, consider the term
Vara(

∑

j 1wa,p(ti, tj|a,i,p)) in Equation 13. When the spike trains

of the non-central neurons are regular, tj|a,i,p ≈ t1|a,i,p −
(j − 1)/r0, with r0 being the firing rate, so the difference of
∑

j 1wa,p(ti, tj|a,i,p) for different as mainly comes from the

difference of t1|a,i,p (Figure 4B, left inset). What’s more, {t1|a,i,p}a
approaches to a uniform distribution within the interval (ti −

τdelay − 1/r0, ti − τdelay) when the spike trains get regular.
When the spike trains get burstier, not only the distribution
of t1|a,i,p gets broader, but the other spikes tj 6=1|a,i,p can also
move with a larger freedom, which increases the variability of
∑

j 1wa,p(ti, tj|a,i,p) (Figure 4B, right inset). Similar arguments

also apply to the k = d case. It is easy to show (Supplementary
Material Section S1.2) that under strict regularity (CV = 0),

dreg = (A2
d + A2

p)
τSTDP

21t
[
1+ exp(− 1t

τSTDP
)

1− exp(− 1t
τSTDP

)
−

2τSTDP

1t
], (21)

with 1t = 1/r0 being the inter-spike interval; and under Poisson
process (CV = 1),

dPoi = (A2
d + A2

p)
τSTDP

21t
. (22)

As
1+exp(− 1t

τSTDP
)

1−exp(− 1t
τSTDP

)
− 2τSTDP

1t < 1 (Supplementary Material Section

S1.2), dreg < dPoi.

3.2.2. Understanding the Change of cI with CV
cI does not change monotonically with CV , it is large both when
CV is large (i.e., spike trains are bursty) and when CV is very
small (i.e., spike trains are very regular), and gets its minimal
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value when CV is around 0.3 ∼ 0.7 (Figure 4B). Now we try to
understand the change of cI with CV .

Suppose there are two spikes of the central neuron at
time x and y. Because the spike trains in this model are
stationary processes, the correlation between the potentiation (or
depression) value caused by these two spikes only depends on
y− x:

ρp(y− x) = Corra(
∑

j∈(x,∞)

1wa,p(x, j),
∑

j∈(y,∞)

1wa,p(y, j)) (23)

ρd(y− x) = Corra(
∑

j∈(−∞,x)

1wa,d(x, j),
∑

j∈(−∞,y)

1wa,d(y, j))

(24)

with 1wa,k(x, j) being the synaptic updating caused by the
interaction of x and a spike of the ath non-central neuron at time
j. This ρk(l) function depends on the CV of the spike trains of
the non-central neurons. Because of the time-reversal invariance
of the statistics of the spike trains, ρp(l) = ρd(l) ≡ ρ(l) in our
model. Using ρ(l), cI (Equation 20) can be rewritten as

cI = 1+
2

r0

∫ ∞

0
C0(l)ρ(l)dl (25)

with r0 being the firing rate of the central neuron, and C0(l)

being the auto-correlation of the central neuron. C0(l)
r0

means the
probability density to find another central spike at time l given an
central spike at time 0, which can be written as

C0(l)

r0
=

∞
∑

i=1

qi(l) (26)

with qi(l) being the distribution of the interval between the spike
at time 0 and the next ith spike. Spike trains in our model
are Gamma processes, so that the inter-spike interval follows
Ŵ(x|α, β) = 1

Ŵ(α)βα x
α−1e−x/β . It is easy to show that qi(l) =

Ŵ(l|iα, β) (http://mathworld.wolfram.com/GammaDistribution.
html).

From Equation 25, we know that the CV of the non-central
spike trains influences cI through ρ(l), while theCV of the central
spike train influences cI through q0(l).

To understand the change of cI with CV , we plot the functions
ρ(l) and C0(l)/r0 under different CV values (Figure 5). We find
that:

(1) When spike trains are bursty (CV > 1), ρ(l) increases
with CV , and C0(l)/r0 becomes more concentrated near
zero (at which point ρ(l) gets its maximal value) when CV
increases. Both of these two factors increase the integration
1
r0

∫

C0(l)ρ(l)dl in Equation 25, contributing to the increase
of cI with CV when spike trains are bursty.

(2) When spike trains are very regular (CV is very small), both
ρ(l) and C0(l)/r0 become more concentrated near l = N/r0
(with r0 = 20Hz being the firing rate andN being an positive
integer): in this case, 1

r0

∫

C0(l)ρ(l)dl also increases because
of the overlap of the peaks of ρ(l) and C0(l)/r0.

Intuitively, the change of cI with CV can be understood like
this:

(1) When CV is large, the non-central spike trains tend to be
clustered into bursting events, and the time scale τauto of
the bursting events increases with CV (it is easy to show

that τauto ∼ CV2

r0
when CV > 1, see Supplementary

Material Section S1.1): this strengthened and broadened
auto-correlation makes ρ(l) increase with CV when CV >

1. At the same time, more adjacent central spikes are also
gathered closer by bursting events, which increases the
correlation between the synaptic changes caused by adjacent
central spikes (Figure 4C, right inset): this is the effect of
C0(l)/r0.

(2) When CV is very small, the spike trains are very regular. In
this case, two adjacent spikes {ti, ti+m} of the central neuron
have the relation ti+m ≈ ti +m/r0 if they are well within the
time scale τauto of the oscillating decaying auto-correlation
(it is easy to show that τauto ∼ 1

4CV2r0
when CV < 1,

see Supplementary Material Section S1.1); and two spikes
{tj|a,i,k, tj|a,i+m,k} of the ath non-central neuron also have
the relation tj|a,i+m,k ≈ tj|a,i,k + m/r0. This means that ti −
tj|a,i,k ≈ ti+m − tj|a,i+m,k, which makes the synaptic changes
caused by ti and ti+m almost the same (i.e.,

∑

j 1wa,k(ti, tj) ≈
∑

j 1wa,k(ti+m, tj)) (Figure 4C, left inset). This increases

the correlation ρi,i+m;k caused by adjacent central spikes,
thereby increasing cI .

In this model (Model Auto in Section 2), we suppose that
the firing rates of the non-central neurons r∗ are the same as
the firing rate of the central neuron r0. What if r∗ 6= r0?
Figure 5 suggests that when spike trains are very regular, ρ(l)
peaks at N/r∗ (with N being a positive integer), and C0(l)/r0
peaks at N/r0 when CV ≪ 1. Equation 25 indicates that cI
gets its maximum value when the peaks of ρ(l) overlap with
the peaks of C0(l)/r0. This overlap is strong when r∗ = r0,
but can also occur when N1r∗ = N2r0, with N1 and N2

being two positive integers with no common divisor larger than
1. For the simplicity of the following argument, we call the
increase of the correlation ρm,n;k caused by adjacent central
spikes under strong regularity and N1r∗ = N2r0 to be the
mechanism of transient cross-correlation. Because of the decaying
oscillation of ρ(l) and C0(l)/r0, N1 and N2 tend to be small
integers.

3.2.3. Understanding the Change of cII with CV
We find that cII > 1 when spike trains are regular, which
means that the potentiation and depression values are positively
correlated (ρPD > 0) in this case; and cII < 1 when spike trains
are bursty, which means that the potentiation and depression
values are negatively correlated (ρPD < 0). Now we try to
understand the change of cII with CV.

(1) Under strong regularity, if tj|a,i,k are well within the time
scale of τauto with t1|a,i,p, then tj|a,i,p ≈ t1|a,i,p − (j − 1)/r0
and tj|a,i,d ≈ t1|a,i,p + j/r0. This means that if t1|a,i,p
moves farther away from ti, the potentiation value
∑

j 1wa,p(ti, tj|a,i,p) will get weakened, while the depression

value
∑

j 1wa,d(ti, tj|a,i,d) will get strengthened (Figure 4D,

left inset), which means that
∑

j 1wa,p(ti, tj|a,i,p) and
∑

j 1wa,d(ti, tj|a,i,d) positively correlated. This makes
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FIGURE 5 | Understanding the influence of auto-correlation structure onto cI (see Equation 25). (A) ρ(l) when CV = 0.1, 0.139, 0.195, 0.271, 0.379, 0.528,

0.737, 1.03, 1.43, 2.00 (represented by lines from light to dark). (B) C0 (l)/r0 when CV takes values the same as in (A). In (A), the results are from 10,000 trials of

simulations on a converging motif with 200 non-central neurons. (B) is plotted using Equation 26.

∑

i

∑

j 1wa,p(ti, tj|a,i,p) and
∑

i

∑

j 1wa,d(ti, tj|a,i,d) are also

positively correlated. By the definition of ρPD, we know that
ρPD > 0 in this case.

(2) To understand the case when CV is large, note that the
Fano factor of a long time scale approaches to CV2 (Cox,
1962; Tuckwell, 1988; Nawrot et al., 2008), which means
that different non-central neurons may emit quite different
numbers of spikes during simulation when CV is large. If the
ath non-central neuron fires more (less) spikes, then both
the potentiation and depression values imposed on the ath
synapses tend to be strong (weak) (Figure 4D, right inset).
This is the reason why ρPD is negative when spike trains are
bursty.

Comparing Figure 4A with Figures 4B–D, we know that both
d and cI are the reasons for the steep increase of DiffV under
large CV, while cI (i.e., the mechanism of transient cross-
correlation) is the reason for the fast increase of DiffV with
the decrease of CV under small CV. cII , however, does not
significantly contribute to the change of DiffV under large or
small CV.

3.2.4. The Interaction of Auto-correlation Structure

With Heterogeneity of Rates
Till now, we only considered the case when the spike trains are
Gamma processes with the same firing rate. In Supplementary
Material Section S2, we will consider the case that the Gamma
processes of different non-central neurons have different firing
rates, while their mean firing rate is still the same as the
firing rate of the central neuron r0. Our simulations suggest
that heterogeneity of rates does not strongly influence DiffV
(as different synapses have different diffusion strengths under
heterogeneity of rates, DiffV here means the mean diffusion
strength over all the synapses) when the spike trains are bursty,
but discounts the increase of DiffV with the decrease of CV
under strong regularity because of it destroying transient cross-
correlation (Supplementary Figure 1). This makes DiffV tend to
monotonically increase with CV .

3.3. The Influence of Synchronous Firing
onto DiffV
There are usually two scenarios regarding to synchronous
firing: one is spike synchrony, which means that the spikes of
neurons are emitted almost simultaneously; the other one is rate
synchrony, which means that the firing rates of neurons rise
and fall at the same time. The key difference between these two
scenarios is the distribution of the spike number of a neuron
within a synchronous event. For spike synchrony, a neuron can
fire no more than a single spike in a synchronous event, so
that this distribution is narrow; but for rate synchrony, different
neurons can fire a different number of spikes in a synchronous
event, so that this distribution is broad. To understand howDiffV
is influenced by synchronous firing under different distributions
of spike numbers per neuron per synchronous event, we
generated spike trains using Model Sync (Section 2). In this
model, a synchronous event lasts for τcross. The spike number per
neuron per synchronous event is distributed the same as the spike
number of an underlying Gamma process within an interval of
length τcross. The rate of this Gamma process is p/τcross and its
coefficient of variance is CVSpikeNum. So the mean value of the
distribution of spike number per neuron per synchronous event
is p, and this distribution is narrow if CVSpikeNum is small, and
gets broadened when CVSpikeNum increases. If a neuron is to fire
M spikes in a synchronous event, then the spike times of these
M spikes will be randomly and uniformly chosen within this
time interval of duration τcross. The occurrence of synchronous
events is a Poisson process with rate r0/p, so that the firing rate
of a neuron is kept at r0 = 20Hz when p changes. We focus
on the case that τcross ≪ τSTDP and τcross ≪ p/r0 (with p/r0
being the average inter-event interval) in our study. It is easy to
think that if τcross ≪ p/r0 but τcross > τSTDP, STDP updatings
will tend to zero so that DiffV will decrease with τcross; and if
τcross > p/r0, the spike pattern will approach to asynchronous
state.

For spike patterns with synchronous firing, we don’t have
simple equations like Equations 19 and 20 to directly link ρm,n;k
and ρPD with cI and cII . The coupling factors fPD (Equation 16)
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and fm,n;k (Equation 18) must be considered. As

√

Vara(
∑

j

1wa,k(tm, tj)) · Vara(
∑

j

1wa,k(tn, tj))

≤
1

2
(Vara(

∑

j

1wa,k(tm, tj))+ Vara(
∑

j

1wa,k(tn, tj)))

and the equality is obtained only when Vara(
∑

j 1wa,k(tm, tj)) =
Vara(

∑

j 1wa,k(tn, tj)), fm,n;k reflects the inhomogeneity of

Vara(
∑

j 1wa,k(tm, tj)) for different m. And similarly, fPD
reflects the difference between Vara(

∑

i

∑

j 1wa,p(ti, tj)) and

Vara(
∑

i

∑

j 1wa,d(ti, tj)) relative to their total values.

We investigated how DiffV changes with p, τcross and the
CVSpikeNum. Our simulations suggest:

(1) DiffV tends to increase with the strength of synchronous
firing (i.e., p) and the broadness of the distribution of
the spike number per neuron per synchronous event
(i.e., CVSpikeNum) (Figure 6A, see Supplementary Figures
2A1,B1,C1 for more information);

(2) when CVSpikeNum is small enough, DiffV can be significantly
decreased if p is close to an integer and τcross < τdelay (the red
squares in Figure 6B).

Here we explain the underlying physical pictures of these
phenomena based on the observation of the change of d, cI and
cII with model parameters:

(1) d is the only reason for the second phenomenon above (the
red squares in Figure 6C, compare with the changes of cI
and cII in Supplementary Figures 2A3,A4). To understand
this, suppose a synchronous event happening during [t1, t2]
(t2 = t1 + τcross), then the central neuron will receive its
afferents during [t1 + τdelay, t2 + τdelay], with τdelay being
the axonal delay. If τcross ≤ τdelay, the spike time t0 of the
central neuron t0 < t1 + τdelay, which means that the central
neuron always starts to receive spikes after its own firing in
a synchronous event, so that all the spikes it receives depress
the corresponding synapses after the synchronous event. If
τcross ≤ τdelay ≪ τSTDP, the depression value 1w contributed
by each non-central spike is approximately the same. If p is
an integer and CVSpikeNum is small enough, the distribution
of the spike number per neuron per synchronous event will

FIGURE 6 | The influence of synchronous firing onto DiffV and the contribution of d. (A) Variance per spike (ET [Vara (1wa )]/N̄0, see Equation 10) as a function

of p under different CVSpikeNum values for τcross = 0.5ms (left) and τcross = 2.5ms (right), when spike trains are generated according to Model Sync (see Section 2).

The efficacy variances span a large range, so here we use log scale to better show their changes. (B) Variance per spike as a function of p and τcross when

CVSpikeNum = 0.1. Note the reduction of variance per spike in the red squares. The black horizontal line represents the axonal delay τdelay = 1ms. (C) d as a function

of p and τcross when CVSpikeNum = 0.1. Note the reduction of d in the red squares. (D) The distribution of spike number per neuron per synchronous event under

different p values indicated by the starting points of the arrows, when CVSpikeNum = 0.1. Note that the distribution peaks at p when p is an integer. (E) Comparison of

the numeric results (dots with error bars) of d with the analytic results (solid lines) given by Equations 28 and 29 for τcross = 0.5ms (left) and τcross = 2.5ms (right). In

(A–E), the size of the converging motif, the parameters for STDP as well as the simulation time and trials are the same as in Figure 4. Error bars represent s.e.m.
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sharply peak at p (Figure 6D). In this case, nearly all the non-
central neurons fire exactly p spikes during a synchronous
event, so that almost all the synapses are depressed by
p1w after this synchronous event. This is the reason why
d is so small in this case. Mathematically, it can be shown
(Supplementary Materials Section S3.1) that when τcross ≤
τdelay ≪ τSTDP,

d ≈ Vara(Na)[A
2
d exp(−

2τdelay

τSTDP
)+

r0τSTDP

2p
(A2

d+A2
p)] (27)

with ET represent average over trials, and Vara(Na) being
the variance of spike numbers of the non-central neurons
in a synchronous event. We can see that d gets reduced
if Vara(Na) is small, which is the case when CVSpikeNum is
small and p is an integer. When τcross > τdelay, however,
it is possible that t1 + τdelay < t0 < t2 + τdelay, so
that all the in-coming spikes of the central neuron during
[t1 + τdelay, t0) potentiate the corresponding synapses, and
all the in-coming spikes during (t0, t2 + τdelay] depress the
corresponding synapses. This may split the synapses into
different directions, thereby increasing d (note the large d
value when τcross > τdelay in Figure 6C).

(2) d tends to increase with p or CVSpikeNum (Figure 6E, see

Supplementary Figures 2A2,B2,C2 for more information),
thereby contributing to the tendency of the increase of DiffV
with p or CVSpikeNum. In this paper, we generally suppose

that τcross ≪ τSTDP and τdelay ≪ τSTDP. When p large, it

can be shown (Supplementary Materials Section S3.1) that
if τcross ≤ τdelay, then

d = ET[Vara(
∑

j

1wa,d(ti, tj))]+ ET[Vara(
∑

j

1wa,p(ti, tj))]

≈ pCV2
SpikeNumA

2
d exp(−

2τdelay

τSTDP
)

+ CV2
SpikeNum

r0τSTDP
2

(A2
d + A2

p), (28)

with ET representing trial average; and if τcross > τdelay, then

d ≈ p[CV2
SpikeNumA

2
d

τdelay

τcross
exp(−

τcross + τdelay

τSTDP
)

+ A2
d exp(−

τcross + τdelay

2τSTDP
) ·A

+ A2
p exp(−

τcross − τdelay

2τSTDP
) · B]

+ CV2
SpikeNum

r0τSTDP

2
(A2

d + A2
p) (29)

with

A = (
1

6
+

1

3
CV2

SpikeNum)−
1

2
(
τdelay

τcross
)2−

1

3
(CV2

SpikeNum−1)(
τdelay

τcross
)3

B = (1−
τdelay

τcross
)2(

1

2
+

1

3
(CV2

SpikeNum − 1)(1−
τdelay

τcross
)).

We compare the analytic results with numeric results in
Figure 6E, we can see the tendency that d increases with both

p and CVSpikeNum. The first terms of Equations 28 and 29
represent the contribution of the synchronous event S0 that
the central spike ti belongs to, and the last terms represent the
contributions of the other synchronous events. p only exists
in the first terms of Equations 28 and 29, which suggests that
p increases d through increasing the synchrony strength of
S0. CVSpikeNum exists in both terms, which suggests that the
broadness of the spike number distribution in both S0 and
the other synchronous events contribute to d.

(3) cI tends to increase with both p and CVSpikeNum (Figure 7A,
see more in Supplementary Figures 2A3, B3, C3), thereby
contributing to the tendency of the increase of DiffV with p
or CVSpikeNum. From Equation 17, we know that the change
of cI may either caused by the correlation ρm,n;k or by the
coupling factor fm,n;k. To estimate their contributions to cI ,
we define

ρl,k =
∑

m ρm,(m+l);k
∑

m 1
, l = 1, 2, · · · ; k = p, d, (30)

and

fl,k =
∑

m

fm,(m+l);k l = 1, 2, · · · ; k = p, d. (31)

We find that the change of
∑

k

∑

l fl,k withmodel parameters
is far slower than the change of

∑

k

∑

l ρl,k (Figures 7B,C),
which suggests that the coupling factors fm,n;k do not
significantly contribute to the change of cI , and the
correlation ρm,n;k between synaptic updatings caused by
adjacent central spikes is themain reason for the change of cI .
It is easy to think that if two spikes of the central neuron are
in the same synchronous event, then the correlation of the
synaptic updatings caused by them tends to be large; but if
they are in different synchronous events, then the correlation
of the synaptic changes caused by them tends to be small. To
understand the increase of cI with p and CVSpikeNum, let us
consider the following toy model. Suppose that ρmn = a0 if
m and n are in the same synchronous event (this assumption
is particularly correct when τcross < τdelay), and ρmn = 0
if they are in different synchronous events. Suppose that the
central neuron fires Ns spikes in the sth synchronous event,
then the total value of the correlation coefficients will be

∑

m<n

ρmn = a0
∑

s

Ns(Ns − 1)

2

= a0M

∫ ∞

−∞
q(Ns)

Ns(Ns − 1)

2
dNs

with M being the number of synchronous events, and q(Ns)
being the distribution of the spike number per synchronous
event. If p is sufficiently large, q(Ns) ∼ N (p, σ 2) with σ 2 =
p · CV2

SpikeNum
. In this case

∑

m<n

ρmn ≈
a0Mp(−1+ p+ CV2

SpikeNum
)

2

=
a0N0(−1+ p+ CV2

SpikeNum
)

2
(32)

Frontiers in Computational Neuroscience | www.frontiersin.org 13 February 2016 | Volume 10 | Article 14

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Bi and Zhou Spike Pattern Influences Efficacy Variability

FIGURE 7 | The contribution of cI to the influence of synchronous firing onto DiffV. (A) cI as a function of p under different CVSpikeNum values for

τcross = 0.5ms (left) and τcross = 2.5ms (right), when spike trains are generated according to Model Sync (see Section 2). (B)
∑

l,k ρl,k as a function of p under

different CVSpikeNum for τcross = 0.5ms (left) and τcross = 2.5ms (right). We found that ρl,k safely decays to zero when l ≥ 50 in our parameter range, therefore we

cut off l at l = 50 when calculating the summation. (C)
∑

l,k fl,k as a function of p for τcross = 0.5ms (left) and τcross = 2.5ms (right). Note that the percentage that
∑

l,k fl,k changes with p or CVSpikeNum is far smaller than that of
∑

l,k ρl,k . In (A–C), the size of the converging motif, the parameters for STDP as well as the

simulation time and trials are the same as in Figure 4. Error bars represent s.e.m.

with N0 being the total spike number of the central neuron.
From Equation 32, we can see that

∑

m<n ρmn tend to
increase with both p and CVSpikeNum, which explains why
cI tend to increase with p and CVSpikeNum. Intuitively, p
gathers more spikes into the same synchronous event; and
CVSpikeNum, which induces heterogeneity of spike numbers
in a synchronous event, concentrates spikes into fewer
synchronous events. Both of them increase the number of
spike pairs that lie in the same synchronous event, thereby
increasing

∑

m<n ρmn.
(4) We found that when p is large, the change of cII with p is

small (Supplementary Figures 2A4, B4, C4), which suggests
that the contribution of cII to the increase of DiffV with
p is small compared to the other factors. The change of
cII with CVSpikeNum is not strong when τcross ≤ τdelay;
and cII tends to decrease with CVSpikeNum when τcross >

τdelay (Supplementary Figures 2A4, B4, C4), which negatively
contributes to the increase of DiffV with CVSpikeNum. These
suggest that cII is not an important factor to understand
the change of DiffV under synchronous firing. We move
more discussions on cII into Supplementary Materials
Section S3.2.

From the discussion above, we know that both the mean
(controlled by p) and variance (controlled by CVSpikeNum)
of the spike number per neuron per synchronous event are
important factors to understand the change of DiffV under
synchronous firing. They contribute to DiffV mainly through d
and cI .

3.4. The Influence of the Interaction of
Auto-correlation Structure And
Synchronous Firing onto DiffV
The spike pattern of a real neuronal population possesses
both synchronous firing and auto-correlation structure, so it is
desirable to know how these two pattern structures interact to
influence DiffV. This is a complicated problem, because auto-
correlation structure comes into spike patterns with synchronous
firing in at least three ways (Figure 8):

(1) The broadness of the distribution of the spike numbers a
neuron fires in different synchronous events (ATSpikeNum).
If the distribution gets broad, a neuron may burst several
spikes in some synchronous events, while keep silent in some
others.

(2) The burstiness/regularity of the pieces of spike trains within
synchronous events (ATWithinEvent).

(3) The burstiness/regularity of the occurrence of synchronous
events (ATevents).

There may be other auto-correlation structures under
synchronous firing. For example, in biological systems, the
amplitudes of synchronous events may exhibit strong variability
(Gireesh and Plenz, 2008; Petermann et al., 2009), which further
increases the complexity of the problem. However, we argue
that this varying-amplitude situation may be included into the
constant-amplitude scenario using ATevents, after noting that
strong synchronous events can be regarded as the burstiness
of many small synchronous events. For simplicity, we will
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FIGURE 8 | The three types of auto-correlation structure we consider

under synchronous firing. (A) The broadness of the distribution of the spike

numbers a neuron fires in different synchronous events (ATSpikeNum). Note

that in the left panel, a neuron fires quite different number of spikes during

different synchronous events; while in the right panel, the spike numbers of a

neuron during different synchronous events are almost the same. (B) The

burstiness/regularity of the pieces of spike trains within synchronous events

(ATWithinEvent). (C) The burstiness/regularity of the occurrence of synchronous

events (ATevents).

not consider this varying-amplitude situation in our following
discussions.

We have already discussed the effect of ATSpikeNum in the
previous subsection, and we will perform detailed discussions on
how ATWithinEvent and ATevents influence DiffV through d, cI and
cII in Supplementary Material Section S4. Here we summarize
our main results:

(1) The broadness of the distribution of the spike numbers a
neuron fires in different synchronous events increases DiffV
through increasing d and cI . When τcross ≤ τdelay, it does not
significantly change cII ; when τcross > τdelay, it decreases cII ,
which negatively contributes to the increase of DiffV (see the
previous subsection).

(2) The burstiness of the piece of spike train within a
synchronous event significantly increases DiffV when
τcross > τdelay. It does this through increasing d and cII , it
does not significantly influence cI (Supplementary Material
Section S4.1, Supplementary Figure 3).

(3) The burstiness of the occurrence of synchronous events
increases DiffV through increasing d and cI . It decreases
cII , which negatively contributes to the increase of DiffV
(Supplementary Material Section S4.2, Supplementary
Figure 7).

In Supplementary Material Section S4 and Supplementary
Figures 3–10, we explain the underlying mechanisms of
these influences using both numeric and analytic approaches.
We find that broader distribution of spike number per
neuron per synchronous event, burstier spike trains within
synchronous events, and burstier occurrence of synchronous
events tend to increase DiffV. These results can be concluded

into a rule of thumb: the burstiness of spike trains tends
to increase DiffV, while the regularity tends to decrease
DiffV.

From Section 3.2, we know that when the spike trains are
stationary processes, DiffV increases with the decrease of CV
if CV ≪ 1 (Figure 4A), because of transient cross-correlation.
However, here we find that after synchronous firing is added into
the spike pattern, DiffV usually monotonically decreases with the
decrease of CV . To understand this, note that in our model, we
suppose that the pieces of spike trains that belong to different
synchronous events are independent of each other. In this case,
transient cross-correlation may be fragile under synchronous
firing, because the synaptic changes caused by two central spikes
tm and tn (i.e.,

∑

j 1wa(tm, tj) and
∑

j 1wa(tn, tj)) are hard to be

correlated if tm and tn belong to different synchronous events,
even ifm and n are nearby by index.

3.5. The Influence of Heterogeneity of
Rates onto DriftV
Under heterogeneity of rates or heterogeneity of cross-
correlations, different synapses may drift with different
velocities, thereby inducing DriftV. Heterogeneity of rates
and heterogeneity of cross-correlations may also influence the
diffusion of synapses. However, as DriftV ∝ t2 and DiffV ∝ t,
DriftV will dominate in a long run. Therefore, we will focus on
their influence onto DriftV in the main text, their influence on
DiffV will be briefly discussed in the Supplementary Materials
Section S6.

Suppose that the activities of the central and non-central
neurons are time-modulated simultaneously, so that the firing
rate of the central neuron r0(t) = 〈r0(t)〉x(t) while the firing
rate of the ath non-central neuron ra(t) = 〈ra(t)〉x(t), with 〈·〉
representing time average, and x(t) representing a function with
〈x(t)〉 = 1. Then, the change of the ath synapse per unit time is

va =
dET(1wa)

dt
=

∫ ∞

0
dτ (H(τ )r0(t)ra(t − τdelay − τ )

+ H(−τ )r0(t − τ )ra(t − τdelay))

= 〈r0(t)〉〈ra(t)〉
∫ ∞

−∞
dτH(τ )C(−τdelay − τ )

(33)

with H(τ ) being the STDP time window and C(−τdelay − τ ) =
〈x(t)x(t − τdelay − τ )〉 being the auto-correlation of x(t). If we
average the equation above over a, we will have

Ea(va) = 〈r0(t)〉Ea(〈ra(t)〉) ·
∫ ∞

−∞
dτH(τ )C(−τdelay − τ ) (34)

The two equations above togther give

va = Ea(va) ·
〈ra(t)〉

Ea(〈ra(t)〉)
(35)

Therefore,

Vara(va) =
[Ea(va)]

2

[Ea(〈ra(t)〉)]2
· Vara(〈ra(t)〉) (36)
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This equation suggests that the heterogeneity of rates 〈ra(t)〉
can induce DriftV; but if the population rate Ea(〈ra(t)〉) is kept
constant, DriftV also depends on |Ea(va)|, which quantifies the
imbalance of the strengths of the potentiation and depression
process (P-D imbalance). If Ea(va) = 0, which means that STDP
cannot change the mean synaptic strength (P-D balance), then
DriftV = 0; if |Ea(va)| is large, which means that P-D imbalance
is strong, then DriftV is also large. From Equation 34, we know
that if the firing rates 〈r0(t)〉 and Ea(〈ra(t)〉) are kept constant,
then P-D imbalance is controlled by the time-modulated pattern
x(t), which will be changed if synchronous firing is added
into the spike pattern. Intuitively, during a synchronous event,
the axonal delay in the converging motif tends to make the
central neuron receive spikes from the non-central neurons
after its own spikes, which depresses the synapses under
STDP (Figure 9A, a similar phenomenon has been observed
in Lubenov and Siapas, 2008). Under heterogeneity of rates,
this makes DriftV become accordingly changed (Figure 9B). In
summary, heterogeneity of rates makes use of P-D imbalance
to induce DriftV; and synchronous firing can influence P-D
imbalance, thereby influencing DriftV under heterogeneity of
rates.

3.6. The Interaction of Heterogeneity of
Rates, Synchronous Firing And
Auto-correlation Structure
From the arguments above, we know that if spike trains
are stationary processes (with x(t) = 1 for any t), then
auto-correlation structure cannot influences DriftV under
heterogeneity of rates (because auto-correlation structure cannot
change x(t)). Its influences onto DiffV in this case are discussed
in SupplementaryMaterials Section S3. Interesting things happen
when synchronous firing also comes into the picture. As we
mentioned in Section 3.4, under synchronous firing, auto-
correlation structure may come into the spike pattern in three
ways (Figure 8):

(1) The broadness of the distribution of spike number per
neuron per synchronous event (ATSpikeNum).

(2) The burstiness/regularity of the pieces of spike trains within
synchronous events (ATWithinEvent).

(3) The burstiness/regularity of the occurrence of synchronous
events (ATevents).

These three auto-correlation structures can be classified into
two kinds: ATSpikeNum and ATWithinEvent do not change x(t),
so that they do not change P-D imbalance, nor DriftV under
heterogeneity of rates; ATevents, however, changes x(t), thereby
changing P-D imbalance, and DriftV under heterogeneity of
rates. An idea to separate these two kinds of auto-correlation
structure is to define rescaled time using the accumulative
function of population firing rate (Pillow, 2009)

3(t) =
∫ t

0
r(s)ds, (37)

which stretches the inter-spike intervals in proportion to
the firing rate (Figure 10). Auto-correlation structure then
comes into the picture in two ways: the auto-correlation
structure of the spikes in the rescaled time, which can be
quantified by the CV value CVrescale, and the auto-correlation
structure of the occurrence of synchronous events, which
can be quantified by CVevents. Apparently, CVrescale has no
influence on x(t), thereby nor DriftV under heterogeneity
of rates; but CVevents influences x(t), thereby DriftV under
heterogeneity of rates. Combining the discussion on the influence
of temporal structure onto DiffV in Section 3.4, we come to the
conclusion that under synchronous firing and heterogeneity of
rates,

(1) The temporal factors that increases either CVrescale or
CVevents increase DiffV.

(2) The temporal factors that influences CVrescale do not change
P-D imbalance, thereby nor DriftV under heterogeneity of
rates.

FIGURE 9 | Synchronous firing influences P-D imbalance, and heterogeneity of rates makes use of P-D imbalance to change DriftV. (A) Drift per spike

(Ea,T (1wa )/N̄0, with N̄0 being the trial-averaged spike number of the central neuron) as a function of p and τcross, when the spike trains have synchronous firing and

the firing rates of neurons are long-tailed distributed (Model Long Tail in Section 2; s = 1). Note that synchronous firing strengthens depression in this model. (B)

Vara (1wa ) ∝ [Ea (1wa )]
2, which is consistent with Equation 36. Different dots represent different (τcross,p) pairs that are uniformly distributed in the range of (A). In

(A,B), Ap = 2,Ad = 1. The size of the converging motif, and the simulation time and trials are the same as in Figure 4.
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FIGURE 10 | The scheme to classify auto-correlation structure under

synchronous firing. Blue curves represent the population firing rate (upper)

and the accumulative function of the population firing rate (lower) in the real

time. Blue dots (upper) represent the times when the synchronous events

occur, whose auto-correlation structure is quantified by their CV value

CVevents. Red dots (lower) represent the spikes in the real time and their

correspondences in the rescaled time, whose auto-correlation structure is

quantified by their CV value CVrescale.

(3) The temporal factors that influences CVevents change P-D
imbalance, thereby DriftV under heterogeneity of rates.

Indeed, we find that both ATSpikeNum and ATWithinEvent increase
CVrescale and don’t influence P-D imbalance (Supplementary
Figures 11A,B); while ATevents increases CVevents and may change
P-D imbalance especially when CVevents > 1 (Supplementary
Figures 11C,D). The influence of CVevents onto P-D imbalance
seems complicated, and depends on the values of τdelay, Ap and
Ad (see Supplementary Figure 12, the physical mechanisms will
be explained in Supplementary Material Section S5.2):

(1) Suppose during a synchronous event S0, the central neuron
fires at time t0. Because of the axonal delay τdelay, there
is usually a time interval between t0 and when the spikes
from non-central neurons arrive at the axonal terminal, and
the typical length of this interval is τdelay. If synchronous
events are not close to each other, so that no non-
central spikes from synchronous events other than S0

arrive at the central neuron during this interval (i.e.,
different synchronous events do not overlap with each
other), then Ea,T(1wa) will increases (or decreases) with
CVevents if Ap exp(τdelay/τSTDP) > Ad exp(−τdelay/τSTDP)
(or Ap exp(τdelay/τSTDP) < Ad exp(−τdelay/τSTDP)). In this
paper, typically τdelay ≪ τSTDP, so these conditions become
Ap > Ad or Ap < Ad.

(2) If synchronous events are allowed to overlap with each other,
then CVevents will increase the chance of this overlapping
when it is large (typically when CVevents > 1). In this case,
Ea,T(1wa) will decrease (or increase) withCVevents if τdelay >

0 (or τdelay < 0). See the meaning of τdelay < 0 in Figure 2B.

To get a better understanding on how heterogeneity of rates,
synchronous firing and auto-correlation structure interact with
each other, we used Model Sync-Auto-LongTail (see Section 2) to
generate spikes. In this model, for simplicity, the auto-correlation
structure in the rescaled time and the auto-correlation structure
of the occurrence of the synchronous events are respectively
controlled by a single parameter (i.e., CVrescale and CVevents).
We generated spike patterns using this model, and investigated
how the efficacy variability changes with model parameters
(Figure 11). The results validate our arguments above:

(1) CVrescale hardly influences P-D imbalance (Figure 11A,
lower panel).

(2) When the strength of firing events is adjusted so that
the potentiation and depression almost balance each other
(so that DriftV ≈ 0), the efficacy variability significantly
increases with CVrescale (Figure 11A, upper panel). However,
when the potentiation and depression are imbalanced, the
efficacy variability becomes hardly influenced by CVrescale

(Figure 11A, upper panel). This is because that CVrescale can
only increase DiffV, and can hardly influence DriftV. As
DiffV ∝ t while DriftV ∝ t2, the contribution of CVrescale

to efficacy variability after a long run is only obvious when
DriftV ≈ 0, which is realized at P-D balance.

(3) The influence of CVevents onto efficacy variability is non-
monotonically complicated (Figure 11B, upper panel). The
reason is that CVevents not only influences DiffV, but also
influences DriftV in a complicated way (Figure 11B, lower
panel), and DriftV is also influenced by p. Therefore,
potentiation and depression are balanced at different p values
for different CVevents values.

3.7. The Influence of Heterogeneity of
Cross-correlations onto DriftV
Heterogeneity of cross-correlations mainly influences efficacy
variability in DriftVmanner. Suppose the firing rate of the central
neuron is r0(t) = r0 · x0(t) and the firing rate of the ath non-
central neuron is ra(t) = ra · xa(t), with r0 and ra being their
time-averaged firing rates and 〈x0(t)〉 = 〈xa(t)〉 = 1 (here 〈·〉
represent time average), then similarly as Equation 33, we have

va = r0ra

∫ ∞

−∞
dτH(τ )Ca(−τdelay − τ ),

with Ca(τ ) = 〈x0(t)xa(t + τ )〉 being the unit cross-correlation
between the central neuron and the ath non-central neuron.
Therefore,

Vara(va) = r20Vara[ra

∫ ∞

−∞
dτH(τ )Ca(−τdelay − τ )], (38)

so the heterogeneity of Ca(τ ) influences DriftV together with the
heterogeneity of ra.
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FIGURE 11 | The influence of auto-correlation structure onto the efficacy variability under synchronous firing and heterogeneity of rates. (A) Upper:

Variance per spike as a function of p at different CVrescale, keeping CVevents = 0.71 and s = 1 (see Model Sync-Auto-LongTail in Section 2). Lower: the corresponding

mean efficacy changes per spike, which represent P-D imbalance. The arrows indicate the p value at which the mean efficacy change is almost zero (indicated by the

horizontal black line), so DriftV ≈ 0 at this point due to P-D balance. Error bars represent s.e.m. in normal scale and relative errors corresponding to s.e.m. in log scale.

(B) The same as (A) except that different lines represent different CVevents values, keeping CVrescale = 0.71. In (A,B), τcross = 2ms, Ap = 2, Ad = 1, τdelay = 1ms.

The size of the converging motif, as well as the simulation time and trials are the same as in Figure 4.

For simplicity, we did not investigate how the heterogeneity
of Ca(τ ) interact with other pattern structures. Under STDP, the
main effect of the heterogeneity of Ca(τ ) is to influence DriftV
with its interaction with the heterogeneity of firing rates through
Equation 38, which will not change even when the other pattern
statistics are considered. The influence of the heterogeneity of
Ca(τ ) onto DriftV can be understood by comparing Equation 38
with

r20Ea[

∫ ∞

−∞
dτH(τ )Ca(−τdelay− τ )]2Vara(r

2
a) =

Ea(va)
2

Ea(ra)2
Vara(ra),

which quantifies the DriftV caused by heterogeneity of rates
under P-D imbalance.

3.8. The Case When τdelay < 0
In the discussions above, we generally suppose that τdelay ≥
0, which means that the axonal delay for pre-synaptic spikes
is no smaller than the dendritic delay for post-synaptic back-
propagated spikes. Here we discuss the case when τdelay < 0, i.e.,
the dendritic delay is larger than the axonal delay.

To understand the relationship between the case τdelay > 0
and the case τdelay < 0, let us first consider a synapse from neuron
a to neuron b in the following two cases. Case I: suppose neuron
a (neuron b) fires a spike at time ta (tb), and Ap = A, Ad = B
in the STDP time window Equation 6. In this case, whether
the synapse is potentiated or depressed depends on the time
difference between tb and ta + τdelay (i.e., the sign of 1t1 ≡ tb −
(ta + τdelay)). Case II: now we let the spike delay become−τdelay,
and Ap = B, Ad = A in Equation 6, and we also reverse the spike

trains (just like showing the two neurons a backwardmovie), then
neuron a will fire at time T − ta (with T being the total duration
of the spike pattern), and neuron b will fire at time T − tb. In this
case, whether the synapse is potentiated or depressed depends
on the sign of 1t2 ≡ (T − tb) − ((T − ta) − τdelay) = −1t1.
If 1t1 > 0, then the synapse in Case I will be potentiated by
A exp(−1t1/τSTDP), and the synapse in Case II will be depressed
by −A exp(−1t1/τSTDP); if 1t1 < 0, then the synapse in Case
I will be depressed by −B exp(1t1/τSTDP), and the synapse in
Case II will be potentiated by B exp(1t1/τSTDP). After applying
this argument to every pair of spikes in the spike trains of the
central neuron and the ath non-central neuron in a converging
motif, we have that

1wa,p(Case I) = −1wa,d(Case II), (39)

1wa,d(Case I) = −1wa,p(Case II). (40)

Therefore, the total synaptic change 1wa = 1wa,p + 1wa,d

satisfies

1wa(Case I) = −1wa(Case II), (41)

which means that

Ea[1wa(Case I)] = −Ea[1wa(Case II)], (42)

but

Vara[1wa(Case I)] = Vara[1wa(Case II)]. (43)
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The spike trains generated by our statistical models (Section 2.3)
are all statistically time-reversal invariant (i.e., people cannot tell
whether a spike pattern is forward or backward by analyzing its
statistics). Therefore, from Equation 43, our results on how auto-
correlation structure, synchronous firing and heterogeneity of
rates influence the efficacy variability are all valid for τdelay < 0,
after replacing τdelay by |τdelay|. The influence of heterogeneity
of cross-correlations can be obtained by directly substituting
τdelay < 0 into Equation 38.

3.9. A Summary on the Efficacy Variability
in Converging Motifs
Here we summarize our results in the previous subsections on the
efficacy variability in converging motifs.

3.9.1. DiffV
(1) In stationary spike trains (i.e., spike trains with constant

trial-averaged firing rate over time) with homogeneity of
rates, DiffV gets large either when the spike trains get bursty
or strongly regular, and DiffV is smallest when CV is within
the range 0.3 ∼ 0.7 (Section 3.2). The only reason why DiffV
is large under strong regularity and homogeneity of rates
is transient cross-correlation. In stationary spike trains with
heterogeneity of rates, DiffV tends to monotonically increase
with CV (Supplementary Material Section S2), because
the transient cross-correlation under strong regularity is
destroyed by heterogeneity of rates.

(2) In stationary spike trains, heterogeneity of rates does not
strongly influence DiffV when the spike trains are bursty,
but discounts the increase of DiffV with the decrease of
CV under strong regularity (SupplementaryMaterial Section
S3).

(3) Synchronous firing usually increases DiffV, except when
τcross ≤ |τdelay| and each non-central neuron fires almost the
same number of spikes during a synchronous event (Section
3.3).

(4) Under synchronous firing, auto-correlation structure may
have a number of types, such as the broadness of the
distribution of the spike numbers a neuron fires in different
synchronous events (ATSpikeNum), the burstiness/regularity
of the pieces of spike trains within synchronous events
(ATWithinEvent), and the burstiness/regularity of the
occurrence of synchronous events (ATevents). We find
that broader distribution of spike number per neuron per
synchronous event, burstier spike trains within synchronous
events, and burstier occurrence of synchronous events
tend to increase DiffV (Section 3.4). These findings can be
concluded into a rule of thumb: the burstiness of spike trains
tends to increase DiffV, while the regularity tends to decrease
DiffV.

3.9.2. DriftV
(1) Auto-correlation structure in stationary spike trains does not

influence DriftV.
(2) Heterogeneity of rates makes use of P-D imbalance to

induce DriftV; and synchronous firing can change P-D
imbalance, thereby changing DriftV under heterogeneity of
rates (Section 3.5).

(3) Under synchronous firing, auto-correlation structure can
be classified into two classes using rescaled-time transform
(Figure 10): the factors that influence CVrescale (here,
ATSpikeNum and ATWithinEvent) and the factors that influence
CVevents (here, ATevents). The factors that influence CVrescale

do not change P-D imbalance, thereby nor DriftV under
heterogeneity of rates; while the factors that influence
CVevents change P-D imbalance, thereby DriftV under
heterogeneity of rates (Section 3.6). The influence of CVevents

onto P-D imbalance is complicated (see Supplementary
Materials Section S6.2 for detailed discussions); but if
synchronous events are not too close to each other, the
synapses will get stronger (or weaker) with the increase of
CVevents if Ap exp(τdelay/τSTDP) > Ad exp(−τdelay/τSTDP) (or
Ap exp(τdelay/τSTDP) < Ad exp(−τdelay/τSTDP)).

(4) Heterogeneity of cross-correlations can induce DriftV
together with heterogeneity of rates (Section 3.7).

4. DISCUSSION

In this paper, we systematically studied the influences of four
aspects of pattern structures (i.e., synchronous firing, auto-
correlation structure, heterogeneity of rates and heterogeneity
of cross-correlations, as well as their interactions) onto efficacy
variability under STDP, using spike generating models on
converging motifs. We separated efficacy variability into two
parts: the variability induced by the heterogeneity of change
rates of different synapses (DriftV), and the variability induced
by weight diffusion caused by stochasticity of spike trains
during learning (DiffV). Our main findings are that both
synchronous firing and burstiness in auto-correlation structure
tend to increase DiffV, heterogeneity of rates induces DriftV
when potentiation and depression in STDP are not balanced (P-
D imbalance), and heterogeneity of cross-correlations induces
DriftV together with heterogeneity of rates.

The reason why we focused on these four aspects of pattern
structures is that under STDP they are the only four that mainly
influence the lowest order of DiffV and DriftV: for DiffV we
only investigated the mean diffusion strength over synapses
(i.e., Ea(VarT(1wa)), with a being the index of non-central
neurons, and T representing integration over trials), neglecting
the possible heterogeneity of diffusion strengths for different
synapses; and for DriftV we did not consider correlations among
drift velocities of synapses. Strictly speaking, heterogeneity of
rates and heterogeneity of cross-correlations may not only make
different synapses drift at different velocities, but also make them
have different diffusion strengths. However, as DriftV ∝ t2 while
DiffV ∝ t, the heterogeneity of diffusion strengths caused by
them is only important when DriftV ≈ 0. For simplicity, we did
not seriously consider their influences onto the heterogeneity of
diffusion strengths in this study, but only briefly discussed it in
Supplementary Materials Section S6.

In this paper, the spike trains of the central neurons in
converging motifs are generated according to purely statistical
models, instead of integrating their inputs. By doing this, we
are able to focus to investigate the influence of spike pattern
statistics to the efficacy variability, without worrying about
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the feedback from synaptic changes to the spike trains of
the central neurons. As we mentioned in the introduction,
our spike trains are used to mimick the spike patterns of
recurrent networks in which the dynamics of the neurons are
almost the same. Although biological neurons do fire spikes
by integrating their inputs, we presume that if we replace
the central neurons in converging motifs with a biologically
more plausible model (such as integrate-and-fire neurons), the
difference between the obtained results from the results in this
paper will be limited. For example, if the spike patterns of the
pre-synaptic neurons have synchronous firing, then the post-
synaptic neuron will also be likely to fire immediately after
the synchronous events of the pre-synaptic neurons. The time
delay between the firing of the pre- and post-synaptic neurons
can be absorbed into the STDP parameter τdelay in our model.
If the pre-synaptic neurons fire burstily (regularly), the post-
synaptic neurons may also tend to fire burstily (regularly),
because of its stronger (regular) input fluctuation. Worsely, if
we replace the central neurons with integrate-and-fire neurons,
the post-synaptic spike trains will depend on neuronal model
parameters, and their statistics will also continuously change
during the plasticity of the synapses. These will make the results
less convincing.

In our STDP model, synaptic updatings do not depend on
the current weights, and the contributions of all spike pairs
are added together. We chose this STDP model largely because
of its simplicity, especially for analytic treatment. This form of
STDP has been used in the literature to study, for example, the
generation of functional maps (Song and Abbott, 2001; Widloski
and Fiete, 2014) and synfire chains (Jun and Jin, 2007; Fiete et al.,
2010) during development, the organization of feedforward or
recurrent connections to enhance the processing of correlation
or temporal information (Kistler and van Hemmen, 2000; Gilson
et al., 2009a,b), the generation of a negative sensory image
(Roberts and Bell, 2000), and the control of synchrony (Lubenov
and Siapas, 2008) and the evolution of connectivity (Babadi and
Abbott, 2013; Ocker et al., 2015) within a recurrent network. Our
work provides an angle to review these works, e.g., to understand
why these models work in spite of the noises of plasticity, to
investigate how the functional performances of STDP may be
influenced by the second-order statistics of spike patterns.

There has been literature about the influence of the second-
order spike pattern statistics onto the synaptic evolution
under STDP. The theoretical works using phenomenological
STDP models like ours usually focused on the generation of
input selectivity when a post-synaptic neuron or a recurrent
network is driven by two pools of inputs with different
cross-correlations (Gütig et al., 2003; Gilson et al., 2009a,b,c,
2010). There have been also analytical discussions about the
increase of the efficacy variability under Poisson spike trains
(Kempter et al., 1999; Gilson et al., 2009a). Comparing to
these works, our work has two aspects of contributions. Firstly,
we provide an angle to investigate the second-order statistics
of spike patterns in a physically intuitive way. To do this,
we separated the second-order statistics into four parts (i.e.,
synchronous firing, auto-correlation structure, heterogeneity of

rates and heterogeneity of cross-correlations, see Figure 2A),
and considered three types of auto-correlation structure (see
Figure 8) under spike patterns with synchronous events. All
these statistics have clear physical meanings, which helps to
build an qualitative understanding on spike patterns. Secondly,
we provide a theoretical framework to understand how each
of these second-order statistics influences efficacy variability.
DriftV under heterogeneity of rates and heterogeneity of cross-
correlations can be calculated using the trial-averaged synaptic
change rates (Equations 36, 38), which has been done in a
large body of literature (e.g., Kempter et al., 1999; Meffi et al.,
2006; Gilson et al., 2009a,b,c). To understand the influence
onto DiffV, we investigated the change of three parameters
(i.e., d, cI and cII) with pattern structures, each of which has
clear physical meaning (see Figure 3). This framework can also
be applied to study the influence of spike pattern structures
onto efficacy variability under other STDP rules. Therefore,
we believe our work will facilitate computational researchers
to understand the simulation results of their models, and also
provide a new angle for experimentalists to interpret their
observations.

The STDP time window may have a variety of forms of
complex realization, depending on synaptic types, spike patterns
and even locations of synapses on dendrites (Caporale and Dan,
2008), and may also depend on the current synaptic weight
(Bi and Poo, 1998). STDP may also have a variety of spike
pairing schemes (Burkitt et al., 2004; Morrison et al., 2008).
We used a STDP model with all-to-all pairing scheme in this
paper; and we presume that our results may be more sensitive
to the spike pairing scheme than to the shape of STDP time
window. Synchronous firing gathers more pre- and post-synaptic
spikes closer, which strengthens the STDP interactions between
them, so that the variability of spike trains will be more likely to
transform into the variability of synaptic weights. As a result, the
increase of DiffVwith synchronous firing seems to be universal as
long as STDP accomplishes large synaptic changes for spike pairs
that are adjacent in time. Stronger burstiness induces stronger
variability of spike times and also stronger correlations between
synaptic updatings caused by adjacent spikes (note the increased
d and cI in Figure 4), which may also increase DiffV under other
STDP time windows. However, in nearest neighbor spike pairing
schemes (Burkitt et al., 2004), a pre-synaptic (post-synaptic)
spike may shield other spikes immediately before (after) it from
STDP interactions, thereby reducing efficacy variability if spikes
are gathered too close by synchronous firing or bursts.

Although the influence of spike patterns varies across
systems, the concept of efficacy variability should be of
general importance. The stochasticity of synapses and neuronal
responses as well as the emergent heterogeneity of rates and
cross-correlations in network dynamics together make efficacy
variability an unavoidable nature of plasticity. Therefore, it is of
great meaning to understand how animals make use of efficacy
variability and get around of it in future researches. We believe
that the concept of efficacy variability not only provides a new
perspective to understand the function of plasticity, but is also a
new angle to review our current knowledge on learning.
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