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In a network with a mixture of different electrophysiological types of neurons linked by

excitatory and inhibitory connections, temporal evolution leads through repeated epochs

of intensive global activity separated by intervals with low activity level. This behavior

mimics “up” and “down” states, experimentally observed in cortical tissues in absence

of external stimuli. We interpret global dynamical features in terms of individual dynamics

of the neurons. In particular, we observe that the crucial role both in interruption and in

resumption of global activity is played by distributions of the membrane recovery variable

within the network. We also demonstrate that the behavior of neurons is more influenced

by their presynaptic environment in the network than by their formal types, assigned in

accordance with their response to constant current.
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1. INTRODUCTION

Networks of cortical neurons display sustained activity even in the absence of external input.
Evidence of this self-sustained activity (SSA) comes from in vitro preparations of cortical tissue
slices (Sanchez-Vives and McCormick, 2000; Mao et al., 2001; Cossart et al., 2003; Shu et al.,
2003) or cell cultures (Plenz and Aertsen, 1996; Wagenaar et al., 2006), and in vivo cortical “slab”
preparations (Burns andWebb, 1979; Timofeev et al., 2000; Lemieux et al., 2014). Sustained cortical
activity is also observed in situations in which the brain is essentially disconnected from external
stimuli, as in slow-wave sleep (SWS) and anesthesia (Steriade et al., 1993; Contreras and Steriade,
1995; Steriade et al., 2001).

Electrophysiological studies have shown that SSA states in the above situations share the same
basic features (Sanchez-Vives and McCormick, 2000; Mao et al., 2001; Steriade et al., 2001; Cossart
et al., 2003; Shu et al., 2003; Kaufman et al., 2014). As revealed by EEG or local field potential
measurements, they are characterized by slow (< 1Hz) network oscillations, consisting of epochs
of high network activity intercalated with periods of nearly absent network activity. There is a
close correspondence between this slow network oscillation and the underlying behavior of single
network neurons (as revealed by intracellular measurements). During near quiescent network
activity single neurons have hyperpolarized membrane potentials close to resting state (down state)

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fncom.2016.00023
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2016.00023&domain=pdf&date_stamp=2016-03-23
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:antonior@ffclrp.usp.br
http://dx.doi.org/10.3389/fncom.2016.00023
http://journal.frontiersin.org/article/10.3389/fncom.2016.00023/abstract
http://loop.frontiersin.org/people/177833/overview
http://loop.frontiersin.org/people/149523/overview
http://loop.frontiersin.org/people/7532/overview
http://loop.frontiersin.org/people/173517/overview


Tomov et al. Sustained Oscillatory States in Cortical Models

and during high network activity single neurons have depolarized
membrane potentials close to firing threshold (up state).

Some hypotheses have been put forward to explain how self-
sustained up and down states can originate and be maintained in
cortical networks, among them synaptic noise (Timofeev et al.,
2000; Holcman and Tsodyks, 2006; Parga and Abbott, 2007),
spontaneously firing neurons (Compte et al., 2003; Hill and
Tononi, 2005) and an interplay between two cortical layers, one
of them displaying SSA and the other displaying transient activity
(Destexhe, 2009). However, the specific mechanisms that might
implement them are still subject of experimental investigation
and no definite conclusion could be reached yet (Compte, 2006;
Mann et al., 2009; Chauvette et al., 2010; Destexhe and Contreras,
2011; Harris and Thiele, 2011).

Recently, we reported the emergence of SSA states in a
computational model of the cortex with hierarchical andmodular
architecture composed of neurons of different intrinsic firing
behaviors (Tomov et al., 2014). The neurons belonged to
the five main electrophysiological cell classes found in the
cortex (Connors et al., 1982; McCormick et al., 1985; Nowak
et al., 2003; Contreras, 2004): the excitatory regular spiking,
chattering and intrinsically bursting neurons, and the inhibitory
fast spiking and low threshold spiking neurons. In the regions
of the parameter space where the inhibitory synaptic strength
exceeds the excitatory synaptic one, i.e., the regions where there
is a balance between excitation and inhibition (Shadlen and
Newsome, 1994; van Vreeswijk and Sompolinsky, 1996; Amit
and Brunel, 1997; van Vreeswijk and Sompolinsky, 1998), we
observed SSA states with spiking characteristics similar to the
ones observed experimentally. The detected SSA states were
transiently chaotic, possessed finite lifetimes, and displayed large-
scale network activity oscillations with alternating high and low
global-activity epochs followed by abrupt unpredictable decay
toward the resting state. The lifetime expectancy depended on
network modularity, on mixture of neurons of different types,
and on excitatory and inhibitory synaptic strengths. For fixed
network parameters the lifetimes of the transient SSA states
obeyed exponential distributions.

Remarkably, the states with longest lifetime expectations in
the region of parameter space with physiologically plausible
mean network firing rates displayed collective oscillatory
behavior that resembled self-sustained up and down states
found in cortical networks. Global frequencies generated by
our network models (∼ 4 − 7Hz) were higher than the slow
frequencies (< 1Hz) observed both in vitro and in vivo, that
may be due to factors like network size, absence of time delays
in the network connections or proper adjustment of synaptic
time constants. However, the very presence of these sustained
collective oscillations in the broad parameter range demands an
investigation of the mechanisms responsible for their origin and
characteristics.

Below, we analyze the properties of the network model and
explain our previous observations. To understand the origin of
the exponential distribution of the SSA lifetimes, we develop a
phenomenological global description of this transiently chaotic
state and discuss the importance of mixture of different neuronal
types in the network. In the framework of this description we

see that the presence of modular structures in the network
architecture facilitates the sustainment of activity. Further, we
relate the mechanisms of rise and fall of global activity to
properties of individual neurons of the network. Within our
model, each neuron is characterized by two variables: voltage
and recovery. Fixing the parameter combination that ensures
sufficiently long SSA, we find out that the onset and temporary
cessation of activity in the ensemble of neurons are governed
by instantaneous distributions of the recovery variable among its
members. This effect is explained on the basis of the single neuron
dynamics. Proceeding to the ensemble we see that embedding
into a network is able to change qualitatively the spiking patterns
of the units, so that they do not conform anymore to the
classification based on the single neuron dynamics.

Therefore, by dissecting the model we are able to determine
network and intrinsic neuronal mechanisms responsible for the
self-sustained oscillatory (up and down) behavior observed in the
simulations. This provides a way to bridge between network and
neuronal activity states and how they influence each other.

2. METHODS

2.1. Network: Construction and Measures
2.1.1. Modular Architecture
Our studies are focused on activity in neuronal networks that,
mimicking the cortical network at meso- and macroscopic
scales, possess hierarchical modular structure. Since inhibitory
couplings are known to be typically present only in the short-
range connections, whereas excitatory couplings are detected
both in local and in long-range connections (Binzegger et al.,
2004; Voges et al., 2010), we demand that all intermodular links
are excitatory. Besides, in accordance with anatomical evidence
(Boucsein et al., 2011), there should be more connections
between close modules than between faraway ones.

The hierarchical modular network is generated by the
following top-down algorithm (Kaiser and Hilgetag, 2010;
Wang et al., 2011): We start from randomly connected
N= 210 neurons, with the physiologically motivated ratio
of excitatory to inhibitory neurons 4:1; for every pair of
randomly chosen neurons i and j, the probability of connection
i → j is 0.01. Thereby, separate connection probabilities are,
respectively, pe= 0.008 for excitatory connections and pi= 0.002
for inhibitory ones. We assign to this network the hierarchical
level H= 0.

At the next step, we randomly divide all neurons into two
modules of equal size. All connections within the modules are
preserved. Since inhibitory connections between the modules
are not allowed, all such links are rewired: cut (detached from
postsynaptic neurons) and redirected back into the modules of
their presynaptic neurons, where they are attached randomly.
The fate of each excitatory link between the modules is decided
at random: with probability pr = 0.1 a connection is retained,
and with probability (1 − pr)= 0.9 it is cut and rewired back
into the module with the presynaptic neuron. In this way
we obtain two modules, sparsely interconnected by excitatory
links, and assign to this network the level H= 1. Although
the total numbers of excitatory and inhibitory connections are
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preserved during this procedure, rewiringmakes the connectivity
inhomogeneous: Inside each module the density of inhibitory
connections is doubled. The density of excitatory connections
inside the modules is increased by the factor 2-pr , whereas
the density of excitatory connections between the modules is
decreased and becomes pepr .

Repeating the same procedure: halving the existing modules
and rewiring the intermodular links, so that all inhibitory
connections and 90% of the excitatory connections between the
modules are rewired back, we obtain networks withH= 2,3. . .; a
network with hierarchical level H has 2H modules.

Figure 1 shows exemplary networks generated by this
algorithm for hierarchical levels H = 0, 1 and 2.

If during the procedure a pair of modules has been obtained
by halving a larger one, we say that these two modules are
“hierarchically close”; otherwise they are “hierarchically distant.”
In the network of hierarchical level H = 2 shown in the right
panel of Figure 5, for each of the four modules there are one
close and two distant ones; the hierarchically close pairs are
(1 and 2) and (3 and 4). Hierarchical distance has explicit
quantitative meaning: Due to the procedure of cutting and
rewiring, the number of excitatory connections between the close
modules is almost twice (by the factor 1.9) higher than between
the distant ones. At the same time, this procedure rises the level of
inhibition in the modules: The density of inhibitory connections
inside the modules atH= 2 is 4 times higher than it was atH= 0:
in the latter case a chosen neuron could obtain input from any
inhibitory neuron in the network with probability pi; at H= 2
only inhibitory neurons from the same module matter, but for
each of them the probability of being presynaptic to the chosen
neuron is 4pi.

2.2. Network Measures
Here, we introduce measures that we use below for evaluation
of the network characteristics. For the neuron i, the spike train

is represented as a series of δ functions, xi(t) =
∑

{t
f
i }

δ(t − t
f
i )

with {t
f
i } being the set of time instants at which the neuron i fires

a spike. The mean firing rate for a set of N neurons over a time
interval T is defined as

〈f 〉 =
1

N

N
∑

i= 1

1

T

∫

T
xi(t

′)dt′,

and the time-dependent firing rate for the same set as

f (t;1t) =
1

N

N
∑

i= 1

∫ t+1t

t
xi(t

′)dt′.

Below, we fix 1t at 0.01 ms and shorten f (t;1t) to f (t). To
activate the network, we apply within limited time intervals
stimulating external current to various groups of neurons. When
the stimulation is switched off, the time count is reset at zero. The
lifetime of a neuron i is defined as the time of the last spike in its
spike train:

tlasti = max{t
f
i } ,

and the network lifetime is the longest lifetime among all
neurons: L ≡ max{tlasti : i = 1, ..,N}.

While analyzing the oscillations, we divide each record into
different epochs according to the following procedure: First, for
each module j in the network, we determine its maximal firing
rate over the duration of the entire simulation, Mj = max{fj(t)},
and identify the start (end) of high activity as the time value, at
which the firing rate f (t) in that module exceeds (falls below) 5%
ofMj.

In terms of the entire network, we define, respectively, the
beginning of high global activity as its start in any module,
and the end as the moment when the activity ceases in every
module. In this way, we put four markers at different stages of
network activity: the beginning, the midpoint and the end of each
epoch of high global activity, and the middle of an epoch of low
activity. Absence of high activity is interpreted as low activity
(unless the system is not in its stable state of rest in which all
activity is terminated, and which cannot be left without external
stimulation). Themiddle of the epoch of low activity is, therefore,
defined as the midpoint between the end of the previous epoch of
high activity and the beginning of the next one.

Further, we will need to characterize distributions of
individual neuronal variables within the network. For the
recovery variable u (see below) the distributionU(u, δu; t) at time
t is defined as

U(u, δu; t) =
1

N

N
∑

i= 1

∫ u+δu

u
δ(ui(t)− x)dx . (1)

where summation is performed over the whole network.

FIGURE 1 | Exemplary connection matrices for networks with hierarchical levels H = 0, 1, and 2, constructed by the top-down procedure. Black dots:

excitatory connections. Red dots: inhibitory connections. Note that the latter never interconnect different modules.
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2.3. Neuron Models
Having generated a network, we need to populate each of its
sites by a functioning neuron. For that purpose we use the model
proposed in Izhikevich (2003). Its detailed analysis can be found
in Izhikevich (2007); here, we review the basic features, relevant
for our studies. Within this approach, the firing behavior of
a single neuron is characterized by two variables: membrane
voltage v and recovery variable u, that at v < vpeak = 30mV
obey the coupled differential equations

v̇ = 0.04v2 + 5v+ 140
︸ ︷︷ ︸

−u+ I(t)

= f(v) − u+ I(t) (2)

u̇ = a (b v− u),

and at the threshold v(t) = vpeak the variables are instantaneously
reset according to the rule

v(t) 7→ c, u(t) 7→ u(t)+ d. (3)

Depending on the values of the four parameters (a, b, c, d),
the firing pattern of the model neuron belongs to one of the
five electrophysiological classes used in the simulations: the
regular spiking (RS), intrinsically bursting (IB), and chattering
(CH) neurons are excitatory, whereas the fast spiking (FS) and
low-threshold spiking (LTS) ones are inhibitory (see Table 1).
Notation describes characteristic firing patterns at constant
input: of the five types, only the CH and IB neurons are capable to
fire patches (bursts) of spikes: all other neurons issue sequences
of solitary spikes.

For a neuron embedded in a network, the synaptic input
current varies in time. We model I(t) as

Isyn(t) = Gex(t)(Eex − v)+ Gin(t)(Ein − v), (4)

where Gex(t) is the total conductance of all excitatory synapses
of the neuron, Gin(t) is the total conductance of its inhibitory
synapses, Eex and Ein are the reversal potentials of, respectively,
excitatory and inhibitory synapses.

Whenever a presynaptic excitatory or inhibitory neuron fires,
the total excitatory or inhibitory conductances Gex/in(t) are
increased by fixed increments gex/in. Otherwise, they decay
exponentially with time constants τex/in:

d

dt
Gex/in(t) = −

Gex/in(t)

τex/in
+ gex/in

∑

j∈presyn

t
f
j <t

δ(t − t
f
j ), (5)

TABLE 1 | Parameters (a,b,c,d) characterizing five electrophysiological

cell classes used in the simulations.

a b c d

RS 0.02 0.2 −65 8

CH 0.02 0.2 −50 2

IB 0.02 0.2 −55 4

FS 0.1 0.2 −65 2

LTS 0.02 0.25 −65 2

where t
f
j denotes the firing time of a presynaptic neuron j.

The values Eex= 0 mV, Ein=−80 mV, τex= 5 ms and τin= 6
ms, that we employ in Equations (4) and (5), are representative of
AMPA and GABAA receptor-mediated excitatory and inhibitory
synapses, respectively. Synaptic delays are neglected. Throughout
the whole paper we consider a single pair gex= 0.15, gin= 1.0
of increments of the synaptic conductances: at these values,
oscillatory self-sustained activity was steadily reproduced in the
studied network (Tomov et al., 2014).

For comparison, we present a few computational results
for a network that features the same topology but obeys a
different dynamical system for each neuron: the AdEx (adaptive
exponential integrate and fire)model (Brette andGerstner, 2005),
governed by the equations:

C v̇ = −gL(v− EL)+ gL1T exp(
v− vT

1T
)

︸ ︷︷ ︸

−u+ I(t)

f(v) (6)

τu u̇ = a (v− EL)− u,

where at the threshold v(t) = vT, the variables are
instantaneously reset:

v(t) 7→ vr, u(t) 7→ u(t)+ b. (7)

The choice of parameters is based on (Naud et al., 2008; Destexhe,
2009) with few modifications: all neurons share C = 200,
EL = − 70, 1T = 2, vT = −30, a = 2; τu = 200, vr = −60;
excitatory neurons have gL = 12 and b = 300 whereas inhibitory
neurons have gL = 10 and b = 0.

Synaptic inputs to the AdEx neurons are modeled by
Equations (4) and (5); the increments gex/in used for the network
with AdEx neurons are 15 and 70, respectively.

2.4. Ensemble of Trajectories
We intend to obtain an adequate and sufficiently informative
picture of the oscillatory SSA: an apparently irregular time-
dependent process that lacks periodicity and looks chaotic.
Numerical experiments confirm that minor changes in initial
conditions for just a few neurons may not only change the order
in which the neurons enter and leave the active state, but also
strongly affect the duration of the SSA as a whole.

Sensitivity to minute details of initial state does not
allow to draw far-reaching conclusions from properties of
single numerical trajectories. Exhaustive analysis in the 3N-
dimensional phase space of the discontinuous dynamical
system at N= 210 seems hardly feasible. However, statistical
descriptions, based on distributions in a sufficiently large
ensemble of networks that share the topology but differ by
their preparation (duration and intensity of initial stimulation,
location of stimulated neurons in the network, etc.) prove to be
quite robust.

For preparation of ensembles we do not choose initial
conditions at random in the high-dimensional phase space
of the network: a representative sampling would be hardly
available computationally. Instead, we start at the state of rest,
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and stimulate randomly taken groups of neurons with constant
external current. After the onset of global activity in the network,
we switch the stimulation off and let the network evolve freely.
This procedure results in a sort of “importance sampling”: it leads
the system to initial positions, that are close to typical pathways
in the “physiologically reasonable” part of its phase space, i.e.,
presumably close to segments of long-living SSA trajectories. We
create ensembles of such initial conditions by varying

a) the proportion of randomly chosen stimulated neurons: 1,
1/2, 1/8, 1/16;

b) the amplitude of the external current from Istim= 10 to
Istim = 20; and

c) the duration of stimulation from 50 to 300 ms.

In the latter case, the range of variation by far exceeds the
typical interval of approximately 100ms between two consecutive
epochs of global activity in the network. These measures enable
us to obtain ensembles of trajectories with robust, reproducible
statistical characteristics.

2.5. Auxiliary Ensemble Along the
Reference Trajectory
Ensembles of trajectories created with the help of the above
procedure yield global characteristics of dynamics but say only
a little about the local structure of the phase space in the
neighborhood of the chaotic set. To resolve this structure, we
create an auxiliary ensemble in the following way.

1. At fixed parameter values we take from the ensemble a
single orbit with SSA lifetime larger than 2000 ms (over 20
subsequent epochs of high global activity); this ensures that
the orbit stays close to the chaotic set sufficiently long. Below,
we call this orbit a reference trajectoryR(t).

2. OnR(t), we choose fifty equidistant positions Pk, k = 1, .., 50
at the time values

Pk = R(t0 + k1t) (8)

with t0= 370 ms and 1t= 7 ms. The offset ensures that by
the time t0 the reference trajectory has reached the region of
the chaotic set (this has been established visually from the
irregular shape of oscillations). The choice of 1t enables us
to have within each epoch of global activity and subsequent
inactivity ≈15 positions Pk: a reasonably dense covering of
R(t).

3. In each position the system is perturbed six hundred times,
by stimulating for 3 ms each eighth neuron with the external
input current Iext= 10. For every perturbation the 128
stimulated neurons are chosen at random. The stimulation
interval is much shorter than the characteristic time of the
system≈ 100 ms, therefore within it the perturbed orbits stay
sufficiently close to the reference trajectory.

4. After the perturbation the system is left to evolve freely, and
the resulting lifetime is recorded.

This local procedure creates 50 sets of “secondary” initial
conditions, each one with 600 points close to one of Pk. Since,
by construction, all these sets lie at different locations along

the reference trajectory, they provide information about local
dynamics near the chaotic state, and, in particular, on the rates
of escape from it.

In Figure 2 we show the projection of the reference trajectory
R(t) and positions of perturbations Pk on the plane of two
artificial collective coordinates 〈v〉 and 〈u〉: instantaneous mean
values of, respectively, voltage and membrane recovery variable
over all 210 neurons.

For the numerical simulations of the network we have used the
original C++ code. Data analysis has been conducted in Matlab.

3. RESULTS

3.1. SSA: Network Perspective
3.1.1. Preliminaries
In Tomov et al. (2014) we observed that in the broad range of
values of increments of synaptic conductances, initial stimulation
of the system led to repeated epochs of intense correlated activity,
separated by time intervals in which the majority of the neurons
did not fire at all or fired seldom. Dynamics was aperiodic;
the interval between the starting points of consecutive epochs
of activity was typically in the range from 100 to 110 ms.
After a certain time, the process abruptly ended with complete
termination of activity: the system found itself at the stable state
of rest. Remarkably, the entire duration of the process, as well as
the number of the observed epochs of high activity, were highly
sensitive to initial conditions: a minor variation in e.g., the length
or strength of the initial stimulation often replaced a process
with only a few such epochs by a process with several dozens
of alternating onsets and breakdowns of activity, or vice versa.
There seemed to be no precursor of the forthcoming termination
of SSA: the last epochs of global activity qualitatively differed
from all preceding ones neither in amplitude, nor in duration.
We conjectured that the observed oscillatory SSA states were
transiently chaotic: that in the phase space of the system there
was a non-attracting chaotic invariant set (chaotic saddle) of zero
measure, and that the generic trajectories did not stay in the

FIGURE 2 | Reference trajectory R(t) on the phase plane of averaged

values of voltage and membrane recovery variable. Pluses: positions of

perturbations Pk along R(t). Gray region: approximate location of the “hole”

(see explanations in the text). R: state of rest.
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vicinity of that set forever, but, after a shorter or longer motion
along it, left it for the state of rest.

3.1.2. Phenomenology
We start with a random network of 210 neurons. Of them,
20% are inhibitory LTS neurons and 80% are excitatory ones:
a mixture of 80% regular spiking neurons and 20% chattering
neurons. The network is not divided into modules: H= 0.

Results of simulations show that after the end of stimulation
the network displays a series (from several to several hundreds)
of alternating epochs of global activity and inactivity that, on the
level of separate neurons, do not reproduce each other and seem
completely irregular. The series is followed by abrupt relaxation
to the state of rest: in fact, activity is transiently self-sustained.
During the active phase, projections of trajectories in the phase
space of the system remind typical examples of deterministic
chaos. The trajectory in Figure 2 is reminiscent e.g., of the Rössler
attractor (Rössler, 1976). However, conventional indicators of
chaos like Lyapunov exponents and fractal dimensions of the
chaotic set are hardly applicable here due, first, to the high order
(> 3000 variables) of the dynamical system and, second, to the
finite lifetime of individual trajectories, which in many cases
is too short to gather sufficient statistics. Hence, we are forced
to use indirect evidence for our conclusions on the character
of dynamics: our judgments are based on distributions of the
activity lifetimes in the network. The lifetime here and below
is understood as the length of time interval between the end of
stimulation and the firing of the very last spike anywhere in the
network.

We observe that a minute change in initial conditions (a small
variation in the duration or strength of the stimulation) typically
results in a strong—sometimes by orders of magnitude—
variation of the lifetime. Besides, it turns out that for the
sufficiently large ensemble of initial conditions, the distribution
of lifetimes is exponential: the number n(T) of systems with
lifetime larger than T approximately obeys the dependence

n(T) ∼ e−κT (9)

A typical example is shown in Figure 3 the distribution of
lifetimes for an ensemble of 3× 104 trajectories. For the non-
attracting chaotic set, κ is the escape rate: In an ensemble of
transiently chaotic trajectories, the value of τdec = κ−1 defines
the characteristic time of decay of SSA in ms. If the network
composition and the parameter values are fixed, the fitted value of
κ , within numerical accuracy, appears to be the same for various
sets of initial conditions; the prefactor and the exact shape of the
curve may vary from a set to a set. Variation of parameters gex
and gin results in variation of the value of κ , but the exponential
character of the distribution persists.

The effects observed: sensitive dependence of individual
trajectories on initial conditions, and exponential distribution
of lifetimes in the large ensemble of trajectories, are two
characteristic attributes of the so-called transient chaos (Lai and
Tél, 2011). Based on this, we conjecture that the oscillatory
self-sustained activity in the network is transiently chaotic.

The escape rate κ is a global characteristics of the chaotic set.
It does not tell whether the trajectories leave that set uniformly

FIGURE 3 | Distribution of lifetimes of SSA for 3×104 initial conditions

obtained by perturbations of the reference trajectory. Inset: Logarithmic

representation of the ordinate.

[like in case e.g., of radioactive decay, where in equal time
intervals equal proportions of particles break up, and the number
of survivors obeys the law (9)], or there are some preferential
positions in the phase space for the termination of chaotic
evolution. To find it out, we take a closer look at the local
structure of the neighborhood of the chaotic set. For this purpose,
we fix the parameter values gex= 0.15 and gin= 1, choose a
sufficiently long realization of SSA which we call the reference
trajectory R(t), and create the auxiliary ensemble of trajectories
near R(t) with the help of the procedure introduced in Methods
(see Section 2.5).

If vicinities of all segments of the reference trajectory would
offer the same possibility of immediate escape to the state of
rest, the lifetimes of trajectories originating from different local
sets would be comparable. Our numerical data unambiguously
state that this is not the case. Rather, they indicate that escape
occurs only from a relatively small local region responsible for
the instability, to which we shall refer as a “hole.” In Figure 2

the approximate location of this region is indicated in gray. Each
passage of the ensemble of trajectories past the “hole” results
in the loss of some approximately constant proportion of the
ensemble; these orbits leave the ensemble and soon land at the
state of rest. Ensembles of trajectories that start at local sets
situated near the entrance to the “hole,” tend to have shorter
average lifetimes than ensembles that originate from local sets
situated far from it.

Results of local investigation are graphically represented in
Figure 4. The raster plot in the bottom panel shows the spiking
activity of the network when the latter traverses the reference
trajectory R(t). The green lines within the raster plot define
the positions at (t0 + k1t) where the local perturbations
were generated. The top row of Figure 4 presents examples of
the lifetime distributions for local sets of “secondary” initial
conditions at various perturbation positions Pk. Unlike Figure 3,
the distributions are non-monotonic and exhibit local maxima
(peaks). The diagram in the middle of Figure 4 presents the
lifetimes for the first and second local peak (respectively in
blue and red) at varying perturbation positions. The latter are
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FIGURE 4 | Probing the neighborhood of the chaotic set. Bottom panel: Raster plot of the spiking activity in the network during the motion on the reference

trajectory. Green lines: positions of perturbation along the reference trajectory (see text for details). Top panel: Exemplary distributions of lifetimes at different

perturbation positions. Middle panel: Dependence of the first two peaks in distributions of lifetimes on the position of perturbation along the reference trajectory. Red:

first peak; blue: second peak.

aligned with the raster plot at the bottom, in accordance with
Equation (8).

In the raster plot, the time interval between the starts
or ends of two consecutive epochs of high network activity
is roughly about 100 ms; we denote it by τ . For the fixed
network architecture and fixed values of parameters, the value
of τ does not depend strongly on the initial conditions, and
appears to be the typical time that the trajectory needs to
perform one turn along the chaotic set. On the fictitious phase
plane of 〈v〉 vs. 〈u〉 sketched in Figure 2, τ is the time that
a system requires for one big loop. This description in terms
of averaged variables, is, of course, oversimplified and rough:
it ignores the complicated topology of the chaotic region in
the high-dimensional phase space; nevertheless, it appears to be
compatible with the observations.

The peaks in the distributions from the top row of Figure 4
confirm that in every position certain lifetimes are favored. The
difference between the most probable lifetimes at the first and
the second peaks delivers the familiar time value of ≈ 100
ms. The same holds for the difference between the lifetimes
at any two subsequent peaks in the distributions on the top
of the figure. When the perturbation position Pj is shifted
along the reference curve R(t) (middle panel, cf. also Figure 2),
the values of the most probable lifetimes vary, and, despite
fluctuations, display the clear tendency: gradual decrease in
the peak lifetimes is followed by large jumps. Those jumps
indicate the passage through subregion(s) fromwhere trajectories
tend to escape, i.e., the “hole(s).” Since the reference trajectory
is sufficiently long and makes many turns in the fictitious
phase plane, it repeatedly traverses the neighborhood of the

“hole.” Trajectories starting from perturbed initial conditions
roughly follow R(t), and also arrive at the “hole,” where some
of them escape from the ensemble. The survivors have to
accomplish a new oscillatory cycle before they arrive at the
“hole” again; during this time the ensemble suffers (almost) no
losses.

The closer the perturbation position is to the “hole,” the
shorter is the lifetime of trajectories that escape the chaotic
region at the first passage: the lifetime at the first peak. The
lifetimes at the subsequent peaks are accordingly shifted by τ : the
remaining trajectories have to perform another oscillation until
they reach the “hole” again. When the perturbation position is
moved past the “hole,” the formerly second peak becomes the
first one, the third peak becomes the second one etc.; therefore,
the lifetimes at the distribution peaks acquire the increment ≈
τ (cf. perturbation positions P12, P27, and P43 in Figure 4).
The heights of different peaks within the distributions indicate
the topological complexity of the chaotic region: in general,
there might be more than one “hole.” For example, in the
distribution corresponding to the perturbation position P40, the
amplitude of the third peak is distinctly higher than that of
the second peak. This might be due to the existence of two
different “holes” with different local escape rates corresponding,
e.g., to passage past two saddle points with different strengths
of instability, or due to complex folding and stretching in the
vicinity of the chaotic set. In any case, chaotic mixing during
the motion along R(t) appears to be strong enough: at every
passage across the “hole(s)” the prehistory of trajectories seems
to play no role, and at each time the same proportion of them
leaves the ensemble. Therefore, the escape rate κ , as a global
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characteristic of the non-attracting chaotic set, is well defined,
and the joint histogram of lifetime distributions for all fifty local
sets of secondary initial conditions taken together, as represented
in Figure 3, displays nearly monotonic dependence close to
exponential decay.

During each passage near the “hole” the ensemble loses the
proportion 1–e−κτ ≈ 0.16 of its instantaneous size. The local
perturbation procedure discloses the position of the “hole” along
the reference trajectory: it is always situated at the end of an
epoch of high global network activity. As we discuss in the next
section, at this crucial dynamical stage the activity of the network
is sustained only by moderately active neurons, for which the
majority of the occurring spikes do not result in spikes of their
postsynaptic neurons.

3.1.3. Role of Modularity in Maintaining the SSA
In Tomov et al. (2014) we observed that modularity favored
SSA. Each module can be seen as a random network, sparsely
connected to other modules. Depending on its neuronal
composition, each module can sustain activity for a certain
time, whereas sparse excitatory coupling enables the modules
to activate each other in alternating succession. Hence, there is

a probability that each module, before decaying itself to rest,
(re)activates a neighboring one. This viewpoint conforms with
the above phenomenological analysis, when we assume that every
module possesses its own “hole.” If a module falls into its “hole”
while a neighboring module is still active, there is a chance that
the former will be reactivated by the latter. Hence, for activity
to die out, the modules should enter their “holes” approximately
simultaneously; asynchrony between the modules would sustain
the activity.

This effect is illustrated by the sample raster plot in Figure 5A

for a network with four modules. The blue lines indicate
beginnings of epochs of high network activity within a module,
and the red lines denote the respective ends of these epochs. By
the time ≈300 the modules 3 and 4 stop firing; slightly later,
the firing in them is (non-simultaneously) resumed, apparently
under the influence of the still active module 1. Observing further
evolution of the network we see that the SSA in themodules 3 and
4 ceases completely at t ≈ 500 ms for more than 100 ms, before
being reactivated by signals from modules 1 and 2.

The chances of reactivation depend on the number of
excitatory connections from the active module to the inactive
one.While constructing the network (cf. Section 2.1 inMethods),

FIGURE 5 | Synchronization and temporal shifts between modules. The network of modularity level H = 2 (see Figure 1), consists of LTS inhibitory neurons and

RS excitatory neurons. (A) Sample raster plot of activity in a network. The blue and red lines indicate, respectively, the beginning and end of epochs of high network

activity. (B) Histograms of the difference 1ij between the ends of the last active epoch in the modules i and j (i, j = 1, 2,3,4) from 4× 103 trials.
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we made a distinction between the hierarchically close and
hierarchically distant modules: in the considered example, the
excitatory connectivity between the close modules is nearly twice
as high as between the distant ones. Hence, for hierarchically
close modules the probability of mutual reactivation in the case
when one of them falls into the “hole” is distinctly higher than for
the modules that are hierarchically distant.

This conjecture is corroborated by Figure 5 that represents the
histograms of temporal differences 1ij between the endpoints of
the last active epochs, respectively, in modules i and j (i, j =

1, 2, 3, 4). The histograms were computed for all pairs of modules
over 212 different initial conditions.

Conversely, if we compare the time differences between the
moments when the modules enter their “holes” in the very
last activity epoch, the probability to observe a noticeable time
difference is higher for modules that are hierarchically distant.
This is confirmed by the distributions of 112 and 134 from
Figure 5B. In any case, however, this time difference remains
small compared to the duration of the epochs of low network
activity.

Summarizing, the explained mechanism of stabilization of
SSA is twofold:
(1) through excitatory intermodular connections, the modules
are able to mutually reactivate each other, so that cessation of
activity in one of them can be reversed due to the influence of
the neighboring modules.
(2) due to sparseness of connections between the modules, the

coupling between them is too weak to induce the full synchrony.
Therefore, the events (onset and decay of the active epoch) in
different modules do not coincide in time. As a consequence,
when activity decays in one of the modules, it is often still present
in one or several of the other modules, and there are good
chances that the neighbors will awake the dormant module to
new activity.

In this situation, an increase of the overall connectivity would
enhance the first aspect but definitely lower the second one.
Higher intermodular connectivity can impose synchrony which
will be harmful in the long run: when activity in all modules
synchronously halts, nobody is left to initiate the revival.

3.2. SSA: Single Neuron Perspective
3.2.1. Firing Patterns: Chattering of Non-chattering

Neurons
Now we shall look at the inner dynamics of SSA from the
point of view of its individual participants. Figure 6 presents
a typical oscillatory SSA state in the network. Its top panel
(Figure 6A) shows the raster plot of the system, and the panels
below show time series representing the dynamical states of
three sample units: two excitatory neurons and one inhibitory
neuron (respectively, Figures 6B–D) aligned with the raster
plot. For each of the neurons we plot the membrane potential
v, the membrane recovery variable u as well as the synaptic
conductances Gex/in.

FIGURE 6 | SSA state in a network of hierarchical level H = 0 with LTS inhibitory neurons and a mixture of excitatory neurons: 80%RS and 20%CH.

(A) Raster plot: spiking activity of the network within 700 ms. (B–D) Evolution of variables for three exemplary neurons. Top panels: voltage v, middle panels: recovery

variable u, bottom panels: synaptic conductances Gex (in blue) and Gin (in red). Neurons # 406 and # 100 are excitatory RS. Neuron # 18 is inhibitory LTS. (E)

Distributions of mean firing rates for all neurons in the network: for the whole duration of the SSA state (upper histogram), for the epochs of high network activity (middle

histogram), and for the epochs of low network activity (bottom histogram). Positions of three neurons shown in (B–D) in these distributions are indicated by arrows.
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Although both excitatory neurons belong to the same RS
type, their behavior is remarkably different. Neuron #406 exhibits
irregular spiking at low firing rate (∼ 14 Hz), seemingly
uncorrelated with epochs of high global network activity. This
low frequency can be understood, taken into account the
dominating presynaptic inhibitory input: the spikes always occur
when the excitatory conductance exceeds the inhibitory (see
Gex/in diagram in Figure 6B, where the inhibitory input is
represented in red and the excitatory in blue). The time series
of the membrane potential v(t) confirms that during the epochs
of high global network activity the neuron is in the “up” state
(e.g., the range between 580 and 620ms in Figure 6). During such
epochs, global activity enhances both inhibitory and excitatory
synaptic conductances, but the former is larger and, hence, for
most of the time the spiking is hampered. Figure 6E shows that
this neuron shares a typical firing rate of the whole ensemble and
lies at the peak of the firing rate distribution: the majority of the
RS neurons behaves similarly.

In contrast, neuron #100 exhibits bursting-like behavior,
strongly correlated with global network activity. Its firing rate
is ∼86Hz, if estimated over the whole length of simulation; the
actual firing rate, restricted to epochs of high global network
activity, reaches 150Hz, while no spike occurs during the inactive
epochs. This unit represents a more exotic subclass of RS
neurons: they possess unusually high firing rates and, in fact,
behave like CH neurons. Notably, within the distribution of
the firing rates, neuron #100 is not placed at the very end,
since that distribution includes also “genuine” CH neurons
that naturally tend to have higher spiking frequencies. In the
same network, this exotic behavior was also observed for LTS
neurons (cf. Figure 6D); in the corresponding architectures it
was found for FS and IB neurons as well. As we discuss in
the next section, the chattering behavior of a non-chattering
neuron is a consequence of the embedding of the neuron in
the network. Remarkably, in electrophysiological experiments a
regularly spiking neuron like the RS #100 might be misidentified
as a chattering one.

The RS neuron #100 is, in a sense, an extreme case: it
does not receive any inhibitory presynaptic input from the
network and, as shown in Figure 6, always behaves like a CH
neuron (we explain the origin of this behavior in the next
subsection). There are, however, numerous RS neurons that
receive inhibitory input but nevertheless tend to have higher
firing frequencies than the typical neuron #406: they can exhibit
bursting-like behavior within one epoch of high global network
activity, while producing few spikes within another epoch or
even completely skipping it (not shown here). Similar behavior
of RS neurons naturally embedded in a network was observed
empirically in Kang and Kayano (1994) and Steriade (2001)
where “work in cortical slices also showed that regular spiking
neurons may develop their type of discharges into those of fast-
rhythmic-bursting neurons by repeated application of depolarizing
current pulses.” Chattering behavior has also been reported for
inhibitory neurons in cortical slices (Steriade et al., 1998; Steriade,
2004), contradicting the common opinion that chattering-like
spiking patterns occur only in pyramidal neurons (Gray and
McCormick, 1996).

A closer comparison shows that the spiking patterns of the
inhibitory and the excitatory neurons, albeit qualitatively similar,
bear apparent distinctions: as a rule, an epoch of high activity for
the LTS neuron in the panel D starts earlier, breaks up later and
is “denser” (contains more spikes) than for its RS counterpart
from the panel C. As their name tells, the LTS neurons need
less presynaptic excitatory input in order to spike. Hence, the
lower excitatory input generated by their environments at the
beginning and at the end of active epochs suffices to sustain their
firing.

A sufficiently close estimate of the number of neurons that
participate in all epochs of global activity can be obtained if we
assume that this group consists of the neurons that, on one hand,
do not receive inhibitory input and, on the other hand, receive
sufficiently strong excitatory input. Recall that in our random
network of N = 210 neurons the probability for a given pair
of neurons (i, j) to have an excitatory (inhibitory) connection
i → j is pe = 0.008, (pi = 0.002). Then, we can expect that
N(1 − pi)

N−1 ≈ 132 neurons get no inhibitory input. Some
of these, however, do not receive sufficient excitatory input as
well. The probability for a neuron to have exactly j excitatory
presynaptic connections is

p
j
e (1− pe)

N−1−j(N − 1)!

j! (N − 1− j)!
.

Discarding from 132 the values with j ≤ 5 (a reasonable estimate
for a CH neuron), we arrive at the estimate 109. For comparison:
during the active epochs of the SSA that we observed in the
network composed of 80% RS neurons and 20% LTS ones, the
average number of frequently firing neurons was 107.

3.2.2. Phase Plane Description for a Single Neuron
The clue to the behavior of neurons lies in the combination of
their individual properties with the influence of the network. We
begin the description with the case of the isolated neuron under
constant input current I. On the phase plane, the dynamics of the
system (2) is constrained by the location of two nullclines. The
nullcline of voltage v,

u = ū = f(v)+ I (10)

is a quadratic parabola separating the phase plane region with
v̇ < 0 (above ū) from the region with v̇ > 0 (below ū). The
nullcline of the membrane recovery variable u

u = u∗ = b v (11)

is a straight line. Figure 7 sketches typical phase portraits of
regular spiking and chattering neurons. Location of the nullcline
ū is independent of the parameters (a, b, c, d); variation of the
input current I shifts ū in the vertical direction. The nullcline u∗

depends on the parameter b that controls its slope and therefore
determines, at I = 0, the resting state of the neuron. Since
the neurons of the RS and CH types share the same value of
b, their phase portraits at I = 0 are identical. For zero or
sufficiently small input I the nullclines intersect at two points
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FIGURE 7 | Phase plane for isolated RS and CH neurons. Green curves: nullclines. (A) I = 0. Nullclines intersect at states of equilibrium. Blue circle: stable

equilibrium. (B,C) Phase portraits at I = 10. Thick blue curves: trajectories. Thin blue lines: resets. Vertical red lines: values of V at the threshold Vpeak and reset c.

(B) Regular spiking neuron. (C) Chattering neuron.

(Figure 7A): the stable (left) and unstable (right) equilibrium.
At I = (25b2 − 250b + 65)/4 these equilibria disappear in a
saddle node bifurcation, and at higher current values the neuron
spikes. Figures 7B,C show phase portraits of the RS and CH
neurons, respectively, at I = 10. Distinctions between the two
types proceed on the one hand, from different (controlled by
parameter d) increments of the variable u after each spike, that
are considerably higher for the RS neuron and, on the other hand,
from difference in the reset value c. The effect is clearly seen in
the plots: the RS neuron is instantaneously reset to a position
above the parabola, whereas the CH neuron performs several
cycles (spikes) until the value of u becomes sufficiently large to
exceed the nullcline ū.

The timescale separation between v and u, caused by the small
parameter a in Equation (2), is visualized in the plot of the
vector field on the phase plane: during the spiking stage, v rapidly
changes, whereas the value of u remains approximately constant.
The two time scales are comparable only during the visits of the
trajectory in the vicinity of the nullcline ū, where the velocity v̇
becomes small.

The dynamical properties of the neurons are affected by their
embedding into a network. The formal assignment of neuronal
class at each site is based on the characteristics from Izhikevich
(2003), where for every neuron type the parameters are gauged
with respect to a constant presynaptic input current. That picture
can change when the neuron becomes part of a complex network,
where the input current is subject to synaptic interactions and is
therefore time-dependent. In accordance to (10), the location of
the nullcline ū on the phase plane explicitely depends on I(t),
whereas u∗ remains fixed. As a result, the formerly constant
phase portrait, constraining the behavior of the given neuron
and rendering its type, varies in time, and the neuron behaves
according to its environment.

Figure 8 presents six characteristic snapshots of the phase
portrait for the RS neuron #100 from Figure 6. Each snapshot
shows the instantaneous state, along with the recent trajectory
and the two nullclines. Insets above each snapshot display the
presynaptic input current I(t) and the synaptic conductanceG(t).
We concentrate on the time interval around one of the epochs
of high network activity lasting from t ≈ 680 to t ≈ 740 (see
Figure 6A). During the preceding period of low network activity

between t ≈ 630 and t ≈ 680, the synaptic input of the RS
neuron #100 is practically absent, and the trajectory relaxes along
the parabolic nullcline toward the state of rest (Figure 8, t =

680); during this relaxation both v̇(t) and u̇(t) stay small, with
comparable timescales. At the beginning of the active period the
excitatory synaptic input shifts the parabolic nullcline upwards,
and the neuron is free to spike (Figure 8, t = 689). In the
next two plots (Figure 8, t = 695 and Figure 8, t = 701) we
see that while Gex(t) is fluctuating weakly, I(t) exhibits strong
rapid variation caused both by fast evolution of the variable
v and by its reset after each spike. During this active phase,
oscillations of the current I(t) provoke large movements of the
parabolic nullcline [see Equation (10) and Equation (4)]. A
growth of the synaptic input due to the increasing activity of the
network provides an additional shift of the nullcline ū upwards.
Unlike the case of constant input current in Figure 7, this shift
ensures that after each spike the reset of the recovery variable
u 7→ u + d leaves the system below ū, allowing for another
spike. This explains why the RS neuron tends to behave like
a CH neuron during the active epochs (see Figure 8, t = 701
and t = 710). Similar bursting behavior is typical for all highly
active neurons, regardless of their electrophysiological class. The
bursting-like process endures either until the neuron, after a
spike, is instantaneously reset above the nullcline ū, or until its
trajectory (v(t), u(t)) is trapped by ū (see Figure 8, t = 710).
Subsequently, the neuron enters relaxational evolution with small
v̇, slowly moving toward the state of rest (see Figure 8, t =

731).
Since the membrane potential v is directly available in

electrophysiological experiments, most computational studies
understandably concentrate on the evolution of v. The above
argumentation, however, leaves the decisive role in network
dynamics to the membrane recovery variable u. We discuss this
aspect in the next section.

3.2.3. Different Stages of the SSA Process
Figure 9 represents the distribution U(u, δu; t) of the membrane
recovery variables u in the whole network at different time
instants T. The raster plot in the figure corresponds to a
simulation of the same network as in Figure 6, resulting in a
typical SSA state. The instantsT are chosen, respectively, between
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FIGURE 8 | RS neuron embedded in the network: snapshots of the phase plane at different instants of time. Green curves: nullclines of Equation (2); Red

circle: instant state of the neuron. Blue curve: recent trajectory of the neuron. Left upper inset: presynaptic input current I(t). Red circle: instantaneous value of current.

Right upper inset: synaptic conductance G(t). Vertical line: instantaneous value of conductance.

two active epochs or at the beginning, in the middle and at the
end of an active epoch.

3.2.4. Mechanism of Breakdown of Global Activity
The instantaneous distributions, computed amid (T= 940,
T= 1053) and at the end (T= 965, T= 1080) of global activity
confirm, as expected, that during an active epoch the proportion
of neurons with high values of u increases. Let us single out a
highly active neuron h, like the RS neuron #100 from Figure 6.
At the peak of an active epoch all its presynaptic neurons (in this
case all of them are excitatory) are highly active and, similarly to
h, fire at an approximately constant rate. The total synaptic input
into h reaches a maximal level that remains roughly constant
throughout the epoch. Due to this temporary saturation of the
input, the nullcline ū of h acquires its highest position and
does not move upwards anymore. Meanwhile, the membrane
recovery variable u of h gets incremented by d after each spike;
this eventually puts the reset system beyond ū, halting thereby
the bursting regime. The inability of the neuron h to fire a
next spike subsequently shifts downwards the nullclines ū of all
its postsynaptic neighbors. Its presynaptic neighbors experience
eventually the same, and the nullcline of h starts lowering as well.
A potential new presynaptic excitatory input may once again shift
the nullcline ū upwards, leading to a small positive v̇ that may or
may not result in a new spike (see the jitter in the end segment

of the trajectory in Figure 8 t = 731). Overall, this process
results in a definite drop in the spiking rate of the whole network,
leading to lowering of the nullclines ū of most neurons, that, in its
turn, slows their spiking frequencies further. Eventually, all most
active neurons get trapped by their parabolic nullclines and begin
relaxation toward their resting states. This marks the end of the
active epoch.

3.2.5. Role of Inhibition in Resumption of Activity
Noteworthy, breakdown of activity is not directly influenced
by inhibition. In fact, for example, at (gex,gin) = (0.15, 0)
(this effectively ensures closure of all inhibitory synapses), in
the presence of ongoing external stimulus the network displays
global activity oscillations. However, as discussed in Tomov et al.
(2014), in the absence of inhibition, such activity states can not
be sustained after elimination of the external stimulus. Although
inhibition does not cause the end of an epoch of high global
activity, it is pivotal for the onset of new active epochs. This
becomes clear from the distributions U(u, δu; t). According to
the distributions at T= 965 and T= 1080, by the end of the active
epochs there still remain the neurons with low u values. We call
them moderately active neurons. The peak of the distributions
is close to the values of u for the resting states. Most of the
moderately active neurons are postsynaptic to formerly active
inhibitory neurons, the latter being at the stage of slow relaxation.
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FIGURE 9 | Raster plot and temporal evolution of distribution

U (u, δu;T), calculated according to Equation (1) with δu = 1. Red lines in

the raster plot denote midpoints of intervals between two active epochs. Blue,

yellow and green lines show, respectively, the beginning, the middle and the

end of active epochs.

At the end of the active epoch, the moderately active neurons
receive less presynaptic inhibition and, being near their resting
state, do not need much excitation in order to spike. Remark
that at this stage a large number of neurons postsynaptic to the
moderately active neurons are relaxing, almost insensitive to the
input, and, therefore, most of the newly produced spikes do not
provoke firing of the postsynaptic neurons (as in the case of
the jitter of RS neuron #100 in Figure 8 t = 731). The bulk
of the newly produced network activity gets absorbed by the
relaxing neurons. At this stage, the activity of the network is
sustained only within the “pool” of moderately active neurons.
In terms of the phenomenological description from Section 3.1,
this stage corresponds to the passage through the “hole.” Note
the importance of inhibition: if during the highly active periods
it is insufficient, there will be less moderately active neurons at
the end of the active epochs which will decrease the probability
of sustaining the activity. In the distributions in Figure 9 at
T= 885 and T= 995 between the active epochs, the tails are
shifted from high toward low u values. This shift corresponds
to the arrival of formerly active neurons at their resting states.
As a result, the number of neurons that are able to contribute to
the network activity is growing. At the beginning of the active
epochs (T = 915, T = 1025), the distributions are concentrated
at low u values close to the resting states, that marks the end of
the relaxation. At this stage the network becomes highly excitable.
Here, most neurons possess low u values and, therefore, newly
produced spikes lead with a higher probability to subsequent
spikes in the postsynaptic neurons.

3.2.6. Peculiarities of Different Types of Neurons
These observations help us understand the effect that different
types of neurons exert on the lifetimes of oscillatory SSA.
Figure 10 represents the distributions U of the variable u for
different types of neurons at different times T for two different
networks in typical SSA states. Both networks are random,
without modularity, with 60% of all excitatory neurons being of
the RS type and 40% of the CH type. In Figure 10A the inhibitory

FIGURE 10 | Raster plots and distributions of recovery variable for

various neuronal types in two different networks with H = 0. U (u, δu;T )

is calculated according to Equation (1) with δu = 1. In both networks 60% of

excitatory neurons are of the RS type and 40% are of the CH type. (A) All

inhibitory neurons are of the LTS type. (B) All inhibitory neurons are of the FS

type. In the raster plots, red lines denote midpoints of intervals between two

active epochs. Blue, yellow and green lines show, respectively, the beginning,

the middle and the end of active epochs.

neurons are of the LTS type, whereas in Figure 10B they are
of the FS type. Compare the LTS distributions in the middle
(T= 1575ms) and at the end (T= 1605ms) of the active epoch in
Figure 10A, with the corresponding FS distributions at T= 1493
ms and T= 1523 ms in Figure 10B. Notably, the LTS neurons
tend to possess higher u values than the FS ones. Since the
increase d of the recovery variables for the LTS and FS neurons
is the same (see Table 1), intuitively it can be expected that the
difference is due to a higher firing rate of the LTS neurons during
the active epochs. However, this is not the case: as discussed in
Tomov et al. (2014), maximal firing rates of the FS neurons are
consistently higher than those of the LTS neurons. The difference
in the distributions is due to the dynamical properties of the LTS
and FS neurons. The parameter a that governs the timescale of
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the membrane recovery variable u [see Equation (2)] is five times
larger for an FS neuron than for other types (cf. Table 1); hence,
during the slow relaxation along the parabolic nullcline after a
spiking process, FS neurons recover about ten times faster than
the other neuron types. Besides, the FS and the LTS neurons
possess different values of the parameter b that also influences
the dynamics of the recovery variable u (see Table 1). Therefore,
a difference in distributions U(u) between these neuron types is
present all through the SSA process. This circumstance becomes
crucial after the breakdown of every epoch of high global network
activity, when the previously active neurons are slowly relaxing,
and the network activity is sustained by the “pool” of moderately
active neurons. In this state, the higher value of a and the
lower values of u cause the FS neurons to recover much faster,
compared to the LTS neurons. Notably, between the active epochs
(red lines in the raster plots) at T= 1525 ms for LTS neurons
and at T= 1443 ms for FS neurons, respectively, the distribution
of the u variables of the FS neurons is shifted toward lower
values of the membrane recovery variable. This shift is still
recognizable in the beginning of active epochs (blue lines in the
raster plots), at T = 1554 ms for LTS neurons and at T= 1463
ms for FS neurons, respectively. The FS neurons recover not only
faster than the LTS, but much faster than excitatory neurons as
well. As a consequence, they become excitable earlier than the
excitatory neurons and inhibit the “pool” of moderately active
neurons during the state of low network activity, diminishing
the probability for sustaining the activity. Therefore, the mean
spiking frequency in the epochs of low network activity is much
higher for a network comprising LTS inhibitory neurons than for
a network with FS neurons. This is clearly visible in the raster
plots in Figures 10A,B, respectively.

In Tomov et al. (2014) we observed that the probability of
finding long-living SSA is higher in networks that included not
only the RS excitatory neurons, but the CH neurons as well.
This can be explained following the same reasoning in terms
of individual variables of the neurons. One of the differences
between CH and RS neurons is in the value c to which the
voltage v is reset after a spike. For the CH neurons, c is higher,
and this, under time-dependent input, increases the chances for
subsequent spikes (bursts). Besides, there is also a difference in
the increment d that the membrane recovery variable u acquires
at the reset. For the CH neurons, d is four times smaller than
for the RS neurons, therefore, during the epochs of high network
activity the variables u of the CH neurons grow slower than for
the RS neurons. Hence, CH neurons tend to possess lower values
of u, compared to RS neurons; see Figure 10. Accordingly, at the
end of an epoch of high network activity, the membrane recovery
variable of CH neurons reaches low values easier, causing these
neurons to contribute to the “pool” of moderately active neurons
and hence increasing the probability of sustaining the activity
during the low-activity epoch.

4. DISCUSSION

We have characterized the local and global mechanisms,
responsible for the existence of self-sustained activity in

a hierarchical modular network composed of mixtures
of cells of different electrophysiological classes found in
the cortex. The model that we extensively studied and
described previously (Tomov et al., 2014), displays oscillatory
SSA states akin to up and down states found in cortical
tissue with lifetimes that depend on the specific neuronal
mixture and on the number of modules in the network.
Specifically, networks with excitatory cells of the RS and
CH types and inhibitory cells of the LTS type have higher
probability of displaying long-lived SSA than networks
comprised of other neuronal mixtures, and this probability
is enhanced when the number of modules in the network is
increased.

To interpret the behavior in the high-dimensional phase
space of the model, we used the phenomenological idea of a
relatively small and confined “hole” through which trajectories
may escape from the chaotic set during their evolution.
This allowed us to explain qualitatively the global oscillations
in the network and their unpredictable breakdowns at the
ends of the high activity phases, as well as the exponential
distributions of the SSA lifetimes. Reasoning along the same
lines, we explained the facilitating effect of modularity upon
SSA. Hierarchically distant modules tend to have higher
degrees of asynchrony during their activities, and therefore
tend to fall into their “holes” at different times. Hence, a
rise in the hierarchical level of the network, by increasing the
number of modules, enhances intermodular asynchrony and the
likelihood ofmaintaining the SSA. Important for the effectiveness
of the modularity effect is the sparseness of intermodular
connectivity.

Proceeding from global phase space of the whole network
to local dynamics of its units, we have interrelated the
breakdown of global activity at the end of high activity
epochs and the dynamics of the time-dependent nullcline of
the voltage variable of the single neuron. In this situation,
characterization in terms of voltage alone is insufficient:
the breakdown is forecasted by the shift upwards in the
instantaneous distribution of the membrane recovery
variable.

The important finding of our analysis concerns the role
of inhibition: not especially relevant for the global activity
breakdown, it is crucial in the preparation and start of
each new high activity epoch. Relying on the intrinsic
dynamics, we succeed in explaining, why networks with
inhibitory LTS neurons tend to display longer lifetimes
than those with inhibitory FS neurons: the former are
more efficient in restarting activity epochs than the
latter.

Other important finding from our single-neuron phase plane
analysis is the remarkable role of truly bursting (chattering)
neurons in the network. Their presence increases the likelihood
that the network survives a low activity epoch and passes to a
new epoch of high activity. This explains our previous finding
that the addition of CH neurons to the network contributes to
long-lived SSA.

Based on our analysis, we can make the following predictions,
that might be tested in in vivo cortical preparations: If it
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FIGURE 11 | Transiently chaotic oscillatory SSA in the network of AdEx neurons. (A) Raster plot of activity. (B) Distribution of lifetimes in the ensemble of

5 × 103 trajectories where initial conditions were created by varying the proportion of randomly chosen stimulated neurons: 1, 1/2, 1/4; the amplitude of the external

current from Istim = 500 to Istim = 800; and the duration of stimulation from 100 to 500 ms.

is possible to selectively silence or block synaptic activity of
inhibitory LTS neurons, while keeping inhibitory FS neurons
functioning normally, the probability of observing long-lived
self-sustained oscillatory activity would be drastically reduced.
Similarly, if it is possible to silence or block synaptic activity of
CH neurons, the probability of observing long-lived oscillatory
SSA would be reduced as well.

Remarkably, our simulations have shown that some neurons
with parameters tuned to reproduce regular spiking behavior
when stimulated by constant input current, change to a bursting-
like (chattering) firing pattern when embedded in the network.
Similar effect has been detected for inhibitory neurons, tuned
to produce LTS and FS firing patterns when in isolation. This
confirms that the network activity can influence and qualitatively
change the spiking pattern of a neuron model, although its
parameters stay fixed throughout the simulation. Changes in the
qualitative spiking profile of neurons due to the background
activity of the network have been observed experimentally, both
in vitro and in vivo (Kang and Kayano, 1994; Steriade et al.,
1998; Steriade, 2001; Shu et al., 2003; Steriade, 2004; Altwegg-
Boussac et al., 2014), and also have been suggested by other
theoretical models (Hô and Destexhe, 2000). Our simulations of
the cortical network deliver an unambiguous illustration of this
effect.

A natural question is: How much of these results is dependent
on the particular neuron model? Our interpretation of the
oscillatory pattern of SSA, with alternating high and low activity
epochs, is based on the voltage and recovery variables of single
neurons, and their interaction within the coupled system of
differential equations (2). In Figure 11 we present preliminary
results of numerical simulations for a network that has the
same structure and same density of synaptic connections as

above, but is ruled by a different neuronal model: it is the
adaptive exponential integrate-and-fire (AdEx) model (Brette
and Gerstner, 2005). The difference between Equation (2) and
the AdEx Equation (6) is, essentially, the difference between
the quadratic and the exponential functions in the equation
for dV/dt. Like in the case of Equation (2), the AdEx neurons
have been originally stimulated by external current within a
certain time interval; this procedure created initial conditions
for the subsequent free evolution. When the parameters of
the AdEx neurons are properly tuned (see values in Section
2.3), the familiar pattern of transient self-sustained oscillations
is observed: irregular alternation of epochs of high and low
global activity, followed by the abrupt decay to the state of
rest (top panel of Figure 11). Here, as well, lifetime of self-
sustained activity turns out to be rather sensitive to variations
of the preparation protocol: minor changes in proportions
of stimulated neurons, strength and duration of external
stimulation result in big—and seemingly unpredictable—changes
in the total duration of activity until the final decay. The
bottom panel of Figure 11 testifies that in the sufficiently
large ensemble of trajectories the distribution of lifetimes is
unambiguously exponential. This allows us to conjecture that
what matters for transiently chaotic oscillatory SSA is the
qualitative shape of the nullclines, and not so much the exact
form of equations.

The role of modularity is not crucial, but it seems to be less
sensitive to the particularities of the neuron model. Therefore,
going beyond the particular case, we conclude that the generic
requirements for an oscillatory behavior like the one observed
are: a network of excitatory and inhibitory neurons with a
balance between excitation and inhibition, and some form of
build-up and saturation mechanism for the spiking activity (as
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present in both Izhikevich and AdExmodels), to promote activity
breakdown. The significant role of the inhibitory neurons would
be to leave a residual spiking neuronal activity after breakup,
in order to allow for the ignition of the next epoch of high
activity.
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