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Focal cortical dysplasia (FCD) is the main cause of epilepsy and can be automatically

detected via magnetic resonance (MR) images. However, visual detection of lesions

is time consuming and highly dependent on the doctor’s personal knowledge and

experience. In this paper, we propose a new framework for positive unanimous voting

(PUV) to detect FCD lesions. Maps of gray matter thickness, gradient, relative intensity,

and gray/white matter width are computed in the proposed framework to enhance

the differences between lesional and non-lesional regions. Feature maps are further

compared with the feature distributions of healthy controls to obtain feature difference

maps. PUV driven by feature and feature difference maps is then applied to classify

image voxels into lesion and non-lesion. The connected region analysis then refines the

classification results by removing the tiny fragment regions consisting of falsely classified

positive voxels. The proposed method correctly identified 8/10 patients with FCD lesions

and 30/31 healthy people. Experimental results on the small FCD samples demonstrated

that the proposed method can effectively reduce the number of false positives and

guarantee correct detection of lesion regions compared with four single classifiers and

two recent methods.

Keywords: epilepsy, focal cortical dysplasia, magnetic resonance images, lesion detection

INTRODUCTION

Focal cortical dysplasia (FCD) is the main cause of epilepsy, which is a chronic illness of human
brain that affects 50–65 million people worldwide (Bernasconi and Bernasconi, 2011). FCD,
as a brain malformation of neocortical development, can be eliminated by respective surgery
(Despotovic et al., 2011). Neurologists use magnetic resonance (MR) imaging as a non-invasive
clinical tool during surgical planning to determine the location of the FCD lesion (Antel et al.,
2003). The FCD volumes can be ranged from tiny size of 734mm3 to large size of 80,726mm3

(Colliot et al., 2006). The location of the FCD lesion is completely random in its cortical boundary
distribution. Different patients have lesions at different locations within the cortex which has
complex gyral structure. The lesion in the MR image exhibits three features, namely, cortical
thickening, blurring of the gray/white matter (GM/WM) junction, and hyper-intensity signal
within lesional region compared with other cortical regions (Figure 1; Bernasconi et al., 2001).
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FIGURE 1 | Illustrations of cortical thickening (A), blurring of gray matter (GM)/white matter (WM) junction (B), and hyper-intensity signal (C) within

focal cortical dysplasia (FCD) regions (indicated by green rectangles). The FCD regions in (A–C) are enlarged and shown in (D–F), respectively. The black lines

in image (D) are the boundaries of GM or cortex, whereas the length of the red line shows the increased cortical thickness. Image (E) shows that the GM and WM

have a blurry boundary (indicated by a red arrow). Hyper-intensity signal within the WM region is indicated by a red arrow in image (F).

However, an MR image consists of many slices; for example,
175 sagittal slices exist for each MR image of one patient. Thus,
visual detection of lesions is time consuming. Diagnosis results
are prone to present large variances when the neurologist is
tired because of heavy workload from observing MR images. The
image-based diagnostic method is very much subjective, because
it heavily depends on the neurologist’s personal experience and
knowledge.

Numerous studies have attempted to develop image
processing methods to facilitate the detection and localization of
FCD lesions to enhance the efficiency and accuracy for diagnosis
of FCD lesions on MR images. Many feature maps have been
proposed to enhance the contrasts of lesional and non-lesional
regions. The following maps are used to detect distinct features:
GM thickness map for cortical thickening (Antel et al., 2002);
gradient map for blurring of GM/WM junction (Bernasconi
et al., 2001) relative intensity map for hyper-intensity signal
(Bernasconi et al., 2001), mean GM density map (Kassubek
et al., 2002), junction image for blurring of GM/WM junction
(Huppertz et al., 2005), and complex diffusion map for blurring
of GM/WM junction and cortical thickening (Rajan et al., 2009).
A new feature named GM/WMboundary (GWB) width map was
developed to improve the detection of blurry GM/WM junction
within FCD lesional region (Qu et al., 2014). All these feature
maps have increased contrasts between lesional and non-lesional
regions and can be utilized to assist lesion detection.

Several classification methods, such as threshold method
(Kassubek et al., 2002; Huppertz et al., 2005), Bayesian classifier
(Antel et al., 2003), support vector machine (Loyek et al., 2008),
and neural network classifier (Besson et al., 2008a,b), have

been applied to classify image voxels or regions into positives
(lesional) and negatives (non-lesional) to automatically detect
the lesion. Threshold methods consider the intensity of T1
MR data as a feature, compare the intensities of patients with
those of healthy controls, and classify the voxels of images into
lesional and non-lesional. The Bayesian classifier, support vector
machine, and neural network classifiers do not only analyze
the intensity feature but also consider advanced feature maps
as classification criterion, such as GM thickness and gradient
maps. These classification methods can correctly classify most
of the FCD regions as positive, but numerous false positive (FP)
regions are also produced (Besson et al., 2008a,b). Moreover, the
shapes, locations, and sizes of the FCD lesions remarkably vary in
patients. Thus, automated FCD detection remains a challenge.

In this study, we developed a new framework for positive
unanimous voting (PUV) to reduce the FP regions for automatic
FCD detection. Unanimous voting combines multiple classifiers,
which can be used to improve the performance (such as
classification errors) of single classifiers (Wozniak et al.,
2014). The proposed framework mainly consists of five parts,
namely, image normalization, feature determination, unanimous
voting for feature classification, region connection analysis, and
evaluation.

Image normalization improves the image quality for
subsequent study. In feature determination, maps for GM
thickness, gradient, relative intensity, and GWB were considered
features for distinguishing lesional and non-lesional voxels. In
addition, feature distributions of healthy controls were integrated
into the computation of feature differences between test images
and healthy controls.
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Unanimous voting involves the classification of image voxels
into lesional or non-lesional. Multiple classifiers were previously
combined to improve the performance of single classifiers
(Wozniak et al., 2014). These combinations mainly include
majority voting, voting of one against all, and unanimous
voting. We selected unanimous voting with respect to positive
results to combine multiple classifiers to reduce the FP. Feature
value distributions of lesional and non-lesional regions were
overlapped. Thus, in this study, the decision function of
classification was constructed utilizing the naïve Bayesian (NB),
linear discriminant analysis (LDA), Mahalanobis discriminant
analysis (MDA), and quadratic discriminant analysis (QDA)
classifiers (Duda et al., 2000), which were chosen as the basic
classifiers for optimization.

Considering that the high similarity in features of lesional and
non-lesional regions, the basic classifiers are comprised of the
classifiers that calculate both the mean and the variance in each
class. In addition, these classifiers are as stable in convergence as
the support vector machine and neural network based methods
are. A large false positive rate can cause classifiers based on
support vector machine or neural network methods not be
able to converge. Moreover, for this particular application the
parametric estimation of the support vector machine and neural
network methods can be overly complicated. Therefore, the NB,
LDA, MDA, and QDA classifiers were chosen as basic classifiers
for detection.

Connected region analysis was designed to remove tiny
fragment regions and allow the classification to extend into
the subject level. Each classified image contained voxels falsely
classified as positive. These voxels formed irregular small areas
called fragment regions. Connected region analysis measured
the size values of these tiny fragment regions. Regions smaller
than a pre-set value were relabeled as negative. In subject level
classification, each subject was recognized as patient when the
refined image of the subject contained voxels classified as positive
(lesional). Otherwise, the subject was considered healthy.

The true positive (TP) rate (TPR), FP rate (FPR), precision,
recall, and F score (Fs) were chosen as evaluation metrics
to evaluate the performance of the proposed methods.
The evaluation values were computed by comparing the
classified images with the ground truth. Classification results
of the different feature groups were compared to validate the
effectiveness of the features. To demonstrate the performance
of the proposed method, it was compared with single classifiers,
such as NB, LDA, MDA, and QDA, in terms of the classified
results. Moreover, the two-stage Bayesian classifier (TSBC; Antel
et al., 2003) and surface-based LDA (SLDA; Hong et al., 2014)
methods were also evaluated using the same metrics as the
proposed method.

The main contributions of this work could be summarized as
follows. (1) A detection framework using positive results based
on unanimous voting of multiple classifiers was proposed to
classify images into lesional and non-lesional. Thus, the detection
results provided less FP voxels than single classifier-based
methods. Experimental results clearly demonstrated that the
proposed work was more effective than the single classifiers
and the two state-of-the-art methods for FCD detection. (2)

Mean representations of the healthy model were integrated into
feature determination, which could differentiate lesional and
non-lesional regions more efficiently. For example, the averaged
F score resulted from different classifiers using FG6 is bigger
than which using FG3 (0.071 vs. 0.052). Here, the FG6 integrates
the mean representations of the healthy model, while FG3 does
not. (3) Connected region analysis removed tiny FP fragments
and extended the evaluation of the voxel level to the subject
level.

METHODS

The framework for detecting FCD lesion on T1-weighted MR
image is illustrated in Figure 2. The framework involved five
major processing steps. (1) MR images were normalized. (2)
Features were determined to compute and group features, which
enhanced the differences between lesional and non-lesional
regions. The feature groups were then evaluated and selected
to establish the best group for further analysis. (3) Unanimous
voting driven by the selected best feature group (FGbest) for
feature classification was performed to classify the images into
lesional and non-lesional regions. (4) Connected region analysis
was utilized to reclassify the falsely classified tiny fragment
regions into negative to refine the classified results. (5) Refined
images were evaluated as the final results.

Image Normalization
Image standardization (Nyul andUdupa, 1999) was performed to
refine the original raw image to a predefined scale ranging from
0 to 255. The original images were first oriented into the right-
posterior-inferior direction. The brain extraction tool proposed
by Smith et al. (Smith, 2002) was applied to extract the brain
region on the oriented images because FCD lesions only occur
in brain regions. Intensity non-uniformity (also called bias field)
was corrected using the expectation–maximization algorithm
(Zhang et al., 2001) on all images to obtain consistent intensities
of the extracted brain region.

Each histogram of the 3D images has two peaks which
correspond to gray matter and white matter regions, respectively.
To insure all the images are normalized properly, we took one
standardized image of healthy people as reference. When the
areas under the two peaks on the histograms of the query and
the reference images were almost overlapped (90% overlapped),
the intensities of the query image were taken as normalized
adequately.

After the intensity normalization, the space related
normalization was performance. We tri-linearly interpolated
images into the same resolution to standardize voxel size. We
used rigid registration to roughly align the images and unify the
space of the images, followed by affine registration to further
standardize the images. The reference image for registration was
the MNI152 brain T1-weighted MR image from the Montreal
Neurological Institute (Montreal Neurological Institute). We
could only align general brain regions, not match details such as
gyral GM regions, because brain structures of different subjects
exhibit distinct topological structures. Thus, we could scale the
brain regions into similar sizes while maintaining the topological
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structure and details. Consequently, differences in total brain
volume between various subjects were adjusted. Brain tissues
that were not anatomically related to FCD lesions (e.g., brain
cerebellum, brain stem, striatum, and thalamus) were removed
from the registered images. The brain atlas of images from MNI
(Mazziotta et al., 2001; Diedrichsen et al., 2009) was considered
the template for elimination.

Feature Determination
Feature determination was used to compute feature maps,
which could enhance contrasts between lesional and non-
lesional regions. Feature determination involved four steps.
First, features were computed from MR images. Second, average
feature representations of healthy controls were calculated.
Third, feature differences between the test images and healthy
controls were generated. Fourth, feature groups were selected.

The brain tissues were first segmented to acquire tissue
space information before the feature maps were computed. We
segmented the brain data into partial volume maps of GM, WM,
and cerebrospinal fluid using a hidden Markov random field
model and expectation-maximization algorithm to consider the
effect of partial volume (Zhang et al., 2001).

We computed the GM thickness map (denoted by F1),
gradient map (F2), relative intensity map (F3; Bernasconi et al.,
2001; Antel et al., 2002), and GWB width map (F4; Qu et al.,
2014) for each individual subject on the pre-processed images
to capture the features of FCD regions in the MR images. These
features formed a feature vector F = {F1, F2, F3, F4}, and they
are shown in Figure 3. Lesional regions had larger values than
non-lesional regions on the GM thickness map, GWBwidthmap,
and relative intensity map. The gradient map and lesional regions
with blurring of GWB had lower values than the non-lesional
regions because lower values indicate blurry regions.

Average feature representations of healthy controls referred to
the mean values in sliding local windows of images. Images of
different subjects could be compared because the images of the
subjects were registered into the same MNI space using image
normalization (Section Image Normalization). The mean model
of healthy controls for the i-th feature map Fi is as follows:

Fµ,i (v) =
1

K · N

k
∑

k=1

(

N
∑

n=1

F
(k)
i (vn)

)

(1)

where Fµ,i (v) is the average value for the i-th feature map of
all healthy controls at voxel v, vn is the coordinate of the n-
th neighboring voxel within a 3D local window centered on

voxel v, N is the total number of neighboring voxels, F
(k)
i (vn)

is the feature value of the k-th healthy control at voxel vn,
and K is the total number of healthy controls. The example
of mean features of healthy controls is shown in Figure 4.
The feature value distributions of healthy controls were not
uniform, that is, they varied in different locations in the human
brain.

Feature difference measured variations between feature F

and average feature of healthy controls Fµ,i. The procedure
is illustrated in Figure 5. Fd1 eliminated the influence of

FIGURE 2 | Framework of the proposed work. Each step is indicated by

rectangles with grayscale shade.

distributions on healthy controls. Thus, the feature difference of
GM thickness map denoted by Fd1 showed the increased cortical
thickness better than the GM thickness F1. The feature difference
was denoted by vector Fd = {Fd1, Fd2, Fd3, Fd4}, and it can be
computed as follows:

Fdi (v) = Fi (v) − Fµ,i (v) (2)

Examples of feature differences between the test images
and healthy controls were generated and are illustrated in
Figure 6. The feature difference Fd images enhanced contrasts
between lesional and non-lesional regions compared with
feature F.

Features and feature differences were then grouped according
to their actual meanings, such as detecting cortical thickening
or measuring the relative cortical thickening in contrast to
healthy controls, to determine a good combination of features
for classification (Table 1). Feature group 1 (FG1) included three
basic FCD features, namely, maps of GM thickness, gradient,
and relative intensity, which had been proven to be effective for
FCD detection (Antel et al., 2003). We assembled the features
into FG2 and FG3 to evaluate the performance of the GM/WM
width map with respect to FCD detection. FG1−3 were features
in which the feature distributions of healthy models were not
considered, whereas FG4−6 were feature differences that included
the influence of healthy controls.

Several classifiers, denoted by C1,C2, . . . ,CM , were used to
classify image voxels driven by different feature groups FGk

to select FGbest. The results of each classifier were evaluated
by Fs, and the resulting Em (m = 1, 2 . . . , M) is shown
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FIGURE 3 | Examples of features computed from T1 MR images. From left to right on the top row: normalized image, ground truth where the FCD lesion is

labeled in red, and GM thickness map. On the bottom row: GM/WM boundary (GWB) width map, gradient map, and relative intensity map.

FIGURE 4 | Examples of mean features of healthy controls. From left top

row, clockwise: mean GM thickness map, mean GWB width map, mean

gradient map, and mean relative intensity map of healthy controls.

in Figure 7. Evaluation values of different classifiers for each
feature group were averaged, with the resulting average value
denoted by AEK

(

k = 1, 2, . . . ,K
)

, where k is the index of
the feature group. FGbest was the feature group with the
highest value of AEk. Classifiers C1,C2, . . . ,CM were the NB,
LDA, MDA, and QDA classifiers, which were also applied for
classification using unanimous voting for feature classification

TABLE 1 | Feature Groups.

F1 F2 F3 F4 Fd1 Fd2 Fd3 Fd4

FG1 + + + – FG4 + + + –

FG2 + + + + FG5 + + + +

FG3 + – + + FG6 + – + +

“+” means that the feature is present in the feature group, “−” indicates absence of

feature. F1, F2, F3, and F4 are the maps of gray matter (GM) thickness, gradient, relative

intensity, and gray/white matter boundary width map. Fd1, Fd2, Fd3, and Fd4 are the

corresponding feature differences of F1, F2, F3 and F4.

and will be introduced in Section Unanimous Voting for Feature
Classification.

Unanimous Voting for Feature
Classification
Unanimous voting for feature classification was performed
to classify image voxels into lesional and non-lesional using
the proposed PUV method. The basic principle of this step
is explained in Figure 8. The features in FGbest were the
inputs for this step. Image voxels were first classified by basic
classifiersC1,C2,. . . ,CM . Then, unanimous voting of the classified
images was performed to reclassify voxels falsely identified
as positive into negative. We attempted to obtain an object
function to achieve unanimous voting for feature classification
instead of classifying images on multiple stages to simplify the
procedure.

Each voxel v of an image was classified into two classes,
namely, positive (lesional) and negative (non-lesional), denoted
by w1 and w2, respectively. The feature vector of each voxel is
denoted by x =

{

x1, x2, . . . , xf
}

, where x is composed of feature
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FIGURE 5 | Illustrations of computed feature differences between test images and healthy controls. From left to right: GM thickness map of one patient on

axial view, mean values of GM thickness map of healthy controls, and feature difference in GM thickness map.

FIGURE 6 | Examples of feature differences between test images and

healthy controls. From left top row, clockwise: feature differences of GM

thickness map, GWB width map, gradient map, and relative intensity map

from one patient.

F and feature difference Fd. Each voxel was classified based on its
feature vector.

The NB classifier model is expressed as follows:

pNB (wi| x) = pNB ( x|wi) pNB (wi) /

(

∑

pNB ( x|wi) pNB (wi)

)

,

(3)
where pNB ( x|wi) is the likelihood of wi with respect to x,
pNB (wi) is the prior probability, and pNB (wi|x) is the posterior
probability. Likelihood was computed as follows:

pNB ( x|wi) =
∏d

f=1

(

2πσf ,wi

)−0.5
exp

(

−
(

xf − µf ,wi

)

/
(

2
(

σf ,wi

)2
))

, (4)

whereµf ,wi
and σf ,wi

are the mean and standard deviation values
of the f -th feature with respect to class wi, respectively. Posterior

probability of the LDA is as follows:

pLDA (wi|x) = µwi6
−1

x
T −

1

2
µwi 6−1 µT

wi
+ ln

(

pLDA (wi)
)

,

(5)
whereµwi is the mean of class wi, and 6 is the pooled covariance
matrix. The posterior probability of the QDA classification is as
follows:

pQDA (wi|x) = µwi 6
−1
wi

x
T −

1

2
µwi 6

−1
wi

µT
wi
+ ln

(

pQDA (wi)
)

,

(6)
where 6wi is the variance matrix of class wi. The Mahalanobis
distance between sample x and class wi in the MDA classifier is
as follows:

DMDA (wi, x) =
√

(

x− µwi

)T
6−1

(

x− µwi

)

. (7)

We reclassified the voxels identified as positive by the basic
classifiers as negative or positive, because the results of basic
classifiers contain a large number of FPs. The class labels
Lj (v)were defined as 1, if v∈ w1. Otherwise, Lj (v) = 0. v is the
location of the 3D voxel in the MR image, and j is the index of the
classifier. L1, L2, L3, and L4 are labels of classifiers NB, LDA,QDA,
and MDA, respectively. The combination of multiple classifiers
using unanimous voting can be formulated as follows:

LPUV (v) =
N
∏

j=1

Lj (v) (8)

where N is the total number of classifiers. When L1, L2,L3 and L4
were all labeled as 1, LPUV (v) was set to 1. Otherwise, LPUV (v)
was set to 0. The final labeled LPUV (v) is defined as follows:

LPUV (v) = sign
(

pNB (w1| x) /pNB (w2|x)
)

•sign
(

pLDA (w1|x) − pLDA (w2|x)
)

•sign
(

pQDA (w1|x) − pQDA (w2|x)
)

•sign
(

pMDA (w1|x) − pMDA (w2|x)
)

(9)

Frontiers in Computational Neuroscience | www.frontiersin.org 6 March 2016 | Volume 10 | Article 25

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Qu et al. Focal Cortical Dysplasia Detection Method

FIGURE 7 | Selection of feature groups.

which can be calculated as follows:

LPUV (v) = sign

(

d
∏

f=1

σf ,w2√
σf ,w1

exp

(

xf−µf ,w2

2σ2
f ,w2

− xf−µf ,w1

2σ2
f ,w1

)

)

•sign
(

(

µw1−µw2

)
∑−1 xT − 1

2

(

µw16
−1

µ
T
w1

+ µw26
−1

µ
T
w2

)

)

•sign
(

µw16
−1
w1

(

x
T − 1

2µ
T
w1

)

− µw26
−1
w2

(

x
T − 1

2µ
T
w2

))

•sign





√

(

x− µw2

)T
6−1

(

x− µw2

)

/
√

(

x− µw1

)T
6−1

(

x− µw1

)





(10)
Equation (10) is the final classification decision of the proposed
PUV method. Similar to Equation (8), when LPUV (v) was equal
to 1, v was labeled as w1. Otherwise, LPUV (v) was equal to 0, and
v was labeled as w2.

Region Connection
Region connection analysis was performed to refine the voxel-
based classification results by removing the tiny fragmented
regions. This process extended the classification to the subject
level, in which each subject was recognized as either a patient
or healthy person. This analysis was performed as follows. First,
lesional regions in the classified images were labeled as 1, whereas
healthy regions were labeled as 0. Second, the morphological
opening with local window of Lw × Lw × Lw was then used to
process regions labeled as 1, such that small noise voxels were
removed, and weak connected regions were separated. Third, we
labeled every connected region uniquely andmeasured the size of
each connected region by counting the number of voxels. Fourth,
lesional regions smaller than a threshold Ts were relabeled as
non-lesional. Otherwise, the regional label was retained. Thus,
tiny fragmented regions were removed from the lesional results.

Each subject was classified as either a healthy control or a
patient after the tiny fragments were removed. If a subject’s image
contained voxels classified as lesional, the subject was considered
a patient. Otherwise, the subject was considered a healthy control.
Thus, the classification was extended from the voxel level to the
subject level.

FIGURE 8 | Basic principle of unanimous voting for feature

classification.

Evaluation
We compared the classified images against the ground truth using
the evaluation metrics, namely, TPR, FPR, and Fs, to evaluate
the performance of the classification methods. Evaluations
were composed of voxel- and subject-based evaluation. Voxel
evaluation computes the number of correctly and incorrectly
classified voxels, whereas subject evaluation calculates the
number of correctly and incorrectly classified subjects. We
analyzed voxel-based evaluation as an example, and the results
are discussed below.

First, a TP is a correctly identified lesional voxel, whereas an
FP is a non-lesional voxel incorrectly identified as a lesional voxel.
A false negative (FN) is a lesional voxel incorrectly identified as
a non-lesional voxel, whereas a true negative (TN) is correctly
identified as a non-lesional voxel.

Second, the TPR defines how many correct positive
results occur among all positive samples, that is,
TPR = #TP/ (#TP+ #TN) (hereafter, # means the number
of the parameter cited). FPR defines the number of incorrect
positive results that occur among all negative samples, that is,
FPR = #FP/ (#FP+ #TN).

Third, we used Fs to evaluate the trade-off between precision
and recall. Precision is the probability that the positive results are
TP and defined as precision = #TP/ (#TP+ #FP). Recall (similar
to TPR) indicates the percentage of positive regions in ground
truth classified as positive. Fs can be interpreted as the weighted
average of precision and recall and defined as Fs = 2×precision×
recall/

(

precision+ recall
)

. Fs reaches its best value at 1 and
worst score at 0. A larger Fs indicates better trade-off between
precision and recall.

EXPERIMENTAL RESULTS AND
DISCUSSION

Experimental Data
We studied the T1-weighted MR images of 10 patients with FCD
lesions and 31 healthy controls (one image per subject). Images
were acquired at Ghent University Hospital on a Siemens 3T MR
scanner. Each image consisted of 256× 256× 176 voxel matrices
with a resolution of 0.8594×0.8594×0.9mm. A doctor manually
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delineated the FCD lesions in the images of FCD patients prior to
this study. All subjects were processed to be anonymous before
this study to protect their privacy. The data used in this study
were extracted from a retrospective study that was approved by
the local Ethics Committee of the Ghent University Hospital. The
10 patients and 31 healthy people involved in our study have
provided written consent. All patients suffered from epilepsy due
to FCD have been confirmed by clinical examinations.

Experimental Design
The experiments were designed to validate features and
classifications of the proposed framework. The classifications
driven by different feature groups were compared using Fs to
assess the effectiveness of the features, and the results are shown
in Figure 9. The proposed method was compared with the NB,
LDA, MDA, and QDA classifiers in terms of Fs (Figure 9)
and the vivid classified images (Figure 10) to demonstrate
that the proposed method could improve the performances of
single classifiers. Moreover, the TSBC (Antel et al., 2003) and
SLDA (Hong et al., 2014) methods previously developed for
FCD detection were also compared with the proposed method
using the evaluation metrics (Table 2) and classified images
(Figure 11). Classifications were constructed using the leave-
one-out-cross-validation because of the limitedMR images. Each
test image was classified based on the classifier trained on the rest
of the images in the study.

The parameters were as follows. The total number of
neighboring voxels N was set to 27 when the average features
of healthy controls were calculated. This value indicated that
three voxels were set in each dimension of the 3D images. The
local window size for morphological opening Lw was set to 3 in
the connected region analysis step. The threshold of the region

FIGURE 9 | Comparison of F-scores of the classification results from

different feature groups and classification methods. The feature groups

FG1−6 are defined in Table 1. FG1 includes maps of GM thickness, gradient,

and relative intensity. FG2 includes maps in FG1 and the GM/WM width map.

FG3 includes maps of GM thickness, relative intensity and GM/WM width. The

values of FG4−6 are feature differences that included the influence of healthy

controls, and corresponded to the FG1−3, respectively.

size was Ts = 900, which was equivalent to the physical size of

112.5mm3 = 900× (0.5mm)
3
.

Comparison of PUV and Single Classifiers
Figure 9 presents Fs of the classified images generated from
different classifications. Among all feature groups, FG6 showed
the highest mean Fs, where AE6 of FG6 was equal to 0.0713,
whereas AE1−5 of FG1−5 ranged from 0.0406 to 0.6893.
Therefore, FG6 was FGbest in this study, and subsequent
classifications were based on FGbest.

NB and PUV presented better Fs-values than other methods
for FG1, FG2, and FG3. This result indicated that NB and PUV
were more suitable for FCD detection than LDA, QDA, and
MDA using features that were not compared with the healthy
controls. The Fs-values of FG5 and FG6 using NB and PUV
were obviously larger than the other classified results. This
characteristic indicated that the feature groups that contained
feature difference of GWB width map (Fd4) could improve
the performance of FCD detection with a suitable classifier,
because FG5 and FG6 included Fd4, contrary to other feature
groups.

FIGURE 10 | Comparison of examples of classified images from

positive unanimous voting (PUV) and single classifiers used in this

study. From top to bottom, images of each row are ground truth and

classified images from Mahalanobis discriminant analysis, quadratic

discriminant analysis, linear discriminant analysis, naïve Bayesian, and PUV.

From left to right, columns show axial, sagittal, coronal, and 3D views. For

illustration purposes, the different connected regions of positive results are

described by different colors on the 3D views. FCD regions are colored red.
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FIGURE 11 | Examples of classification results of the 3D image from patient 8 with FCD lesions. From left to right rows: axial, sagittal, coronal, and two 3D

views. In the ground truth image (the first row), the FCD regions are in red. From the results of two-stage Bayesian classifiers, surface-based LDA, and PUV methods

(from second row to the bottom row), the voxels and vertex identified as positive (FCD) are also in red.

Thus, PUV using the FG6 provided the best Fs, indicating that
the PUV with FG6 exhibited better trade-off between precision
and recall than other assemblies of feature groups and classifiers
in this study.

Figure 10 illustrates the experimental results from MDA,
QDA, LDA, NB, and PUV driven by FGbest. All classification
methods correctly identified the true FCD as positive on the 2D
images (axial, sagittal, and coronal views) compared with the
ground truth, but different numbers of FP were also obtained.
In addition, PUV could reduce the FP regions as shown by
the fourth column in Figure 10, because it had the lowest
number of color regions in 3D views among all classifications
in this study. This phenomenon indicated that PUV facilitated
the identification of the true FCD regions among positive
results.

Comparison of PUV and Two Existing
Methods of FCD Detection
Figure 11 demonstrates a comparison of PUV, TSBC, and SLDA.
All the three methods successfully classified the FCD region as
positive from the axial, sagittal, and coronal views. SLDA and
TSBC produced significantly more FP results than PUV using the
3D images. This result indicated that PUV could reduce the FP
results, such that the TP regions were easy to delineate from all
voxels identified as positive by a classifier.

Table 2 describes the evaluation results from the Fs, TPR,
and FPR-values of PUV1, PUV2, TSBC, and SLDA. PUV1

TABLE 2 | Evaluation results of positive unanimous voting (PUV),

two-stage Bayesian classifier [3], and surface-based linear discriminant

analysis using F-score, true positive rate, and false positive rate.

F-score TPR FPR

Mean SD Mean SD Mean SD

TSBC 0.0708 0.1131 0.3933 0.2754 0.0536 0.0270

SLDA 0.2060 0.1454 0.5374 0.2979 0.0212 0.0241

PUV1 0.1251 0.1324 0.3008 0.1657 0.0160 0.0091

PUV2 0.3039 0.1865 0.2377 0.1801 0.0211 0.0022

PUV1 and PUV2 represent the results before and after the connected region size analysis

step, respectively.

and PUV2 had lower mean TPRs than TSBC and SLDA,
because the combination of multiple classifiers relabeled parts
of the true lesional region as negative when reducing the FP
results.

PUV2 showed a largermean Fs than TSBC and SLDA, whereas
PUV1 had a larger mean Fs than TSBC but lower mean Fs than
SLDA. This phenomenon suggested that the connected region
analysis step could help improve the trade-off between precision
and recall of FCD detection. The SD-values of Fs were large
for all methods relative to the mean values, because the size of
the lesions had larger ranges from 499 to 23,667mm3 (µ ± σ

was 4179 ± 6598) in this study. For example, the lesional size
of patient number 10 was 23,667mm3, which was large. The
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Fs-values of this patient were 0.38 for TSBC, 0.45 for SLDA, and
0.69 for PUV2. By contrast, the lesional size of patient number
3 was 1754mm3, which was small. The Fs-values of this patient
were 0.04 for TSBC, 0.06 for SLDA, and 0.28 for PUV2.

PUV2 provided lower mean FPR and considerably lower SD-
values of the FPR than TSBC. This result suggested that the
proposed framework had lower and more stable probability of
falsely classifying non-lesional regions as positives than TSBC.
PUV2 provided similar mean FPR but smaller SD-values of the
FPR compared with SLDA. Thus, PUV2 presented comparable
ability of correctly classifying non-lesional regions as SLDA, but
the ability of PUV2 was remarkably more stable than that of
SLDA.

Results of Connected Region Analysis and
Evaluation on Subject Level
Connected region analysis extended the classification results
from the voxel level to the subject level (Figure 12). Each subject,
even the healthy controls (black triangles), had voxels falsely
classified as lesional. However, most true lesional regions were
larger than the falsely classified regions in healthy controls (red
dots vs. black triangles), confirming that relabeling the small
positive regions as negative was reasonable. After relabeling all
small/tiny positive regions smaller than Ts (size of 900 voxels or
112.5mm3) as negative, eight out of 10 patients were correctly
identified as patients, whereas 30 of 31 healthy controls were
correctly classified as healthy. Thus, TPR was 80% and FPR was
3.3% on the subject level, indicating that the proposed framework
produced promising results for FCD detection.

Limitations
This study was limited by four factors. First, region size analysis
possibly split the TP regions. For example, two red dots are shown
in Figure 12 when the subject index was 6, which indicated that
the true lesional region of patient number 6 was split into two
clusters. In future studies, methods of splitting and merging of
regions might address this issue. Second, this study used a limited
number of single classifiers. Including more effective single
classifiers might also further improve automatic FCD detection.
Third, the proposed framework was affected by registration
accuracy, because the feature difference step in the proposed
framework compared images from different subjects and the
volumes of images remarkably varied in different subjects. PUV
and SLDA both depended on registration accuracy, contrary to
TSBC. However, PUV and SLDA produced better performance
for FCD detection. Thus, comparing registered images from
different subjects was necessary, although the comparative
results were dependent on registration. Fourth, the detection
performance is affected by the intensity normalization, since the
feature computation are related to the intensity values. When the
images are obtained from different scanners, the intensity scale
should be carefully normalized and the intensity non-uniformity
has to be carefully adjusted. Using good evaluation methods to
guarantee the intensities are properly corrected, might further
improve the detection performance.

FIGURE 12 | Sizes of regions classified as positive from patients and

healthy controls using connected region analysis. The red dots are the

region size values of the true FCD lesions, blue dots are the region sizes of FP

regions in patients, and black triangles are the region sizes of FP regions of

healthy controls.

CONCLUSION

In this study, we proposed a new framework based on
PUV to achieve automated detection of FCD lesions. Feature
determination of the proposed method enhanced the contrasts
between lesional and non-lesional regions. Selection of feature
group found FGbest in this study. Unanimous voting for
feature classification categorized image voxels into positives or
negatives. Finally, the connected region refined the classified
images through relabeling the small fragment region as
negative.

Experiments on the small number of the FCD samples reveal
that the proposed framework produced higher Fs-values and
lesser number of FP regions compared with single classifier
techniques, such as NB, LDA, QDA, and MDA, facilitating the
easy identification of true FCD lesions. The proposed framework
had lower and more stable probability of falsely classifying non-
lesional regions as positives compared with TSBC. The proposed
framework presented comparable ability of correctly classifying
the non-lesional regions compared with SLDA. However, the
ability of the proposed work was much more stable. After tiny
fragments were relabeled as negative using connected region
analysis, 8/10 patients and 30/31 healthy controls were correctly
recognized.

The intensity scale standardization and intensity non-
uniformity correction might affect the generalizability of the
proposed method when the images are over scanners with
variable intensity bias patterns. In the future, to apply the
proposed method on more data sets that from different
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scanners, intensity scale standardization and intensity non-
uniformity correction should be cautiously operated before
tissue segmentation and feature computation. The reason is
that two limitations of the proposed work are non-ignorable:
(1) the method is tested on the small number of FCD
samples; (2) the images are from same scanner. The intensity
scale standardization and intensity non-uniformity correction
on the data sets from different canners, might change the
intensities of different brain tissue. The tissue segmentation
and feature computation highly depend on the intensities
of tissues, and directly affect the detection performance.
Therefore, the proposed method might not provide detection
results as good as this study when more data sets from
different canners are considered, due to the preprocessing
in terms of intensity scale standardization and intensity
non-uniformity correction may change the information of
tissues.

Based on the experiments in this study, the proposed work was
simple, easy to reproduce, and may become a useful tool to assist
doctors in detecting and diagnosing FCD lesions.
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