
ORIGINAL RESEARCH
published: 04 March 2016

doi: 10.3389/fncom.2016.00020

Frontiers in Computational Neuroscience | www.frontiersin.org 1 March 2016 | Volume 10 | Article 20

Edited by:

Ramon Mariano Guevara,

Laboratoire Psychologie de la

Perception, France

Reviewed by:

Joana R. B. Cabral,

University of Oxford, UK

David Maximiliano Gomez,

Universidad de Chile, Chile

*Correspondence:

Antonio J. Ibáñez-Molina

anjoibanez@gmail.com

Received: 08 November 2015

Accepted: 18 February 2016

Published: 04 March 2016

Citation:

Ibáñez-Molina AJ and Iglesias-Parro S

(2016) Neurocomputational Model of

EEG Complexity during Mind

Wandering.

Front. Comput. Neurosci. 10:20.

doi: 10.3389/fncom.2016.00020

Neurocomputational Model of EEG
Complexity during Mind Wandering
Antonio J. Ibáñez-Molina* and Sergio Iglesias-Parro

Psychology Department, University of Jaén, Jaén, Spain

Mind wandering (MW) can be understood as a transient state in which attention drifts

from an external task to internal self-generated thoughts. MW has been associated with

the activation of the Default Mode Network (DMN). In addition, it has been shown that

the activity of the DMN is anti-correlated with activation in brain networks related to the

processing of external events (e.g., Salience network, SN). In this study, we present a

mean field model based on weakly coupled Kuramoto oscillators. We simulated the

oscillatory activity of the entire brain and explored the role of the interaction between

the nodes from the DMN and SN in MW states. External stimulation was added to the

network model in two opposite conditions. Stimuli could be presented when oscillators in

the SN showedmore internal coherence (synchrony) than in the DMN, or, on the contrary,

when the coherence in the SN was lower than in the DMN. The resulting phases of the

oscillators were analyzed and used to simulate EEG signals. Our results showed that

the structural complexity from both simulated and real data was higher when the model

was stimulated during periods in which DMN was more coherent than the SN. Overall,

our results provided a plausible mechanistic explanation to MW as a state in which high

coherence in the DMN partially suppresses the capacity of the system to process external

stimuli.

Keywords: neural dynamics, mind wandering, Kuramoto model, synchrony, EEG complexity

INTRODUCTION

Mind wandering (MW) is a transient cognitive state in which conscious attention is decoupled
from the external environment of an ongoing task in favor of focusing on intrinsic, self-generated
thoughts or images. This sensorial decoupling is associated with a reduction in the extent to which
we process external events (Smallwood et al., 2008; Kam et al., 2010; Smilek et al., 2010; Hu et al.,
2012; Mooneyham and Schooler, 2013). One immediate consequence that can be drawn from these
attentional fluctuations to the ongoing task is that the same type of stimuli, presented at different
times, can cause distinct effects on the dynamics of the waking brain. This study explores the idea
that the consequences on brain dynamics of the presentation of a given stimuli would depend on
the interplay between internally/externally oriented cognitive modes.

MW episodes are known to originate from transitions between externally guided and self-
generated thoughts, and they cover about 30–50% of the waking time (Killingsworth and Gilbert,
2010). Given the pervasive presence of MW and because it seems to be hard-wired into normal
human brain function (Smallwood and Schooler, 2006), there has been growing interest in this
phenomenon. Despite important progress has been made, the underlying mechanism by which
decoupled thoughts emerge has yet to be determined (Scott et al., 2015).
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One relevant focus of research has been the neural mechanism
that allows the emergence of unrelated states to the task at hand.
In this line, some studies have shown that fluctuations between
external attention (EA) and MW can result from dynamical
interactions of distributed brain areas operating in large-scale
networks (Greicius et al., 2008; Bressler and Menon, 2010). MW
has been related to the activation of a default mode network
(DMN) that comprises the precuneus/posterior cingulated,
posterior parietal and ventromedial prefrontal cortices (Buckner
et al., 2008). A high level of activation in the DMN has been
found during task unrelated to experimental conditions or tasks
involving internally oriented cognition such as autobiographical
memory, prospection, mental navigation, and theory of mind
(Spreng et al., 2010). Interestingly, when participants are focused
on a specific task, the DMN is less active, while other areas of
the cortex seem to participate in a higher degree (Raichle et al.,
2001). Specifically, the activation of a salience network (SN) has
been related to cognitive states during externally guided tasks.
SN responds to the degree of subjective salience of cognitive,
homeostatic, or emotional stimuli (Seeley et al., 2007).

Research should consider not only functional correlations and
cognitive states, but also network interactions. In this sense, a
basic observation about the interplay between the DMN and
the SN is that they are reciprocally related (Fox et al., 2005;
Deco et al., 2011) so that if a person is focused on an externally
demanding task, the SN is more active than the DMN; on
the contrary, when cognitive processes are independent of the
external environment, the SN is less active than the DMN (Sharp
et al., 2011). This anti-correlated pattern has led to the suggestion
that the two brain networks may perform complementary or
even opposing functions (Fransson, 2005). For example, the
inability to suppress DMN activity can produce attentional
lapses and impairs task performance (Mason et al., 2007) while
DMN hyperactivity has been related to depression, anxiety, and
attention deficit (Whitfield-Gabrieli and Ford, 2012). Moreover,
there is evidence that the SN integrity modulates the activity of
the DMN (Bonnelle et al., 2012).

Fox et al. (2005) suggested that an important aspect in
the interaction between the DMN and the SN is the level of
synchrony between the regions of each network. Synchronization
between neural assemblies is widely accepted as a basic
mechanism of communication in the brain (Lachaux et al., 1999;
Varela et al., 2001; e.g., Engel et al., 2013; Marzetti et al., 2014).
Functional connectivity in the DMN has been linked to power
and phase synchronization between distant neural populations
of the network (e.g., de Pasquale et al., 2010; Sadaghiani et al.,
2010; Knyazev, 2013). In the case of the DMN and SN, because
they are anti-correlated, the level of connectivity or synchrony
in one network might trigger a mechanism that decreases the
level of synchrony in the other network. In this line, it has been
proposed that the Anterior Insula, which is part of the SN, might
be responsible for an increase in the functional interplay between
the networks which results in a deactivation of the DMN (see
Uddin et al., 2014 for a review).

Therefore, it is reasonable to think that the functional
relationship between the DMN and SN occurs through a
mechanism that provides anti-correlations between their levels

of internal synchrony (Uddin et al., 2009; Jilka et al., 2014). In the
present study we have explored this possibility with a network
of Kuramoto oscillators as a neurocomputational model. Hence,
each oscillator is a functional node of the network. Note that
the terms “node” and “oscillator” are indistinctly used in this
manuscript. The dynamics of the model are used to simulate sets
of EEGs that are compared with real EEG data. The rationale
we follow is that if MW is the result of a state in which the
DMN is highly synchronized and the SN is desynchronized,
then, a neural model of MW with dynamics that include
these characteristics will produce signals that parallels real data
collected during MW. Moreover, in this paper, we compare
the complexity (cortical heterogeneity or desynchronization) of
simulated EEGs with the real EEGs from Ibáñez-Molina and
Iglesias-Parro (2014). In the following paragraphs we present and
justify the neurocomputational model we selected to construct
the simulated series of EEGs.

One fruitful model to simulate synchronic behaviors in the
large-scale brain networks is the Kuramoto model (Kuramoto,
1984; Strogatz, 2000, 2001). It can simulate the phase evolution
of several weakly coupled oscillators that represent the mean
oscillatory behavior of different cortical regions (mean-field
model).

A significant development in this model was to introduce
dynamics with properties of real brains (Cabral et al., 2011,
2014). In particular, connectivity between oscillators and
location in space are calculated according to real structural
data obtained with diffusion tensor imaging (Hagmann et al.,
2008). This information allows the introduction of time delays
between oscillators to simulate the effects of speed transmission
between different anatomical regions. With a model of these
characteristics, Cabral et al. (2011, 2014) found that a Kuramoto
model produces a metastable state that can be directly related to
dynamics of the DMN. Metastability, in this framework, refers
to the capacity of a group of oscillators to partially synchronize
their activity without become locked into a steady state. This
flexible dynamics makes possible cortical oscillators to rapidly
switch between different states through the reorganization of its
component areas into different coordinated networks (Bressler
and Kelso, 2001; Shanahan, 2010; Deco et al., 2011; Váša et al.,
2015). The most used indicator of metastability in the Kuramoto
networks is the variability in time (standard deviation) of the
global phase coherence of oscillators. In the next sections,
following Wildie and Shanahan (2012), metastability has been
considered as the variability of phase coherence and has been
calculated as the standard deviation of the Kuramoto order
parameter r(t).

In a further development of the model, Hellyer et al.,
(2014) introduced a modification in which they manipulated
the connectivity between the oscillators of the SN to simulate
externally driven states. Interestingly, they found that when the
connectivity between the oscillators of the SN was reinforced, the
network of oscillators reached a higher level of synchrony and
the metastability of the system decreased. Hence, if we accept
that EA and MW are related to SN and DMN, respectively,
then these findings suggest that transitions between EA and MW
are characterized by changes in the general metastability of the
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cortex. In line with this hypothesis, Ibáñez-Molina and Iglesias-
Parro (2014) found that MW states produced more irregular
or complex EEG patterns than EA. In their experiment, they
registered the EEG of participants while they were watching
video clips, and associated long EEG segments to either MW
or focused attention on the content of the videos. After that,
the fractal dimension of the time series was calculated as an
estimator of complexity. In this context, it is accepted that
EEG complexity can be related to the amount of underlying
independent neural sources and, hence, it can be sensitive
to cortical synchrony (for a review, see Stam, 2005). Their
results indicated that the complexity of EEGs when participants
were focused on the content of the videos was significantly
lower for most recording sites than complexity of EEG series
associated with a MW state. These results suggest that MW
arises in the presence of a heterogeneous pattern of neural
activation, and similarly to what Hellyer et al. (2014) found,
it might indicate that the general cortical synchrony would be
reduced, when compared with signals from externally generated
thoughts.

Taken together these results, we arrive to the starting point of
the present work. We aim to investigate whether sets of coupled
Kuramoto oscillators are able to flexibly produce outputs that
can be related to either EA or MW states. To reach this goal,
we have explored the structural similarity between simulated
EEGs obtained with the model and real EEGs during externally
and internally generated thoughts using EEG data sets from
Ibáñez-Molina and Iglesias-Parro (2014).

As in Hellyer et al. (2014), we considered that, when a
stimulus is presented to the system, the SN will increase its
internal connectivity and the model will switch to a different
state. However, Hellyer did not explicitly take into account the
competing dynamics between the DMN and the SN. As we
mentioned above, both networks tend to be anti-correlated even
in resting conditions; and then, the modifications we introduced
in the model were based on this experimental observation. In
particular, the level of synchrony in one network at time t is taken
as a variable to reduce the internal connectivity of the competing
network, and the interconnectivity between the oscillators of both
networks (see Figure 1). For example, if the synchrony in the
DMN is very high, the model will tend to reduce the connectivity
in the SN and between the nodes of the DMN and SN. In our
study, we took these self-regulated dynamics as the baseline of
the model.

In a second step, we simulated the presentation of external
events by means of an increase in the internal connectivity
of the SN. Experimental evidence has shown that one of the
functions of the SN is to facilitate the processing of external
events. Once a stimulus reaches the cortex, the SN activates
a process of identification and executive functions directed to
establish externally directed attention. In this process, the SN also
deactivates the DMN (Sridharan et al., 2008; Menon and Uddin,
2010). Hence, it is possible to introduce physiologically plausible
external stimulation to the model by a transient reinforcement of
the SN connectivity.

This modified model permits to simulate the presentation
of stimuli in two different critical conditions. First, to simulate

FIGURE 1 | Schematic representation of the functional interactions in

the model. Circles represent examples of five oscillators/nodes. SN and DMN

are represented by red and blue respectively. The node in white indicates that

it does not belong to the SN or DMN. We introduced the following types of

dynamical interactions: (A) If the node does not belong to the SN or the DMN,

the connectivity was fixed during simulations and it corresponded to the

structural connectivity Cij . (B) The phase of nodes from the DMN competed

with nodes from the SN. (C) The phase of nodes from the SN competed with

nodes from the DMN. (D) Connectivity between nodes in the SN is

proportionally weakened by the coherence of the DMN. (E) Connectivity

between nodes in the DMN is proportionally weakened by the coherence of

the SN.

external stimulation when oscillators from the SN are more
synchronized than those from the DMN. The other option is to
model the presentation of stimuli when the internal synchrony
of the DMN is above the level of synchrony in the SN. This
distinction is important because we assume that, when the SN
is more synchronized, the state of the system will parallel EA.
Then, any stimulus presented during this state will be expected
to produce a pattern that can be related to external awareness
of events. On the contrary, if DMN exhibits higher synchrony
than the SN, the system will be in an internally driven mode, and
external events will drive the dynamics of the model toward a
state that resembles MW. Then, the predictions from our model
will be:

a) The Simulation of the EA condition will produce more
globally synchronized states than MW. Stimulation when the
SN is less synchronized than the DMNwill result in dynamics
with low global synchrony. On the contrary, stimulation
when the SN is more synchronized, then the DMN will drive
the system to dynamics with high global synchrony.

b) The complexity of the simulated EEGs will correspond to the
complexity of real data in Ibáñez-Molina and Iglesias-Parro.
Lower levels of complexity are expected in most sites for the
externally driven state of the model when compared with the
MW state.
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METHODS

The Kuramoto Model
The model for MW consisted in a set of differential equations in
the following form:

dθi

dt
= ω + k

N
∑

j=1

aijcij sin
(

θj
(

t − τij
)

− θi(t)
)

, i = 1, . . . ,N.

The Kuramoto model has been used to simulate synchronized
behaviors in a wide variety of domains. Here we have adapted
the version from Cabral et al. (2011). These authors were the
first to introduce time-delays between brain areas in a Kuramoto
network. The model defines the dynamics of a network with 66
oscillators (or nodes) coupled together according to human white
matter tractography (Hagmann et al., 2008). Each node represent
a cortical region or the brain located in a three dimensional space.
The length and fiber density served as the basis for the elaboration
of the connection strength (cij) and conduction delays (τij)
between oscillators. These matrices have been widely reported
and might be available upon request (Hagmann et al., 2008). Θi

is the phase of the ith oscillator on its limit cycle and ω is its
natural frequency in radians (60 Hz). The control parameter k
is the global excitatory coupling strength, a parameter that scales
all coupling strengths. N is the total number of oscillators.

Finally, aij is a dynamical modifier of the connectivity
between oscillators ranging from 0 to 1. aij take values that are
proportional to the degree of synchrony of the SN and DMN. For
a Kuramotomodel, the degree of synchrony between oscillators is
conveniently measured by an order parameter (r(t)) that satisfies:

r(t)eiψ =
1

N

N
∑

j=1

eiθj ,

where 0 ≤ r(t) ≤ 1 measures the phase coherence of the N
oscillators population (henceforth r(t) and phase coherence will
be used as synonyms), andψ is the average phase (Acebrón et al.,
2005). Critically, aij depends on the phase coherence of the SN
and DMN sub-networks. The order parameter is calculated over
the SN and DMN networks separately and defined as rsn(t) and
rdmn(t), respectively. Hence, aij is a matrix that change in time
and it follows the rules:

aij =























1, if i and j /∈ {SN , DMN}

−rsn
(

t − τij
)

b, if i ∈ {DMN} , and j ∈ {SN}

−rdmn

(

t − τij
)

b, if i ∈ {SN} and j ∈ {DMN}

1− rsn
(

t − τij
)

d, if i and j ∈ {DMN}

1− rdmn

(

t − τij
)

d, if i and j ∈ {SN}

where b and d are scaling parameters. Rules for the dynamics
of aijwere selected to match the above mentioned experimental
observations. The level of synchrony in one network is taken as
a variable to reduce the internal connectivity of the competing
network (terms −rsn

(

t − τij
)

b and −rdmn

(

t − τij
)

b) , or to
modulate the interconnectivity between the two networks (terms
1 − rsn

(

t − τij
)

d and 1 − rdmn

(

t − τij
)

d). For example, one

oscillator from the SN reduces its connectivity with each
oscillator of the DMN proportionally to rdmn(t − τij) and
modulates its connectivity with each oscillator of the SN
proportionally to rsn(t − τij).

Following Hellyer et al. (2014), each sub-network consisted
of six key oscillators (three from each hemisphere). Oscillators
of the SN were located in the superior parietal cortex, pars
opercularis and superior frontal gyrus. Oscillators of the DMN
were located in the inferior parietal cortex, rostral anterior
cingulate cortex and isthmus of the cingulate cortex.

There are only four free parameters in our model. The values
of these parameters were selected so that the global dynamics
exhibited high metastability (standard deviation of global phase
coherence) and anti-correlations between the SN and DMN. For
ω = 60 Hz (gamma rhythm), these two conditions were evident
with τ̂ = 3.5 ms, k = 10, b = 0.5, and d = 1. Here, τ̂ refers
here to the mean value of τij. Note that any change in τ̂ can
be considered a change in the mean velocity of the conduction
delays between oscillators. However, it is important to note that
other parameter configurations produced similar behaviors in the
model. For example, we found approximately the same effects for
the 2.5< τ̂ < 5 and 8< k< 12 ranges.

The Kuramoto model was simulated ten times for each
condition (EA and MW). Each simulation consisted of a baseline
of 10 and 50 s in which the SN was stimulated to produce EA or
MW (see Figure 2A). As in Cabral et al. (2014), we used an Euler
scheme in which the time step of numerical integrations was set
to 0.1 ms. In Figures 2B,C, we magnify two segments of the post
stimulation period for the MW and EA conditions respectively.
In each of these panels we show the phase coherence dynamics
for the SN and for the DMN.

Simulation Conditions for EA and MW
In order to simulate EA and MW states in the model, it is
necessary to introduce external perturbations that represent
sensory stimuli. In the present work we operationalized the
activation of a specific cognitive state by increasing the
connectivity strength between the nodes of the SN. Specifically,
this was conducted by multiplying these connectivity values in cij
by a specific magnitude (s).

We simulated external perturbations in the model in two
conditions:

a) EA stimulation:

scij when i and j oscillators ǫ {SN} and rdmn(t)< rsn(t)

b) MW stimulation:

scij when i and j oscillators ǫ {SN} and rdmn(t)> rsn(t)
where, s represents the strength of the external stimulation and

cij is the connection strength matrix.
Thus, the difference between EA and MW simulations

critically depended on the time period at which the stimulation
was presented. We rationalized that, when coherence in the SN
was higher than in the DMN, stimulation would result in an EA-
like state. However, when coherence in the SN was lower than in
the DMN, stimulation would produce a MW-like state.
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FIGURE 2 | Dynamics of the model. (A) Global phase coherence (r) for External Attention (rdmn(t) < rsn (t)) and Mind Wandering (rdmn (t) > rsn (t)) in one simulation

run (10 s of baseline followed by 20 first s of the stimulation period). (B) Phase coherence for the DMN and the SN during a section of stimulation (magnification from s

28) when rdmn (t) > rsn (t). (C) Phase coherence for the DMN and the SN during a section of stimulation (magnification from s 28) when rdmn (t) < rsn(t).

In our simulations, s = 10 and it modeled the strength
of external stimulation. Hence, stimulation periods were
simulated on each condition by changing cij by scij when the
aforementioned inequalities where found. In the first versions
of our model, EA inequalities were met much more frequently
than those of MW. Obviously, it resulted in longer stimulation
periods for EA than for MW. To set statistically equivalent time
periods of stimulation in both conditions, we introduced discrete
stimuli in which a maximum stimulus length was set to 100
ms. Additionally, we provided with an after stimulus refractory
period for each condition, which was set to 100 ms for EA and 0.5
ms for MW states. Mean values and metastability of r(t), rsn(t),
and rdmn(t) were the dependent variables. As stated before, the
degree of metastability was calculated as the standard deviation
of these parameters.

EEG Simulations
EEG activity from 32 sensors was simulated for each model
according to the following weighted sum of the activity in each
source (oscillator):

xi(t) =
∑N

j=1
wij sin

(

θi(t)
)

+ εi (t) , i = 1, . . . , P,

where xi(t) is the time series from sensor ith, and wij is
the weighted contribution of oscillator jth in sensor ith. Each
wij was calculated using a standard forward model algorithm
implemented in the software Besa 2000 (see Hoechstetter et al.,
2004). The model provides a solution of the projection of the
functional sources (oscillators) on the sensors distributed on
scalp. The contribution of each oscillator to each sensor was
obtained in two steps. First, each oscillator was located in a head
model according with its Talairach coordinates. After this step,
each oscillator is considered a cortical source with a particular
contribution to each sensor. This contribution depended on the
forward model implemented in the software. Second, the weights

of these sources were normalized for each sensor to a maximum
value of 1. This matrix is available upon request. The term εi(t)
represents uncorrelated white Gaussian noise with 20 dB SNR
added to the signal. The resulting EEG series were used as inputs
for a customMatlab script developed for the calculation of fractal
complexity (Higuchi Fractal Dimension, HFD) of the signals.
HFD is a measure of irregularity for discrete time series. The
algorithm obtains new series by sampling the original signal at
different intervals (k). For each k, the lengths, L(k), of the signals
are calculated normalizing the sums of the differences of the
values, with a distance of k and a starting point m (m = 1, 2,...,
k). Finally, a double logarithmic plot, ln L(k) vs. ln k, is used
to estimate the actual dimension value of the signal. The range
of values for HFD lies between 1 and 2. Dimensions close to
1 correspond to simple curves such as a sinusoidal wave, and
values close to 2 correspond to signals with randomly distributed
values (Higuchi, 1988). Values of HFD were obtained for each
EEG epoch using a 128 ms sliding window with 13 ms of time
overlapping. The scaling parameter kmax was set to 18. The
series of HFD values we obtained for each segment were averaged
across sensors. These values were averaged across simulations in
each condition for statistical analyses.

RESULTS

Since the dynamics of the model were expected to be complex
and variable on each realization, we analyzed the results using
standard statistical approaches of correlation and analysis of
variance. We provide between brackets the values of statistical
estimators and its associated probability.

General Dynamics of the Model: Baseline
As can be seen in Figure 2A, our model was highly metastable in
its baseline, showing variations in r(t) ranging almost all possible
values (approximately from 0.2 to 0.8). To test if DMN and
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SN were anti-correlated, Spearman rank order coefficient was
calculated between phase coherence of the DMN and the SN
(rdmn(t) and rsn(t) respectively). The first 1500 samples were
eliminated because they reflected the influence of the initial
conditions. Series were windowed (1000 samples) and Spearman
was computed for each non-overlapping window. Thus, for each
of the series we obtained 98 correlation coefficients. In order
to obtain a more stable estimation of ρ, Spearman coefficients
were averaged across the simulations and, next, the 98 obtained
coefficients were averaged. Averages were made using the Fisher
transform (Fisher, 1973; Corey et al., 1998). We found a
significant negative correlation between networks (rs = −0.396;
p< 0.01).

Comparisons between Baseline and
Stimulation Periods
In order to compare the global behavior of the model between
baseline and stimulation periods, paired t-tests were performed,
with the mean and the standard deviation of phase coherence
of simulations as dependent variables. The mean and the
standard deviation of phase coherence were obtained from
the entire segments (during baseline as well as during post
stimulation period) and averaged across simulations. Obtained
results showed that, during EA, r(t) mean increased during
stimulation [t(9) = −39.93; p < 0.01]. However, in MW, r(t)
mean significantly decreased after stimulation [t(9) = 223.05;
p < 0.01]. The variability of r(t) decreased after stimulation
during EA [t(9) = 49.87; p < 0.01] as well as in MW [t(9)
= 44.32; p < 0.01]. Taken together, these results indicated
opposite effects of stimulation on the mean phase coherence (an
increase of coherence in EA and a decrease of coherence in MW)
accompanied by a global reduction of the metastability (standard
deviation of phase coherence).

For each condition (EA vs. MW), we also compared the
behavior of each sub-network (SN and DMN) in the transitions
between baseline and stimulation. To do this, for EA as well as
for MW, the pre-post stimulation behavior of SN and the DMN
were analyzed by paired t-tests using the mean (see Figure 3A)
and the standard deviation of phase coherence (see Figure 3B) of
simulations as dependent variables.

In the EA condition, we found a significant increase in the
mean of phase coherence of SN after stimulation [t(9) =−103.08;
p < 0.01] as well as in the mean of phase coherence of DMN
[t(9) = −14.73; p < 0.01]. On the other hand, in the MW
condition, the mean of the phase coherence of the SN decreased
significantly after stimulation [t(9) = 549.79; p < 0.01] but the
mean of the phase coherence of the DMN increased significantly
after stimulation [t(9) =−403.65; p< 0.01]. These analyses allow
us to qualify the previous results of the global model. Thus,
stimulation produced an increase in coherence during EA both
for the DMN and for the SN, but there was a dissociation in phase
coherence during MW after stimulation. Specifically, although
stimulation increased coherence for the DMN, the stimulation
reduced coherence for the SN.

Regarding the variability of phase coherence, we found a
significant reduction in metastability after stimulation, both for

SN and DMN. Specifically, in the EA condition, we found a
significant reduction in variability for the SN and DMN after
stimulation [t(9) = 29.94; p < 0.01; t(9) = 18.62; p < 0.01,
respectively]. Similarly, in the MW condition, both the SN and
DMN variability decreased after stimulation [t(9) = 204.63; p <
0.01; t(9) = 116.20; p< 0.01, respectively].

Comparisons between EA and MW in
Stimulation Periods
In order to have a closer picture of the global behavior of the
model during the stimulation, t-test were conducted to compare
the mean phase coherence and the variability of phase coherence
of EA and MW. Thus, when r(t) was compared for EA and MW
during stimulation, r(t) was significantly higher in EA than in
MW [t(18) = 752.06; p< 0.01]. The variability of phase coherence
was significantly lower in EA than in MW [t(18) =−1057.76; p<
0.01]. Thus, during stimulation in EA, the system globally showed
an increase in coherence and a reduction of the metastability.

When the SN and DMN are analyzed separately, different
dynamics were found for EA and MW conditions. During EA,
the obtained results showed that r(t) was significantly higher
in the SN than in the DMN [t(18) = −201.53; p < 0.01; see
Figure 3A]. However, the variability of phase coherence was
significantly lower in the SN than in the DMN [t(18) = 30.48;
p < 0.01; see Figure 3B]. On the contrary, when the system
was set in a MW state, coherence was significantly lower in
the SN than in the DMN [t(18) = 752.06; p < 0.01]. Finally,
variability of phase coherence was significantly lower in the
SN than in the DMN [t(18) = 1057.76; p < 0.01]. Hence,
when stimulation occurred in EA states, coherence was higher
for SN, but when stimulation occurred during MW, coherence
was higher for DMN. Interestingly, during stimulation, the SN
showed a lower metastability than the DMN in both conditions
(EA and MW).

Comparisons between EEG Simulations
and Experimental Data
In order to compare simulated and empirical data, a measure
of signal complexity, Higuchi fractal dimension (HFD), was
calculated from EEG data. The HFD mean was obtained from
empirical dataset for the EA condition on each channel (M =

1.47, SD= 0.02) and for MW (M = 1.53, SD= 0.03). In a similar
way, HFD was calculated from simulated data during EA (M =

1.81, SD= 0.05) and MW (M = 1.90, SD= 0.05).
With the aim to compare the empirical HFD during EA

with the HFD in MW an ANOVA was conducted. Obtained
results [F(1, 58) = 59.89; p < 0.01] showed that complexity was
significantly higher during MW. Same analysis conducted with
simulated data revealed the same data pattern [F(1, 58) = 40.94; p
< 0.01].

Furthermore, a discriminant analysis was conducted to
predict whether a cognitive state was EA or MW. Predictor
variables were the empirical and simulated cortical HFDs. In
order to check the hypothesis that the covariance matrices
do not differ between EA and MW groups, a Box’s M test
was performed. Results indicated that the statistical assumption
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FIGURE 3 | Phase coherence mean and variability during stimulation periods. (A) Mean of the phase coherence (rPOST – rPRE ) for the DMN and the SN when

rdmn>rsn (MW) and rdmn<rsn(EA). (B) Phase coherence variability (mPOST – mPRE ) for the DMN and the SN when rdmn>rsn (MW) and rdmn<rsn (EA).

FIGURE 4 | Scatterplot of empirical and simulated measures of signal

complexity (HFD) at each EEG channel for EA (blue squares) and MW

(red dots).

of equality of covariance matrices was met (M = 1.10; p
= 0.78). A canonical correlation of 0.842 suggests that the
linear combination of empirical and simulated HFD explains
the 70.89% of the variation in the cognitive state (i.e., EA vs.
MW, see Figure 4). The Wilks’ lambda (λ = 0.29; p < 0.01)
indicated that the proportion of variance explained by the model
is significant. The standardized canonical discriminant function
coefficients (0.88 for empirical HFD and 0.79 for simulated
HFD) indicated that both predictors were almost equally good
but independent predictors of group membership. Following
the suggestion of an anonymous reviewer, we repeated the
analysis, but using the empirical HFD as the only predictor.
In this case we found an explained variance of 50.40%. This
reduction in explained variance may indicate that the inclusion
of simulated data improves the classification of cognitive
states beyond that obtained by considering only empirical
HFD.

The cross-validation results using a jack-knife process of
classification revealed a hit ratio of 95%. That is, the 95% of
channels were classified correctly into EA or MW conditions.

External attention episodes were classified with better accuracy
(96.7%) than MW ones (93.3%).

DISCUSSION

In this study, we wanted to explore how the brain effect of
a perturbation depends on the timing of synchrony between
networks. We have proposed a large-scale neural network
model to simulate the complexity of brain signals generated
during EA and MW. In this vein, we introduced a Kuramoto
network of coupled oscillators to model the activity of large
cortical areas during EA and MW states. The parameters of
the model were adjusted so that the general phase coherence
of the oscillators before stimulation exhibited a metastable
state. In addition, nodes belonging to the SN and DMN were
allowed to compete according with the level of coherence
in each cluster. This condition was introduced in agreement
with experimental evidence showing that the activation of
the SN and DMN is anti-correlated in an off-task context
(Fox et al., 2005; Buckner et al., 2008; Sharp et al., 2011;
Jilka et al., 2014). EA and MW were simulated by transient
increases in the connectivity of the SN. Specifically, MW was
simulated by increasing the connectivity of the SN when rdmn(t)
was higher than rsn(t), and externally focused attention was
simulated by increasing the connectivity in the SN when the
rdmn(t)was lower than the rsn(t). Simulated EEGs obtained
with output phases of the nodes in the Kuramoto network
for both conditions, revealed the same complexity patterns
(HFD) in EA and MW than the real EEG registered from
participants.

This neurocomputational model exhibited metastable
coherence between the nodes representing each cortical area
during the resting state phase. This metastability is considered
essential to information processing and communication (Yang
et al., 2012) and to subjective cognitive states and consciousness
(Hudetz et al., 2014). Moreover, metastability was a necessary
condition to achieve a state that resembled a resting state
function of the brain (see Cabral et al., 2011, 2014; Hellyer et al.,
2014). To obtain a metastable state of the system, we adjusted
the parameters for the mean time delay and the global coupling
between oscillators.
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The other key feature of the resting state is that coherence
values in the SN and the DMN are anti-correlated. We took
into account this experimental observation and modified the
Kuramoto model to capture the effect. The connectivity between
a given pair of nodes was allowed to change according to
the coherence of the sub-network where they belong. To the
best of our knowledge, this is the first time that coherence
values, here r(t), from sub-networks are used as inputs to
regulate the functional connectivity in the dynamics of the
model. By using this procedure, we overcame one of the caveats
of the models proposed so far, which is that connectivity
between each pair of nodes depends on fixed and structure-
based parameters (for a review see Nakagawa et al., 2013).
Therefore, our baseline network model showed patterns of anti-
correlation between the SN and DMN. The understanding of the
mechanisms that generate the dynamics of complex systems is
important because it can provide useful information regarding
the functional characteristics of the brain. In the present paper
we have tried to offer a fine-grained description of global
dynamics of the model using the behavior (phase coherence
mean and variability) of the SN and DMN sub-networks. In
this regard, anticorrelation between SN and DMN sub-networks
during resting state was an important feature of the model
because it causes a high competitive state between the different
sub-networks that are involved in different functions or tasks
(Deco et al., 2009). These dynamics resembles what Shanahan
(2010) or Wildie and Shanahan (2012) called chimera states,
characterized by coexistent synchronized and desynchronized
subsystems.

Important for our goals, external inputs presented to the
system produced different outcomes depending on the relative
strength of the connections in the SN and DMN. First, when
the SN was more coherent than the DMN, an increase in
the SN connectivity resulted in a global enhancement of the
r(t), in which the rsn(t) was higher than the rdmn(t). This
result is equivalent to those reported by Hellyer et al. (2014)
using a similar model and approach. They found a match
between simulated data and results from an experiment where
fMRI was registered during an attentional demanding task.
Second, when we simulated the appearance of an external
event during more coherent states of DMN relative to SN, we
found a reduction in the global synchrony of the system, r(t).
Additionally, even though the SN connectivity was transiently
increased, rsn(t) showed a significant reduction relative to the
rdmn(t). This surprising effect indicated that when the DMN
is more coherent than the SN, the entire system is in a state
in which a sudden reinforcement of the sub-network that
process external events cannot easily overcome the functional
dominance of the DMN. Furthermore, as shown in Figure 2B,
rdmn(t) remained higher than the rsn(t) which tended to be
higher even in the baseline dynamics of the simulations.
Since the coherence of the DMN persisted after sequential
reinforcements of the SN in this condition, we can conclude
that the simulations presented here share the main functional
characteristics of a MW state, in which external events are
superficially processed and their presentation does not seem
to challenge the dominance of the DMN. Then, our results

are in agreement with the finding of a reduced processing of
external events during DMN activation (sensorial decoupling).
For example, Smallwood et al. (2012) reported that when the
BOLD signal was high in regions of the DMN, actions related
to external events were slower than actions that were not based
on perceptual inputs. Similarly, Baird et al. (2014) have shown
reduced inter trial coherence during MW when compared with
focused attention. These authors suggested that, during MW, the
DMN is active and the cortex is not entirely ready to process
external stimuli.

Importantly, the results of the simulations we report are
supported by experimental data obtained in our lab from EA
and MW states (Ibáñez-Molina and Iglesias-Parro, 2014). We
found consistent electrode-by-electrode correlation between real
and simulated data. Specifically, the complexity of the EEGs
registered when participants reported to be in a MW state
resembled those of the simulated EEGs when the system was
perturbed during a period in which the rdmn(t) was higher than
rsn(t). Moreover, the complexity of the EEGs during EA was
similar to the complexity of the EEGs generated from the network
when rdmn(t) was lower than rsn(t). The comparison between
the model and experimental results helps to understand why the
complexity of the EEGs during MW is high for most electrodes
distributed across the scalp when compared with the complexity
obtained during EA. EEG complexity, measured as irregularity
in the structure of the series, has been related to the amount of
independent cortical generators (e.g., Lutzenberger et al., 1995;
Escudero et al., 2015). Thus, well-integrated cortical patterns
of activity would be associated with lower values of complexity
than less organized cortical activation. This led Ibáñez-Molina
and Iglesias-Parro (2014) to conclude that MW consists in a
state in which cortical generators are diverse and the resulting
EEG signals are highly irregular. In this study, we are able to
qualify this source of irregularity because we found that the
simulated data that better matched EEG data in MW were
those from stimuli presentation when rdmn(t) was higher than
rsn(t). Then, we suggest that when the activity of the DMN
is dominant, the global activity of the system might consist of
cortical activity with reduced coherence that produces irregular
patterns of brain signals. This is in line with other observations
reported in the literature. For example, Mayhew et al. (2013),
found that the high cortical variability at rest, when the DMN
is more active, was reduced during the presentation of simple
visual and auditory stimuli. When the DMN is active, the
activity of the cortex is irregular when compared with on task
conditions.

Simulation is a powerful tool that provides important
insights about the relationship structure-function of the brain.
However, as it is necessary to simplify brain structure and
dynamics, the scope of our findings has limitations. The
computational model we used (a variant of Kuramoto model
to take into account conduction delays) has showed rather
relevant research results (Breakspear et al., 2010; Cabral
et al., 2011, 2014). However, as a model, is a simplified
representation of a complex dynamical system. In that sense,
others abstractions are also possible such as Wilson–Cowan
or Lotka–Volterra models. The use of a low-dimensional
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connectivity matrix, in which the SN and DMN are identified
with specific groups of nodes, is far from real neural
networks. In the future, it will be important to develop more
realistic connectivity matrices with more nodes representing
additional structures in the brain. From a functional point
of view, one limitation in our study is that we took into
consideration only two sub-networks and it would be desirable
to explore the interactions between more sub-networks into
the general network. Finally, future work should examine
multi-frequency interactions between nodes arising from the
models.
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