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The stabilization of an inverted pendulum on a manually controlled cart

(cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a

stick on a fingertip, is considered in order to investigate how the human central nervous

system (CNS) stabilizes unstable dynamics due to mechanical instability and time

delays in neural feedback control. We explore the possibility that a type of intermittent

time-delayed feedback control, which has been proposed for human postural control

during quiet standing, is also a promising strategy for the CIP task and stick balancing

on a fingertip. Such a strategy hypothesizes that the CNS exploits transient contracting

dynamics along a stable manifold of a saddle-type unstable upright equilibrium of the

inverted pendulum in the absence of control by inactivating neural feedback control

intermittently for compensating delay-induced instability. To this end, the motions of

a CIP stabilized by human subjects were experimentally acquired, and computational

models of the system were employed to characterize the experimental behaviors.

We first confirmed fat-tailed non-Gaussian temporal fluctuation in the acceleration

distribution of the pendulum, as well as the power-law distributions of corrective cart

movements for skilled subjects, which was previously reported for stick balancing. We

then showed that the experimental behaviors could be better described by the models

with an intermittent delayed feedback controller than by those with the conventional

continuous delayed feedback controller, suggesting that the human CNS stabilizes the

upright posture of the pendulum by utilizing the intermittent delayed feedback-control

strategy.

Keywords: intermittency, stable manifold, non-Gaussianity, posture control, stick balancing

INTRODUCTION

Stick balancing, wherein experimental subjects are asked to stabilize a rigid stick on their
fingertips in the vertically inverted position, is a typical motor task that has often been used
for studying human motor control strategies exploited by the central nervous system (CNS)
for stabilizing unstable dynamics. In such motor paradigms, the stabilization inevitably relies
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on sensory feedback information about the state of the controlled
object, and the CNS must overcome multiple sources of
instability, including feedback time delays (delay-induced
instability), sensory uncertainty, endogenous motor noise, and
the gravitational toppling torque inherent to the mechanical
dynamics of the controlled object (Milton et al., 2008). For
highly skilled subjects, the temporal fluctuation of the velocity
increments (corresponding to the acceleration) of the stick
are not Gaussian but exhibit a truncated Lévy distribution
(Cabrera and Milton, 2004a; Cluff and Balasubramaniam, 2009).
Moreover, corrective fingertip movements exhibit intermittent
alternation between phases with extremely low movement
amplitudes (off-phases) and those with high movement
amplitudes (on-phases). This type of on-off intermittency
can be characterized by the power-law distributions of the
inter-corrective movement intervals (Cabrera and Milton, 2002).

Several types of neural control mechanisms underlying such
motor behaviors during the stick-balancing or similarly during
human quiet standing have been proposed. These include time-
delayed feedback with multiplicative noise (Cabrera and Milton,
2002), model predictive controllers with a sensory uncertainty
(Mehta and Schaal, 2002; Gawthrop et al., 2011; Loram et al.,
2011; Insperger andMilton, 2014), act-and-wait control, whereby
a delay-induced unstable system can be stabilized by the
appropriate placement of a finite number of poles (eigenvalues),
despite infinite dimensionality of the delay differential equations
of the system, if the duration of periodically posed wait-phase
with no active control is larger than the delay time (Insperger
and Stepan, 2010), and time-delayed proportional-derivative-
acceleration feedback control (Insperger and Milton, 2014).
Here we consider another promising alternative: the intermittent
time-delayed feedback controller (referred to as the intermittent
feedback controller or the intermittent feedback-control strategy
in this article) proposed for human posture control, whereby
the mechanical dynamics of the human body during quiet
standing are modeled as a controlled object by a single or a
double inverted pendulum (Bottaro et al., 2008; Asai et al.,
2009, 2013; Suzuki et al., 2012). The intermittent feedback-
control model exploits the fact that the upright equilibrium
posture with no active feedback control is characterized by
a saddle-type instability accompanied by a hyperbolic vector
field with stable and unstable manifolds in its phase space.
Specifically, the action of the feedback controller is suspended
intermittently (off-phase) when the state point of the inverted
pendulum is close to the stable manifold, during which the
transiently contracting dynamics (i.e., the motion of the state
point approaching the unstable saddle-point) along the stable
manifold are exploited for compensating the delay-induced
instability. The feedback controller is then activated (on-phase)
when the state point departs from the unstable equilibrium
point, during which delay-induced unstable oscillatory dynamics
bring the state point back to the stable manifold (not to
the equilibrium point), triggering the onset of the off-phase.
Alternation between the off- and on-phases (both with unstable
dynamics) can lead to overall oscillatory and bounded stability
in a robust manner (Bottaro et al., 2008; Asai et al., 2009;
Suzuki et al., 2012; Asai et al., 2013). It has been argued that

the slow dynamics near the saddle point with tiny additive
motor noise are responsible for the power-law behaviors in the
movement variability at a low frequency regime (Nomura et al.,
2013).

The current article aims to demonstrate that a motor
control strategy for stick balancing at the fingertip can also
be characterized by intermittent feedback control. To this
end, the stabilization of an inverted pendulum on a manually
controlled cart (referred to as the cart-inverted-pendulum or
CIP), which is analogous to the stick balancing on the fingertip,
is considered to make the paradigm simpler and more tractable
than balancing on the fingertip. The use of the CIP, rather than
balancing on the fingertip, restricts the human motor actions
to one-dimensional horizontal displacements of the pivot of
the stick. Indeed, the stabilization of an inverted pendulum on
the fingertip is achieved by three-dimensional (3D) movement
of the fingertip; thus, control strategies other than the on-
off intermittency of the feedback control can be employed,
such as vertical periodic movements that can contribute to
the stabilization through parametric resonance, as described by
the Mathieu equation (e.g., Hoppensteadt, 2000). However, this
sort of stabilization mechanism can be clearly ruled out as a
strategy that the CNS might exploit for the task. Note that the
movements of cart in the CIP task are confined to the frontal
(medial-lateral) plane, whereas the movements tend to be in
the sagittal (anterior-posterior) plane for stick balancing on the
fingertip.

Our preliminary study demonstrated intermittent
appearances of hyperbolic dynamics in the experimental
CIP paradigm, reflecting the intermittent feedback-control
strategy, via phase-space analysis and wavelet analysis of
the experimental data (Yoshikawa et al., 2015). Here, we
characterize the experimental behaviors of the CIP dynamics
in detail, and the movement variability observed during
CIP task is simulated by computational models of CIP
control system with and without the intermittent time-delay
feedback controller. We show that the CIP dynamics for
skilled subjects can be better described by the models with
the intermittent delay feedback controller than by those
with the conventional continuous delay feedback controllers,
suggesting that the human CNS stabilizes the upright posture
of the pendulum by utilizing the intermittent feedback control
strategy.

MATERIALS AND METHODS

In this section, the computational models of CIP, the
experimental procedure for the CIP task, and the time-series
analysis methodology for characterizing the CIP movement
variability are summarized.

Computational Models
CIP Dynamics and Stability of the Inverted Pendulum

without Feedback Control
Figure 1 illustrates the CIP system that we consider in this study.
The equations of motion of the CIP are described as follows:
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FIGURE 1 | The cart-inverted-pendulum (CIP) system.
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where θ is the tilt-angle of the pendulum, x is the cart position
from the origin along the rail, ℓ/2 is the distance from the joint
to the center of mass of the pendulum, mℓ2/3 is the moment
of inertia of the inverted pendulum around the joint, m is the
pendulum mass, M (=2m) is the cart mass, g is the gravitational
acceleration, and u is the manual force exerted by the subject,
which is a control input to the CIP system. See Milton et al.
(2009) for detail. Moreover, we consider an additive force noise
σξ, where ξ represents a Gaussian white noise with zero mean
and unit variance and σ is the noise intensity (standard deviation
of the noise). In our coordinate system, the positive (x > 0) and
negative (x < 0) directions of the cart position correspond to
the positive (θ > 0) and negative (θ < 0) directions of the tilt
angle of the inverted pendulum. Equations (1) and (2) can then
be rewritten in the state-space representation, as follows:
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where ω = θ̇ and v = ẋ are the angular velocity of the pendulum
and the moving velocity of the cart, respectively. The elements of
the system matrix and the input matrix are defined as:

A21 =
2g

ℓ
, A41 = −

g

3

B2 = −
2

3mℓ
B4 =

4

9m
.

The origin (θ, ω, x, v) = 0 is an unstable fixed point (equilibrium
point) of the mechanical system without control force (u = 0)
and noise (σ = 0). The linear stability of this system with
u = σ = 0 is determined by the solutions (eigenvalues) of the
characteristic equation det (A− λE) = 0, where A is the 4 × 4

matrix at the right-hand side of (3) and E is the 4 × 4 identity
matrix, which can be derived as λ± = ±

√

2g/ℓ and λd = 0
(double-zero roots). The eigenvectors for λ±, denoted by 8±,
and the generalized eigenvectors for the double-zero eigenvalues,
denoted by 8d1 and 8d2, are obtained as follows:
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We chose two unit vectors parallel to the x and v axes
as the generalized eigenvectors corresponding to double-zero
eigenvalues λd, which are independent of the stability of the
pendulum in the θ-ω plane (thus, detailed descriptions of λd
are omitted in this paper). Because the other two eigenvalues
λ± are real numbers with opposite signs, the system has a one-
dimensional stable manifold and a one-dimensional unstable
manifold in the phase space without a control force. In particular,
the stable and the unstable manifolds are represented as lines that
pass through the origin in the θ-ω plane, and they are parallel

to the vectors 8
′
− =

[

1−
√

2g/ℓ
]T

and 8
′
+ =

[

1
√

2g/ℓ
]T
,

respectively.
The dynamics of θ and ω are independent of x and v, because

the (1, 3), (1, 4), (2, 3), and (2, 4) elements of matrix A are all
zeros. That is, as far as we consider the θ-ω plane in the phase
space, the motion of the point (θ , ω) is independent of the cart
position and its velocity if u = 0. (Note that the dynamics of
θ and ω are influenced by the cart dynamics if u 6= 0 and it
depends on x and/or v). In this way, the upright position (θ ,
ω) = (0, 0) of the pendulum can be considered as a saddle-type
unstable equilibrium point when no control force is applied to the
cart. Because the upright equilibrium point of a standard inverted
pendulum model with a uniaxial joint fixed in the space is also
saddle type (Asai et al., 2009), the inverted pendulum for a CIP
without control force behaves similarly to the standard inverted
pendulum in the θ-ω plane. This suggests that the experimental
subjects can exploit transiently contracting dynamics along the
stable manifold of the non-controlled inverted pendulum as in
the intermittent control model of posture control for human
quiet standing (Asai et al., 2009, 2013).

Time-Delayed Feedback Controller and the

Continuous Feedback-Control Model
In this study, the manual control force u is modeled by the
following time-delayed proportional and derivative feedback
controller

u(t) = Pθθ△ + Dθω△ + Dxv△, (5)

where θ△ = θ (t −△), ω△ = ω(t − △), and v△ = v(t − △)
are the delayed state variables with a feedback delay time △;
Pθ , and Dθ are the proportional and derivative feedback gains
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for the angular and angular-velocity deviations from the upright
equilibrium point, respectively; and Dx is the derivative feedback
gain for the deviation of the cart position from the null velocity.
Because we did not ask the subjects to keep the cart at a specific
position on the rail, a feedback force proportional to the cart
position was not included in the modeling of the manual control
force u. Our preliminary examinations on the model showed that
the use of the proportional feedback controller with respect to
the cart position diminishes the stability region of the CIP system
substantially, and we plan to investigate this in the future.

A simple and conventional model of the manual CIP system,
referred to as the continuous (delayed) feedback-control model
(or continuous control model), is used as a reference against
models with intermittent controllers. In the continuous control
model, the manual force u defined by Equation (5) is always
applied to the cart, independent of the cart position and the
posture of the inverted pendulum (Figure 2). Although, the
origin (θ, ω, x, v) = 0 is a fixed point of the continuous control
model, we are not necessarily interested in its stability, since the
cart position may vary along the rail track while the pendulum
is stabilized by the subject. Instead, we analyze behaviors of the

pendulum using a pseudo-equilibrium point
(

θ, ω
)

of the system
in the θ-ω plane, which is defined as a solution of the zeros in
the right-hand-side of the first and second rows of Equation (3).
Namely,

θ̇ = ω = 0, (6)

ω̇ =
2g

ℓ
θ −

2

3mℓ

(

Pθθ△ + Dθω△ + Dxv△
)

= 0. (7)

From Equation (6), we have ω = 0, and thus ω△ = 0 and
θ = θ△ = θ , which yields the pseudo-equilibrium point using
Equation (7) as follows:

(

θ, ω
)

=
(

−Dxv△
Pθ−3mg , 0

)

. (8)

The pseudo-equilibrium point is not a fixed point, but it moves
right and left as the function of the delayed cart velocity v△. If
Pθ > 3mg as in our experimental setup, θ < 0 if v△ > 0, and
θ > 0 if v△ < 0. In other words, the moving pseudo-equilibrium

FIGURE 2 | Off- and on-regions in the θ-ω plane and the θ-v plane to define the switching conditions between the off-phase and on-phase of the

feedback control. In each plane, the white and gray regions represent the on-region and the off-region, respectively. (A,B) Continuous control model with Dx = 0

and Dx > 0, respectively: the on-region occupies the whole of the θ-ω and the θ-v planes for both cases. (C,D) Type-1 intermittent control model with Dx = 0 and

Dx > 0, respectively: the off-regions in the θ-ω plane are located near the stable manifold (depicted as a solid line with a negative slope passing though the origin) for

the inverted pendulum with no feedback control. The θ-v plane does not have off-regions. (E,F) Type-2 intermittent control model with Dx = 0 and Dx > 0,

respectively: onset of the off-phase is determined based on the off-regions in the θ-ω phase and those in the θ-v plane. For each panel, the thick curve with

arrowheads represents a sample trajectory of the model, and the black and red curves represent the trajectories during on-phases and off-phases, respectively. The

circular shape of the black trajectories is due to the delay-induced instability with delay feedback control, and the hyperbolic shape of the red trajectories move along

the stable manifold and/or the unstable manifold (depicted as a dotted line with a positive slope) during off-phases. See text for details.
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point is located on the θ-axis of the left and right halves in the θ-
ω plane, respectively, if the cart moves rightward and leftward △
(s) in the past. Thus, a state point in the θ-ω planemay pursue the
pseudo-equilibrium point located on the negative and positive
parts of the θ-axis, respectively, for v△ > 0 and v△ < 0. By
approximating θ△ ≈ θ −△θ̇ and ω△ ≈ ω−△ω̇, and by defining
θ ≈ θ + ϑ , Equations (6, 7) can be rewritten as:

(3mℓ − 21Dθ ) ϑ̈ + 2 (Dθ −△Pθ ) ϑ̇

+ 2
(

Pθ − 3mg
)

ϑ = 0. (9)

Note that, although Taylor series expansion of delayed terms
with respect to the delay might give a good approximation
of the dynamics is some cases, such approximation has no
mathematical foundations. Interestingly, first-order expansion
may approximate stability properties, but higher order
expansions results in an unstable system [see Insperger (2015)
for detailed discussion about this]. The pseudo-equilibrium
point is stable if and only if:

Dθ −△Pθ

3mℓ − 21Dθ

> 0 and
Pθ − 3mg

3mℓ − 21Dθ

> 0. (10)

Moreover, the pseudo-equilibrium point is topologically focus-
type if:

(

Dθ −△Pθ

3mℓ − 21Dθ

)2

−
2
(

Pθ − 3mg
)

3mℓ − 21Dθ

< 0. (11)

For example, for a large Pθ with small Dθ that do not
fulfill Equation (10) but fulfill Equation (11), dynamics of the
pendulum in the θ-ω plane may be approximated by a growing
oscillation, circulating clock-wise around the pseudo-equilibrium
points that are moving at the left or the right sides of the origin,
depending on the sign of v△. If the cart moves from side to side
for pursuing and catching-up the falling pendulum, the sign of
v△ may alternate, leading to an alternation between oscillations
around the pseudo-equilibrium points at the left and the right
sides of the origin (Figure 2B). Note that the origin is the pseudo-
equilibrium point if Dx = 0, for which the state point draws a
simple circular trajectory in the θ-ω plane (Figure 2A).

A linear stability analysis of the delay differential equation (the
continuous control model)

θ̈ =
2g

ℓ
θ −

2

3mℓ
Pθθ1 −

2

3mℓ
Dθ θ̇1, (12)

which corresponds to the second row of Equation (3) when
using Equation (5) with Dx = 0, revealed the following critical
conditions for the existence of a stability region in the Pθ -Dθ

parameter plane (Stepan, 2009). For a pendulum length ℓ, the
critical delay time△cr can be derived as:

△cr =

√

ℓ

g
. (13)

That is, for a given ℓ, there is no stability region in the Pθ -Dθ

parameter plane for any delay time△>△cr . Similarly, for a given

delay time △, the critical length of the pendulum ℓcr can be
derived as:

ℓcr = g12. (14)

That is, for a given delay time △, there is no stability region in
the Pθ -Dθ parameter plane for any pendulum length ℓ < ℓcr . For
our experimental CIP system, the critical delay is calculated as
1cr = 0.226 s with ℓ = 0.5 m. The critical length is ℓcr = 0.098
m if we assume 1 = 0.1 s and ℓcr = 0.392 m if we assume
1 = 0.2 s. Because the feedback delay time is estimated to be
between 0.08 and 0.22 s (Mehta and Schaal, 2002; Cabrera and
Milton, 2004a), the length of the pendulum (ℓ = 0.5 m) used
in this study is slightly greater than but very close to the critical
length. Thus, theoretically, the parameters of the CIP system used
in this study are set scarcely within the range of stability region,
and the subjects can stabilize the inverted pendulum even if they
utilize the continuous time-delayed proportional and derivative
feedback control for the tilt angle and the angular velocity of the
pendulum with appropriately tuned gains. With this condition,
we are interested in whether the experimental behaviors of the
subjects can be well described by the continuous control model
or the intermittent control model.

Type-1 Intermittent Feedback-Control Model
We consider two types of intermittent feedback-control models.
Both models assume the time-delayed feedback controller
defined by Equation (5), but the conditions for the state-
dependent inactivation and activation of the feedback controller
differ slightly. In one type of model, referred to as the type-1
intermittent control model, the conditions for switching between
the off-phase without the feedback control force and the on-phase
with the feedback control force depend only on the delayed state
of the pendulum, and the intermittent manual feedback control
is defined as follows:

u =
{

0, if θ△
(

ω△ − aθ△
)

< 0,
Pθθ△ + Dθω△ + Dxv△, otherwise,

(15)

where the parameter a takes a value within [−∞,+∞] that
determines the slope of the switching boundary in the θ-ω plane
(Figures 2C,D). This state-dependent switching rule is exactly
the same as the one proposed for human posture control during
quiet standing (Asai et al., 2009). According to Figure 2C for
Dx = 0 and Figure 2D for Dx > 0, the feedback controller
is turned off (inactivated) if the delayed state of the pendulum
(θ△, ω△) is located in the gray colored area (off-region) in the θ-
ω plane, in the middle of which the stable manifold settles, and
otherwise (on-region), it is turned on (activated). In this way,
the state point can receive benefit of the stable manifold along
which the state point approaches the saddle-point transiently.
As in the case of Figure 2C, a trajectory for the state of the
pendulum in the θ-ω plane exhibits hyperbolic curves (the red
curves in Figure 2C) according to the hyperbolic vector field
around the saddle point at the origin as far as the delayed state
(θ△, ω△) is located in the off-region, and it forms peanut-shaped
cycles together with the arc-like segments for the periods of
on-phases. The corresponding trajectory in the θ-v plane when
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the feedback controller is switched-off forms almost horizontal
segment, implying null-acceleration, because no control force
is applied to the cart during the off-phases. A trajectory of the
model for Dx > 0 (Figure 2D) behaves similarly. However,
because of the existence of the v△-dependent pseudo-equilibrium
point, the state point moves around the pseudo-equilibrium
points that appear at the left and the right sides of the origin
depending on the sign of v△ (Figure 2D) during the on-phases.
Because the sign of v△ typically alternates when the pendulum
swings to right and left, the pseudo-equilibrium point follows it,
and thus the trajectory tends to be elongated horizontally, leading
to a trajectory more like butterfly-wings rather than the peanut.

The off-region in the θ-ω plane disappears in the limit of
a → −∞, whereby the type-1 intermittent control model
becomes identical to the continuous control model. On the other
hand, the whole θ-ω plane becomes off-region in the limit of
a → +∞, for which the upright position of the pendulum can
never be stabilized. Thus, the type-1 intermittent control model
and the continuous control model are described by identical
system equations that are parameterized by a single parameter
a, meaning that one can analyze how the dynamics of the model
change as the controller transits from continuous to intermittent
feedback.

Type-2 Intermittent Feedback-Control Model
In the other type of intermittent control model, referred to as the
type-2 intermittent control model, the conditions for switching
between the off-phase and the on-phase depend on the delayed
state of the pendulum as well as the cart velocity (Figures 2E,F),
and the corresponding manual feedback control is defined as
follows:

u =































0,
if θ△

(

ω△ − aθ△
)

< 0
and θ△v△ < 0 and u△ 6= 0,

or if θ△ω△ < 0 and u△ = 0,

Pθθ△ + Dθω△ otherwise
+ Dxv△,

(16)

where u△ = u(t − △). Roughly speaking, by the switching
condition of Equation (16), the active feedback control is turned
off when the state point is close to the stable manifold as in
Equation (15) and the cart velocity is close to zero. Because
we frequently encountered chattering-like behaviors for this
model during our preliminary model simulations, the dead-
time (△s) was introduced for the type-2 intermittent control
model, whereby switching between the off-phase and on-phase
was prohibited within this dead-time. The switching condition
θ△v△ < 0 for triggering the off-phase and u△-dependent
condition θ△ω△ < 0 for terminating the off-phase were
introduced for the type-2 intermittent control model, based on
our preliminary analysis of the experimental behaviors, where
we observed that the amplitude of the manual control force
estimated by the cart acceleration tended to decrease (presumably
corresponding to the onset of off-phase) with respect to the
pendulum tilt angle. That is, such estimated onsets of the off-
phase tended to occur either when the cart moved with a
positive velocity and approached zero with a negative tilt angle

or, oppositely, when the cart moved with a negative velocity and
approached zero with a positive tilt angle, i.e., immediately after
the cart overtook the top (or the center of mass) of the pendulum,
where the cart acceleration is locally maximized in both cases
(Yoshikawa et al., 2015). The effects of the additional switching
conditions on the CIP dynamics are not trivial; on one hand, the
additional conditions for triggering the off-phase may increase
the duration of the on-phase with feedback control, but on the
other hand, derivative feedback control for the cart velocity may
prevent the cart from gaining a large velocity, leading to the
suppression of the generation of toomuch feedback control force.

The switching conditions in the for the type-2 intermittent
control provides an alternative mechanism that can produce a
butterfly-wings-like trajectory in the θ-ω plane, as in the type-
1 intermittent control model with the pseudo-equilibrium point
(Figure 2D), even without the pseudo-equilibrium point for
Dx = 0 by using a combination of the off-regions in the θ-ω plane
and those in the θ-v plane (Figure 2E). In Figure 2E, for example,
the state point draws a hyperbolic curve (red-colored) in the left
half plane along the stable manifold during the off-phase, which
is initiated by the coincidence of two events: entrance of the state
point in the off-regions both in the θ-ω and the θ-v planes and
terminated almost immediately after the red curve tumbles out
of the second quadrant of the θ-ω plane, leading to the reversal
of the trajectory moving upward and then to the right half plane
with the feedback control force (the black arc that is terminated
at the off-region in the right half plane, just before the state point
reaches the stable manifold). When Dx > 0, the system has
the pseudo-equilibrium point during the on-phase, and thus, the
butterfly-wings-like trajectory is generated by the combination
of this switching mechanism and the right-left alternation of the
pseudo-equilibrium point (Figure 2F).

In this way, both of the type-1 and the type-2 intermittent
control model exhibit the butterfly-wings-like trajectory that is
commonly characterized by the changes in the sign of ω both
in the right and left half plane in the θ-ω plane. A behavioral
difference between the type-1 and the type-2 models is that the
state point passes through the upright position (θ = 0, i.e.,
the motion between the right-half and the left-half of the θ-ω
plane) is achieved typically during the off-phase in the type-1
model, whereas it is achieved typically during the on-phase in
the type-2 model. In other words, the type-1 controller catches
the freely falling pendulum, and then just throws (or kicks) the
pendulum up impulsively so that the pendulum can approach
the upright position freely without the control force, whereas the
type-2 controller also catches the freely falling pendulum, but the
pendulum is brought to the other side actively by the control
force.

As in the type-1 intermittent control model, the off-region in
the θ-ω plane disappears in the limit of a → −∞, whereby the
type-2 intermittent control model also becomes identical to the
continuous control model, as the two conditions for the off-phase
described in Equation (16) can never be satisfied.

Model Simulations
The dynamics of the continuous and two types of intermittent
control models were numerically simulated using the forward

Frontiers in Computational Neuroscience | www.frontiersin.org 6 April 2016 | Volume 10 | Article 34

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Yoshikawa et al. Intermittent Control during Stick Balancing

Eulermethod for stochastic differential equations with a time step
of 0.001 s (Kloeden and Platen, 1992). The feedback delay time
was fixed at △ = 0.1 s throughout the study. For a given model
with a set of parameter values (see Section Stability Analysis of
the Models and Fitting Experimental Behaviors to the Models
for details regarding the parameters), the model was integrated
for a time span of 70 s with 100 different initial conditions,
where (θ (0) ,ω (0)) were randomly selected from the uniform
distribution between [−0.05, 0.05] for the initial tilt angle and the
angular velocity, and (x (0) , v (0)) were set as zero at time t = 0.
The initial values (the initial functions) for t ∈ [−△, 0) were all
set as zero for all the 100 initial conditions.

The dynamics of a model with a given set of the parameters
were determined as stable if the pendulum of the model did not
fall (i.e., max

∣

∣θ(t)
∣

∣ < π/2) for all 100 simulated trials with 100
different initial conditions. The threshold value π/2 for falling
condition might be too large, but we used this value to avoid
failures in detecting events of “big risk of falls” where the falling
pendulum is recovered from a very large tilt angle. For each of the
stable solutions, transient data for the first 10 s were discarded
to obtain 100 sets of the steady-state solution 60 s in length
(the same length as the segmented experimental skilled data).
Then, the data were down-sampled at 60Hz and smoothed by
a low-pass filter with a cutoff frequency of 10Hz.

Experimental Methods
In the manual stabilization of the CIP, an inverted pendulum
is attached on a cart by a uniaxial free joint, and the control
objective is to stabilize the upright posture of the pendulum
by moving the cart translationally, based on the visual (and
tactile) feedback information regarding the posture of the
pendulum. The rotational motion of the inverted pendulum
is not controlled by a direct joint torque but is controlled
indirectly through the acceleration of the cart, which is manually
repositioned in a horizontal direction by the hand of the
experimental subject. A relatively large sensory feedback delay
time is indispensable owing to neural transmission and neural
information processing performed by the CNS of the subject. In
the CIP without a feedback time delay, the upright posture of
the inverted pendulum can easily be stabilized asymptotically by
using, for example, a simple proportional-derivative control with
appropriate (optimal) feedback gains. However, delay-induced
instability may occur in the case of feedback control with delay
(Insperger and Milton, 2014), where the neural transmission
delay has been estimated as 0.08–0.22 s in stick balancing on the
fingertip (Mehta and Schaal, 2002; Cabrera and Milton, 2004a).
The delay time is sufficiently large to cause the delay-induced
instability. Nevertheless, skilled subjects can stabilize the stick in
the upright position in a robust manner.

Experimental CIP Task
The CIP as in Figure 1 was assembled mechanically, and the
manual-control performances were measured for 12 healthy
young subjects (aged 21–28 years, all right-handed). All the
subjects provided written informed consent to participate in
this research, which was approved by the ethical committee for
human studies at the Graduate School of Engineering Science,

Osaka University. The CIP comprised a uniform-density thin,
rigid stick (pendulum) with a length of ℓ = 0.5m and a mass of
m = 0.125 kg, as well as a cart with a mass ofM = 2m = 0.25 kg.
The cart could slide smoothly along a rail track 0.8m in length.
The cart and the stick were joined by a uniaxial bearing; thus,
the joint was considered as a frictionless pin joint. Therefore, the
pendulum could rotate only in the two-dimensional plane along
the rail track. The subjects manipulated the cart on the track by
holding a handle attached to the cart with their right hand. 3D
optical motion capture with five infrared cameras (BTS, Milan,
Italy) was performed to measure the motion of the infrared
reflection markers attached to both ends of the stick during the
task with a sampling frequency of 300Hz.

Each subject performed the task for 4–7 days, at most 10
trials per a day. They practiced the task for 2min prior to the
first measured trial each day. The balancing-time duration, d
(s), was defined as the time interval from the instant when
the subject released the stick supported by the left hand to
the instant when the stick fell down. For each measurement
day, the total balancing-time duration, i.e., the sum of the
balancing times d, was acquired, and the trials were terminated
when the total duration exceeded 600 s. Performances with
d > 70 s among all trials throughout the measurement days
were considered as skilled performances. For each subject, the
experiment was terminated either when the total number of
skilled performances exceeded 10 or when the total number of
measurement days reached seven. Subjects exhibiting more than
10 skilled performances were considered as skilled performers.
In this study, the movement variability during the CIP task was
analyzed only for the skilled performers.

Data Preparation for Skilled Performances
For each skilled subject, the skilled performances were ranked
based on the balancing-time duration, from longest to shortest.
Then, the longest duration dmax (s) was defined for each subject
in order to rank the subjects based on their skill level for the
task. For the skilled-performance data, the transient behaviors for
the first 10 s of the trial were discarded. The remaining steady
state-data were divided into segments with a duration of 60 s
(where the last segment less than 60 s was also discarded), and
the segments were analyzed separately to characterize the skilled
performances. The steady-state durations were split into 60 s
windows in order to perform the ensemble average of time series
statistics under identical conditions across subjects. Specifically,
for each subject, 10 segments were taken, from the longest data
first and then from the second- and third-longest data, and each
segment was analyzed separately. We also defined the mean
duration dmean (s) for each subject, which is the mean value of the
balancing-time durations for the skilled performances that were
used for collecting the 10 segments. A longer balancing duration
of the best, second-best, and third-best trials led to a smaller
number of trials necessary for collecting the 10 data segments.

For data analysis, time-series data of the x-coordinate values
for each of two markers attached to both ends of the stick
were analyzed after they were down-sampled at 60Hz, where
the x-axis was defined along the rail. The time series of the x-
coordinate position of the markers at the bottom and top of the
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stick were denoted as mb[n] and mt[n], respectively, where n is
the discretized time step. We definedmb[n] andmt[n] so that the
origin was located at the bottom end of the stick, as follows:

m̃b [n] = mb [n]−mb, m̃t [n] = mt [n]−mb,

where mb is the average of mb[n]. The tilt-angle θ of the
pendulum, its angular velocity ω, and the cart position x, velocity
v, and acceleration α were then calculated usingmb[n] andmt[n],
respectively, as follows:

θ [n] = sin−1 m̃t [n]− m̃b [n]

ℓ
, ω [n] =

θ [n+ 1]− θ [n− 1]

21t

and

x [n] = m̃b [n] , v [n] =
x [n+ 1]− x [n− 1]

21t
,

α [n] =
x [n+ 2]− 2x [n]+ x[n− 2]

(21t)2
,

where △t = 1/60 s is the resampling time step. The resulting
data were low-pass filtered offline by using a fourth-order zero
phase-lag Butterworth filter with a cutoff frequency of 10Hz.

Characterizing Movement Variability
The movement variability during the experimental CIP
task and that in the computational models were quantified
using five summary measures (indices): two indices for the
non-Gaussianity of the cart-acceleration distributions, the
distribution of the time intervals of corrective movements, the
characteristic peak frequency in the power spectra for the motion
of the pendulum, and the standard deviation of the motion of
the pendulum, as summarized in this subsection. Those five
indices were used not only for characterizing the experimental
and simulated movement variability, but also to estimate the
parameter values of the models compared to experimental data.
These indices were calculated for each 60-s time series. For the
experimental data, the movement variability of the pendulum
for each subject was characterized by the mean value of each of
the five indices averaged over the ten-segmented data. Similarly,
for the simulated data in the models, the movement variability
of the pendulum for the model with every examined set of the
parameters was characterized by the mean value of each of the
five indices averaged over the 100 initial conditions.

Non-Gaussianity Measures for the Cart-Acceleration

Distributions
The movement variability during stick balancing at the fingertip
exhibits non-Gaussian fluctuations (Cabrera and Milton, 2002).
To characterize such fluctuations, we employed a multiplicative
lognormal distribution in which the multiplication of Gaussian
and log normally distributed random variables are assumed. This
distribution was originally introduced as a model for describing
velocity fluctuations in fully developed turbulent flows (Castaing
et al., 1990). Subsequently, it was shown that this distribution
provides a good approximation of non-Gaussian distributions
observed in a variety of systems (Kiyono et al., 2004, 2006;
Manshour et al., 2009).

A multiplicative lognormal distribution of a random variable
X with zero mean and unit variance is given by the following
equation1 :

Pλ (x) =
∫ ∞
0

1√
2πλ

exp

(

− (ln σ +λ2)
2

2λ2

)

1√
2πσ

exp
(

− x2

2σ 2

)

d(ln σ ) , (17)

where x is the outcome of the random variable X, and σ is the
integration variable describing the fluctuating standard deviation
of the Gaussian distribution. The scalar index λ is a shape
parameter quantifying the non-Gaussianity of the distribution
Pλ (x). By taking the limit λ?0 in Equation (17), a Gaussian
distribution is obtained. On the other hand, a larger l indicates
a non-Gaussian distribution with fatter tails and a more peaked
center (a large Kurtosis) compared with a Gaussian distribution.
To estimate the non-Gaussianity parameter λ2 from the observed
data {xi}, the following moment-based estimator was proposed
(Kiyono et al., 2007):

λ2q =
2

q
(

q− 2
)

[

ln

(√
π E[|x|q]
2q/2

)

− lnŴ

(

q+ 1

2

) ]

, (18)

where E is the expectation function, q is the order of the moment
with q 6= 0, 2, and Ŵ is the gamma function. By taking q → 0,
we obtain:

λ2q→0 = − E
[

ln |x|
]

−
γ + ln 2

2
, (19)

where γ ≈ 0.57721566 is the Euler-Mascheroni constant. If x
obeys a multiplicative lognormal distribution, and the sample
number of x is infinity, the estimated value of λ2 is a constant
independent of q. However, in a practical situation with finite
samples, the estimated value of λ2 depends on q. In this
paper, to reduce the effect of very large outliers, we estimate
the value of λ2 by using λ2

q→0 and λ2q=1. The estimate using

λ2
q→0 emphasizes samples located in the center part of the

distribution, and that using λ2q=1 emphasizes samples located

slightly outside of the distribution tails. A large difference
between λ2q→0 and λ2q=1 indicates a large deviation from the

multiplicative lognormal distribution. Using these estimates, we
characterized the distributions of the measured acceleration data.

Distributions of Inter-Corrective Movement Intervals

(ICM Distributions)
Temporal series of the tilt angle θ of the pendulum during
(experimental and simulated) balancing were analyzed in order

1 Equation (17) represents the probability density function (PDF) of a random

variable X = WexpY, where W and Y are two independent Gaussian random

variables with (mean, variance) of (0,1) and (0, λ2), respectively. For a stochastic

process of X parameterized by time, the amplitude of the process determined by X

is modulated according to exp Y . The PDF of X can be written as,

P (x) =
∫ ∞

0

1

σ
PW

( x

σ

)

PY
(

ln σ
)

d
(

ln σ
)

,

where PW and PY are the PDFs of W and Y , respectively. If we take Gaussian for

PW and PY , and express λ -dependeny of Y explicitly, we have Equation (17). Note

that, as λ2 → 0,W exp Y →W andX becomes the standardGaussian distribution.
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to detect a sequence of active interventions, i.e., corrective
movements. As in human stick balancing (Cabrera and Milton,
2002), fluctuations in the tilt angle exhibit the following
characteristics: (i) periods in which small fluctuations occur
alternate with shorter periods characterized by larger changes;
(ii) the baseline for the fluctuations is not the upright position;
i.e., most of the time, the balanced stick deviates slightly from
the vertical. We analyzed the changes in a time series of cos θ ,
which is close to unity during periods with small fluctuation
amplitudes. We consider that time instants when the value
of cos θ falls below a given threshold that is close to unity
correspond to onsets of the corrective movements. Accordingly,
a sequence of inter-corrective movement (ICM) intervals was
obtained. A time average value of cos θ over each balancing
trial, which should be close to unity for small variations of
θ during successful performance, was defined as the threshold
value. ICM distributions were characterized by the median of
the distribution (ICM-median) and the slope of the linear fitting
of the distribution (ICM-slope). The linear fitting for the ICM-
slope was performed for the range of ICMs above the ICM-
median. Because our preliminary examinations revealed that the
ICM-slope was sensitive to the threshold value for detecting
the corrective movements, we decided not to use this index
for characterizing dynamics of the experimental and model-
simulated data, but just for reference.

Characteristic Peak Frequency in the Power Spectra

for the Motion of the Pendulum
Power spectral density (PSD) functions of the tilt-angle
fluctuations were estimated by taking a fast Fourier transform
of each segmented time-series spanning 60 s. Then, the ensemble
average of those PSDs was considered as the PSD of the tilt-angle
fluctuation for each subject and for each model with a given set
of parameter values. Preliminary PSD analysis showed that the
PSD always exhibited a characteristic peak. Thus, the PSD of each
subject was characterized by the peak frequency (PSD-PF).

Standard Deviation of Motion of the Pendulum
The size of fluctuations of the tilt-angle of the pendulum was
characterized by the standard deviation of the time-series of
the tilt angle θ , referred to as SD-θ . It can be determined not
only by the intensity of motor noise (σ in the computational
models), but also by the motor control strategy employed by
the CNS, including the gains of the feedback controller and the
parameter a that determines the switching boundary. Several
types of intermittent control models exhibit larger fluctuations
than the continuous feedback control model (Bottaro et al., 2008;
Asai et al., 2009; Nomura et al., 2013), even with low noise.

Stability Analysis of the Models and Fitting
Experimental Behaviors to the Models
Each experimental time series of the tilt angle θ was fitted by
three types of computational models (the continuous control
model, the type-1 intermittent control model, and the type-2
intermittent control model) to determine which model, with
an appropriate set of parameters, could best reproduce the
experimental behavior. The goodness of the fit was quantified

based on five indices that characterize the tilt angle fluctuation:
the two non-Gaussianity indices λ2q→0 and λ2q=1, the ICM-

median for the ICM distribution, the PSD-PF index for the
PSD, and the SD-θ index for the tilt angle time-series. To this
end, the dynamics of the models were simulated for a variety

of parameter values for the set
−→
P ≡ (a, Pθ ,Dθ ,Dx,σ, type),

where the examined parameter range was as follows: the
value of a varies as a =

√

2g/ℓtanϕ for varying ϕ ∈
[−π/2+ 0.0001, 9π/20+ 0.0001] with a step of π/20, Pθ ∈
[0, 15] with a step of 0.25, Dθ ∈ [0, 3] with a step of 0.15,
Dx ∈ [0, 3] with a step of 0.15, σ ∈ [0.001, 0.031] with a step of
0.0025, and type ∈ [1, 2] representing the type of the intermittent
control. The continuous control model with various Pθ -Dθ -Dx

gains is included in the type-1 and type-2 intermittent control
models as a special case with a = −∞.

The parameter-dependent dynamics of the models were
examined to clarify how the five-dimensional index vector,

denoted by
−→
I (

−→
P ), changed as a function of the parameter

vector
−→
P for a simulated time-series of the model. It provides

stability regions in the parameter space, as the five indices
can be calculated only for models with parameter vectors
−→
P = (a, Pθ ,Dθ ,Dx,σ, type) that exhibit stable dynamics. Let
−→
I exp = (λ2q→0, λ2q=1, ICM-median, PSD-PF, SD-θ) be the

five-dimensional index vector for a given experimental time-

series. The parameter vector
−→
P best that gives the best-fit-model

in reproducing the experimental behavior for each subject was
obtained as follows:

−→
P best = min−→

P

−→
I eW

−→
I
T

e , (20)

Where

−→
I e =

−→
I

(−→
P

)

−−→
I exp,

and

W = Diag(1/s1, 1/s2, 1/s3, 1/s4, 1/s5),

with s1, s2, s3, s4, and s5 being the standard deviations of
λ2q→0, λ

2
q=1, ICM-median, PSD-PF, and SD-θ , respectively, across

all simulated time series for all examined parameter sets and

initial conditions. That is,
−→
I eW

−→
I
T

e in Equation (20) represents
the error function (or the fitness function) for measuring the

distance between simulated and experimental data, i.e.,
−→
I (

−→
P )

and
−→
I exp, based on the five parameters weighted by their

standard deviations.

RESULTS

Movement Variability in the Experimental
Task
Table 1 summarizes the largest (dmax) andmean (dmean) values of
the balancing-time duration for six subjects (Subjects 1 to 6) who
qualified as skilled performers. The remaining six out of the 12
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TABLE 1 | Largest (dmax) and mean (dmean) values of balancing-time

duration for the skilled subjects (skilled performers; Subjects 1–6).

dmax (S) dmean (S) # of trials

Subject 1 558 530 2

Subject 2 297 263 3

Subject 3 600 453 2

Subject 4 369 293 3

Subject 5 500 408 2

Subject 6 464 283 3

dmax , the longest balancing-time duration for each skilled subject among all the trials.

dmean, the mean value of the balancing-time duration over the skilled trials that were used

for assembling the 10 60-s data segments. # of trials, the number of trials that was used

for collecting the ten 60-s data segments. A longer balancing duration of the best and

second- and third-best trials led to a smaller number of trials necessary for collecting the

10 data segments. See the definitions of dmax and dmean in the main text.

subjects did not satisfy the skilled-performer criterion within the
limited period of motor learning, indicating the difficulty of the
task. Based on the values for dmax and dmean, Subjects 1, 3, and
5 were considered as the most skilled performers. The durations
dmax and dmean were shortest for Subject 2, although Subject 2
qualified as a skilled performer.

Figure 3 shows the time-series data for two subjects (Subjects
1 and 6) with the corresponding phase portraits, cart-acceleration
distributions, PSD functions, and ICM distributions. The non-
gray-shaded rows inTable 2 indicate the values of the five indices,

i.e.,
−→
I exp = (λ2q→0, λ2q=1, ICM-median, PSD-PF, SD-θ), for

each of the six skilled subjects. Subject 1—one of the most skilled
subjects as shown in Table 1—exhibited the second-largest non-
Gaussianity index λ2q=1, which is consistent with the apparent

fat tail in the acceleration distribution shown in Figure 3A.

Regarding two other most skilled subjects (Subjects 3 and 5),
the non-Gaussianity in terms of λ2q=1 was also large for Subject

3 but not as large for Subject 5. Nevertheless, the values of
λ2q=1 deviated significantly from zero for all skilled subjects (see

Figure 3B for Subject 6), meaning that movement variability for
the skilled subjects in this task can be well characterized by the
non-Gaussian acceleration distribution, as reported by previous
studies (Cabrera andMilton, 2004a; Cluff and Balasubramaniam,
2009). The non-Gaussianity in terms of λ2q→0 was also large for all

the skilled subjects, indicating that the acceleration distribution
for each subject always exhibited leptokurtosis at the origin.
Frequent appearances of the null acceleration imply that the
subjects frequently did not control the motions of the cart.

The values of the two non-Gaussianity indices (λ2q=1 and

λ2q→0) were similar for Subject 1 but not necessarily for the other

subjects. This means that the acceleration distribution of Subject
1 was consistent with a multiplicative lognormal distribution
(Equation 17). This was not necessarily true for the other subjects,
although the acceleration distributions in all subjects deviated
significantly from Gaussian.

The ICM-distributions for each subject exhibited power-law
behaviors as reported by a previous study (Cabrera and Milton,
2002), with the scaling exponent values around 2.0 (the ICM-
slope around –2.0 as shown in the right-most column of Table 2)

that were not necessarily close to 3/2 as reported in Cabrera and
Milton (2002). Indeed, the scaling exponents (and thus the ICM-
slope values) were very sensitive to the choice of the threshold
used to determine the onsets of the on-phases.

The trajectory in the θ-ω plane did not necessarily circulate
simply around the origin, but they tended to be elongated
horizontally, suggesting that the mechanisms associated with
the hyperbolic trajectory within the off-regions and/or the
alternating pseudo-equilibrium points are involved in themanual
control of the subjects.

Stability and Movement Variability in the
Computational Models
Figures 4, 5 show the parameter dependency of the non-
Gaussianity index λ2q=1 for the movement variability of the

pendulum in the type-1 intermittent and type-2 intermittent
feedback-control models, respectively, with two typical noise
intensities for each model. Because the index λ2q=1 can be

calculated only for the models with parameter vectors
−→
P =

(a, Pθ ,Dθ ,Dx,σ, type) that exhibit stable dynamics, Figures 4,
5 also represent the stability regions of the models. That is,
the regions indicated by colors denote stability irrespective of
the color. Figure 4 shows how the non-Gaussianity index λ2q=1

changes as values of a, Pθ , Dθ , and Dx change for the type-

1 intermittent control model with parameter vectors
−→
P =

(a, Pθ ,Dθ ,Dx, 0.001, 1) with a small noise intensity (upper

panels), and with
−→
P = (a, Pθ ,Dθ ,Dx, 0.011, 1) with a medium

noise intensity (lower panels). Similarly, Figure 5 provides
corresponding information for the type-2 intermittent control

model with parameter vectors
−→
P = (a, Pθ ,Dθ ,Dx, 0.001, 2) and−→

P = (a, Pθ ,Dθ ,Dx, 0.011, 2) . Each figure consists of a number
of panels corresponding to the Pθ−Dθ parameter planes spanned
by the proportional and derivative gain parameters in the range
of Pθ ∈ [0, 12.0] and Dθ ∈ [0, 3.0]. The model for a given set of
Pθ -Dθ parameter values is represented by the corresponding grid
in the Pθ -Dθ plane, and the colored grid indicates that the model
with that parameter values exhibits stable dynamics. For each
parameter set for stable dynamics, a set of values for the index

vector
−→
I (Pθ , Dθ ) was calculated, and particularly the value of

the non-Gaussianity index λ2q=1 is depicted using the color-code

as a function of Pθ and Dθ in Figures 4, 5. In Figures 4, 5, for the
small andmedium noise intensities, the Pθ −Dθ planes in the first
column (leftmost column) are for a = −∞, meaning that those
Pθ -Dθ planes represent the stability regions of the continuous
control model with different values of the gain parameter Dx.

In Figures 4, 5, one can observe that the stability region is
roughly located at the middle of each Pθ −Dθ plane. The stability
region in the Pθ -Dθ plane changes based on the other parameters.
For a given value of a (for a given column), the stability region
diminishes as the gain parameter Dx increases, indicating that
the feedback controller for the cart velocity decreases stability.
For a = −∞ with Dx = 0 (top left corner of Figures 4, 5),
the lower bound of Pθ (the critical proportional gain Pθcr) is 3.75
N/rad, which is consistent with the theoretical value (Pθcr = 3mg
= 3.679 N/rad), and it shifts to the right as Dx increases. For
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FIGURE 3 | Time-series data for two experimental subjects with the corresponding phase portraits, cart-acceleration distributions, PSD functions,

and ICM distributions. (A,B) are for Subjects 1 and 6, respectively. The data for each subject are a segmented piece (60 s). Top left, tilt angle; top right, PSD;

bottom left, phase portrait with a piece of trajectory for a selected period of 20 s; bottom middle, cart-acceleration distribution; bottom right, ICM distribution. The red

curves in the acceleration distribution represent the Gaussian. The vertical red lines in the ICM and PSD represent the values of two indices: the ICM-median and

PSD-PF. See the text for details.

TABLE 2 | Index values for characterizing movement variability.

λ
2
q→0

λ
2
q=1

ICM-median PSD-PF SD-θ
−→

I eW
−→

I
T

e ICM-slope

Subject 1 Experiment 0.36 0.39 0.70 0.77 0.039 – –2.00

Continuous 0.21 0.27 0.72 0.70 0.012 2.41 –0.90

Type-1 intermittent 0.40 0.35 0.67 0.78 0.041 0.76 –1.62

Type-2 intermittent 0.38 0.39 0.70 0.67 0.013 1.01 –1.28

Subject 2 Experiment 0.50 0.22 0.65 0.62 0.041 – –2.42

Continuous 0.21 0.27 0.72 0.70 0.012 3.08 –0.88

Type-1 intermittent 0.45 0.22 0.66 0.65 0.042 0.46 –2.33

Type-2 intermittent 0.51 0.22 0.62 0.67 0.028 0.66 –1.99

Subject 3 Experiment 0.62 0.43 0.68 0.48 0.017 – –2.91

Continuous 0.21 0.27 0.72 0.70 0.012 4.41 –0.90

Type-1 intermittent 0.66 0.46 0.71 0.60 0.019 0.95 –1.72

Type-2 intermittent 0.60 0.44 0.66 0.47 0.005 0.55 –1.32

Subject 4 Experiment 0.36 0.16 0.81 0.52 0.091 – –2.16

Continuous 0.15 0.13 0.80 0.63 0.094 1.37 –0.14

Type-1 intermittent 0.35 0.12 0.81 0.52 0.093 0.30 –2.13

Type-2 intermittent 0.36 0.18 0.78 0.52 0.095 0.34 –1.58

Subject 5 Experiment 0.45 0.20 0.87 0.45 0.028 – –2.14

Continuous 0.17 0.18 0.94 0.53 0.017 2.10 –0.93

Type-1 intermittent 0.49 0.20 0.81 0.45 0.024 0.51 –1.89

Type-2 intermittent 0.45 0.15 0.90 0.45 0.025 0.43 –2.08

Subject 6 Experiment 0.52 0.23 0.83 0.50 0.039 – –2.32

Continuous 0.17 0.18 0.94 0.53 0.017 3.10 –0.93

Type-1 intermittent 0.50 0.20 0.78 0.45 0.044 0.68 –2.00

Type-2 intermittent 0.52 0.16 0.85 0.47 0.04 0.49 –2.40

For each subject, the values of five indices are summarized for the experimental data as well as for the simulated data with the best- fit-models of the continuous, type-1 intermittent,

and type-2 intermittent control models. The best- fit-model among the three types of control models for each subject is highlighted by the thick-box. The second column from the right

and the rightmost rows represent the values of the fitness (error) function defined in Equation (20) and the ICM-slope index values, respectively.
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FIGURE 4 | Parameter dependency of stability and the non-Gaussianity index λ
2
q=1

for the movement variability of the pendulum in the type-1

intermittent feedback control models with two typical noise intensities (delay-time 1 = 0.1s). Values of the index λ2
q=1 were calculated for the model with

various parameter vectors
−→
P = (a, Pθ ,Dθ ,Dx,σ, type = 1), which are plotted by color-code in the Pθ -Dθ planes for a set of combinations of the values of a (columns)

and Dx (rows). The noise intensity is σ = 0.011 for the upper sets (A) of the Pθ -Dθ planes and σ = 0.001 for the lower sets (B) of the Pθ -Dθ planes. Because the index

values can be calculated only when the models exhibit stable dynamics, the colored regions also represent the stability regions of the model. The parameter points

indicated by the arrows with (A–D) are used for generating the time-series shown in Figures 5A–D, respectively. Those with (s1), (s2), and (s4) are the parameter

points that best fit the experimental behaviors for Subjects 1, 2, and 4, respectively. Note that the best-fit noise intensities for (s1), (s2), and (s4) are not the values

used for these panels (see Table 3 for the exact values). See the text for details.

small fixed values of Dx, the stability region changes substantially
as a increases. In particular, for the set of the Pθ -Dθ planes
arranged in the first and second rows of Figure 4 for the type-
1 intermittent control model, as a increases from −∞ toward
zero and then to positive values, the stability region is stretched

in the direction of small Pθ (and large Dθ ) values below the
critical proportional gain Pθcr and then stretched in the direction
of large Pθ (and smallDθ close to zero). For large positive a values,
the stability region becomes small and eventually diminished as
a increases. As shown in Figure 5, for the type-2 intermittent
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FIGURE 5 | Parameter-dependency of stability and the non-Gaussianity index λ
2
q=1

for the movement variability of the pendulum in the type-2

intermittent feedback control models with two typical noise intensities (delay-time 1 = 0.1 s). The figure is arranged in the same way as Figure 4. The noise

intensity is σ = 0.011 for the upper sets (A) of the Pθ -Dθ planes and σ = 0.001 for the lower sets (B) of the Pθ -Dθ planes. The parameter points indicated by arrows

with (A,B,E,F) are used for generating the time-series shown in Figures 6A,B,E,F, respectively. Those with (s3), (s5), and (s6) are the parameter points that best fit the

experimental behaviors for Subjects 3, 5, and 6, respectively. Note that the best-fit noise intensities for (s3), (s5), and (s6) are not the values used for these panels (see

Table 3 for the exact values). See the legend of Figure 4 and the main text for details.

control model, the stability region does not change significantly

until a becomes close to zero, and then it is elongated horizontally

in the direction of large Pθ values for positive a values as a

increases. A comparison between the upper (medium noise) and

lower (small noise) sets of panels indicates that the intensity

of additive noise does not change the stability region but does

change the color of the stability regions (the non-Gaussianity).

The color spectrum from dark blue to dark red is used for
representing the non-Gaussianity indexλ2

q=1 shown in Figures 4,

5, where the most dark blue and red represent λ2
q=1 = 0.0 and

λ2
q=1 = 0.6 or larger than 0.6 (the largest value exhibited by

the simulated time-series data for the examined parameter range
was 2.27), respectively. In Figures 4, 5, for a given value of Dx,
the color of the grid (color of the stability region) changes from
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FIGURE 6 | Typical time-series data of the models with their corresponding phase portraits, cart-acceleration distributions, PSD functions, and ICM

distributions. Panels are prepared for six sets of the parameter vectors
−→
P indicated at the top of each trace. The configuration in each of the (A–F) is exactly the

same as in Figure 3. Each ICM distribution includes a number of small dots that were obtained from 100 simulated sample paths with a duration of 60 s. (A,B):

Continuous feedback control models. (C,D): Type-1 intermittent control models. (E,F): Type-2 intermittent control models. See the legend of Figure 3 and the text for

details. Dynamics in the (D,E) best fit the experimental behaviors of Subject 1 (Figure 3A) and Subject 6 (Figure 3B), respectively. For the intermittent control models

in the (C–F), red vertical lines in the θ-waveforms represent the off-phases during which the active feedback control is switched off, and the black and red curves in

the phase portraits represent the trajectories during the on-phases and off-phases, respectively.

blue to light blue and then from yellow to red as a increases
from a = −∞ to zero and then to positive values, e.g., a =
2.0 (in particular for the set of the Pθ -Dθ planes arranged in
the first to the third rows), indicating that the non-Gaussianity
increases as the off-regions become wide. That is, large off-
regions are responsible for the increasing non-Gaussianity in
the movement variability. The stability regions in the Pθ -Dθ

planes arranged in the first column of Figures 4, 5, whose colors
represent the non-Gaussianity of the continuous control models,
are mostly colored blue, meaning that movement variability

of the continuous control models can rarely exhibit non-
Gaussianity, and the corresponding acceleration distribution is
typically Gaussian. Moreover, for each colored stability region in
a given Pθ -Dθ plane, there is a tendency that the color is more
red shifted at the stability boundary, i.e., at the edge of each
stability region, than at the center of stability region, indicating
that the criticality at the stability boundary may be associated
with the degree of the non-Gaussianity. Interestingly, this is also
the case even for the continuous control model but only with
Dx > 0 involving the pseudo-equilibrium point and with small
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TABLE 3 | Parameter values of the best-fit-model for each of the three types of control models.

Control a Pθ Dθ Dx σ

Subject 1 Continuous −8 5.00 1.05 0.60 0.0010

Type-1 intermittent –19.3 5.00 2.55 2.40 0.0035

Type-2 intermittent –8.6 5.25 2.25 2.10 0.0010

Subject 2 Continuous −8 5.00 1.05 0.60 0.0010

Type-1 intermittent –12.3 5.00 1.95 1.35 0.0110

Type-2 intermittent –2.0 5.25 2.10 1.80 0.0060

Subject 3 Continuous −8 5.00 1.05 0.60 0.0010

Type-1 intermittent –8.6 4.75 1.80 1.05 0.0035

Type-2 intermittent –1.0 5.25 0.60 0.00 0.0010

Subject 4 Continuous −8 4.75 1.50 1.05 0.0010

Type-1 intermittent –12.3 4.50 1.80 0.90 0.0260

Type-2 intermittent –4.5 4.50 1.95 1.20 0.0160

Subject 5 Continuous −8 4.50 1.20 0.60 0.0010

Type-1 intermittent –8.6 4.25 1.80 0.75 0.0060

Type-2 intermittent 0.0 5.25 1.05 0.30 0.0085

Subject 6 Continuous −8 4.50 1.20 0.60 0.0010

Type-1 intermittent –8.6 4.25 1.80 0.75 0.0110

Type-2 intermittent 0.0 5.50 1.05 0.30 0.0160

For each subject, the values of five parameters for the best-fit-models of the continuous, type-1 intermittent, and type-2 intermittent control models are summarized. The best-fit-model

among three types of control models for each subject is highlighted by the thick box.

noise intensity (see carefully the first column of Figures 4B, 5B
with Dx > 0).

Figure 6 exemplifies typical time-series data of the models
with their corresponding phase portraits, cart-acceleration
distributions, PSD functions, and ICM distributions, in which
panels are prepared for the following six sets of parameter

vectors
−→
P :

−→
P

m

cont = (−∞, 4.75, 1.5, 0.9, 0.011, 1 or 2) with

a medium noise intensity (Figure 6A),
−→
P

s

cont = (−∞, 4.75,
1.5, 0.9, 0.001, 1 or 2) with a small noise intensity (Figure 6B),
−→
P

m

type1 = (−1.0, 6.75, 0.9, 0.3, 0.011, 1) with a medium noise

intensity (Figure 6C),
−→
P

s

type1 = (−19.3, 5.0, 2.55, 2.4, 0.0035, 1)

with a small noise intensity (Figure 6D),
−→
P

m

type2 =
(0.0, 5.50, 1.05, 0.3, 0.016, 2) with a medium noise intensity

(Figure 6E), and
−→
P

s

type2 = (0.0, 5.5, 1.5, 0.9, 0.001, 2) with a

small noise intensity (Figure 6F). The parameter vectors
−→
P

for the panels (A–F) in Figure 6 are located in the parameter
space in Figures 4, 5, as indicated by the corresponding symbols.
The movement variability in the type-1 and type-2 intermittent
control models exhibits non-Gaussian acceleration distribution
and a power-law-like ICM distribution in a range of ICM
intervals longer than∼0.8 s.

The trajectory in the θ-ω plane for the continuous model
with a medium noise intensity is not affected by the pseudo-
equilibrium point, and thus it circulates almost around the
origin (Figure 6A). However, when the Pθ -Dθ parameter values

of the model are set very close to the stability boundary and
the noise intensity is small, the right-left alternating pseudo-
equilibrium point causes a trajectory of the butterfly-wings-like
shape (confirmed by magnifying Figure 6B), leading to the non-
Gaussian acceleration distribution (Figure 6B). See the light-
blue-colored small grid indicated by “(B)” in the first column
of Figures 4, 5 (although the color is not visible due to the
small grid size). The trajectory for the type-1 intermittent control
model exhibits a peanut-like shape even with a small Dx value
and a medium noise intensity, for which the hyperbolic curve
segments during the off-phase (red segments of the trajectory
in Figures 6C) are responsible, leading to the non-Gaussian
acceleration distribution particularly at the origin with the peaky-
shape (the large kurtosis). The type-1 intermittent control model
with a large Dx value exhibits an apparently butterfly-wings-
shaped trajectory (Figure 6D), for which the combination of
the hyperbolicity in the off-phases and the right-left alternating
pseudo-equilibrium point responsible, leading to the perfectly
lognormal-shaped acceleration distribution with the peaky-
shape at the origin and the fat tail. The type-2 intermittent
control model can be characterized similarly. Notably, the type-2
intermittent control model can exhibit a butterfly-wings-shaped
trajectory and a non-Gaussian acceleration distribution evenwith
a relatively small Dx value (Figure 6F), for which the θ△v△-
dependent onset of the off-phase and the θ△ω△-dependent onset
of the on-phase, rather than the pseudo-equilibrium point are
responsible.
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Fitting the Experimental Movement
Variability to the Models
Table 2, with gray-shaded rows, presents the values of the five

indices, i.e.,
−→
I = (λ2

q→0, λ2
q=1, ICM-median, PSD-PF, SD-

θ) and the minimized fitness function (
−→
I eW

−→
I
T

e ) for each of
the three types of control models that exhibits an index vector

closest to the experimental index vector
−→
I exp for each of the six

skilled subjects. The movement variabilities of the pendulum in
all subjects were best fitted by the intermittent control models, as
indicated by the rows with thick boxes in Table 2. Three out of
the six skilled subjects were best fitted by the type-1 intermittent
control models, and the remaining three were best fitted by the
type-2 intermittent control models. The values of the fitness
function for the type 1 and 2 intermittent control models are
small and relatively close to each other. However, the values of
the fitness function for the continuous control model are always
remarkably larger than those for the intermittent control model,
indicating that the continuous control model could hardly exhibit
behaviors similar to the experimental data.

Table 3 summarizes, for each of the three types of control

models, the values of the parameter vector
−→
P best that gives an

index vector
−→
I closest to the experimental index vector

−→
I exp

for each of the six skilled subjects. The locations of the six
−→
P best

vectors for subjects 1, 2, . . . , and 6 are roughly indicated by
the symbols (s1), (s2), . . . , and (s6) in Figures 4, 5. The typical
behaviors of the best- fit-models are exemplified in Figure 6.
The movement variability for Subject 1 (Figure 3A) is best
fitted by the type 1 intermittent control model, as depicted in
Figure 6D. The movement variability for Subject 2 (Figure 3B)
is best fitted by the type 2 intermittent control model, as depicted

in Figure 6E. Interestingly, all of the six
−→
P best vectors are

located near the stability boundary, indicating that themovement
variability of those best-fit-models are influenced by the criticality
at the edge of stability.

DISCUSSION

We attempted to demonstrate that a motor control strategy
for stabilizing an inverted pendulum on a manually controlled
cart (i.e., CIP), analogous to stick balancing on the fingertip,
can be characterized by intermittent time-delay feedback control
(Bottaro et al., 2008; Asai et al., 2009, 2013). We measured
the experimental behaviors concerning CIP dynamics for
experimental subjects while they performed a balancing task. In
particular, the movement variability during a CIP task for the
skilled subjects was quantified using several summary measures,
including (1) the non-Gaussianity of distributions of the cart-
acceleration, (2) the distribution of the time intervals of two
successive corrective movements, (3) the characteristic peak
frequency in the power spectra for the motion of the pendulum,
and (4) the standard deviation for the motion of the pendulum.
We showed that in all the subjects who could acquire skillful
motor performance for the task, (1) the non-Gaussianity in
the cart-acceleration distributions increased, (2) the distribution
of the inter-corrective movement intervals tended to exhibit

power-law-like behaviors with a larger probability for long inter-
corrective movements, and (3) the characteristic peak in the
power spectra of the motion of the pendulum was located in the
low-frequency band. These results are consistent with previous
reports (Cabrera and Milton, 2002, 2004a).

Computational models that can reproduce the experimental
CIP behaviors provide mechanistic interpretations of how the
experimental subjects stabilized the inherent unstable dynamics
of the CIP. We showed that the CIP dynamics for all
skilled subjects could be better fitted by the models with the
intermittent time-delayed feedback controller than by those with
the continuous time-delayed feedback controller, suggesting that
the human CNS stabilizes the upright posture of the pendulum
by utilizing the intermittent control strategy. The experimental
behaviors for half of the skilled subjects were best fitted by the
intermittent feedback control model (Type-1), and those for the
remaining half of the subjects were best fitted by the intermittent
feedback control model (Type-2).

Stabilization Strategy to Overcome the
Risk of Falls
The CIP dynamics and the corresponding corrective movements
for the skilled subjects can be summarized as follows: skilled
subjects correct the cart movement less frequently; i.e., they
do not interfere with the motion of the pendulum when “the
risk of falls” is small, which generates long inter-corrective
movements and a peaky shape in the acceleration distribution
with a large kurtosis around the origin (null-accelerations).
On the other hand, they intervene in the CIP dynamics more
frequently when “the risk of falls” becomes larger than expected
by Gaussian-type statistics, which generates a fatter tail in the
acceleration distribution than that in the Gaussian distribution
in the large-acceleration regime. These experimental behaviors
can be interpreted by the intermittent control models. In both
types of the intermittent control models, the feedback controller
is turned off when the state of the pendulum is close to the
stable manifold in the θ-ω plane. Typically, the corresponding
off-phases take place when the cart and the pendulum go by
each other with the opposite directions (i.e., the signs of the cart
velocity and the pendulum velocity are opposite “physically”), as
illustrated in the θ-v plane of Figures 2C–F where the red curve
segments tend to appear in the first and third quadrants of the
θ-v plane with θ approaching the origin.

In the type-1 intermittent control model, the slow dynamics of
the pendulum moving from the left (right) side of the θ-ω plane
along the stable manifold to the right (left) side of the θ-ω plane
along the unstable manifold during off-phases as shown by the
red curve segments in Figures 2C,D, 6C, which are responsible
for generating the long inter-corrective-movements and also for
the non-Gaussianity of the acceleration distribution around the
origin. The slow dynamics of the pendulum (as illustrated by the
red curve segments in Figure 2D can appear in a different way
in association with the pseudo-equilibrium point that appears on
the θ-axis in the θ-ω plane alternately either the right- or the
left-hand-side of the origin when the delayed feedback controller
with respect to the cart velocity (Equation 5) is turned on
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during on-phases. Although the state of the pendulum circulates
once or several times around the pseudo-equilibrium point
even in the continuous control model, a part of the circulating
trajectory becomes control-free dynamics because the circulating
trajectory often overlaps substantially with the off-regions in the
type-1 intermittent control model (see the red curve segments
in Figures 2D, 6D. The intermittent appearances of the slow
dynamics with these two processes generate a peanut-shaped
and/or a butterfly-wings-shaped trajectory in the θ-ω plane,
characterizing the skilled performance. This implies that the risk
of falls is small when the system exhibits the slow dynamics along
the red curve segments, and a big risk of falls does not necessarily
imply a large tilt-angle of the pendulum. Interestingly, the peanut
and/or the butterfly-wings-shaped trajectory is invariant over the
oscillation amplitude around the origin. This invariance implies
that the feedback controller and thus also the skilled subjects,
probably, manipulate the cart in the same way regardless of the
size of the risk and the size of the interventions (accelerations),
leading to the power-law distribution in the inter-corrective
movement intervals.

The type-2 intermittent control model with the cart-velocity-
dependent off-on switching conditions also exhibits the butterfly-
wings-shaped trajectory (v 2(e)-(f) and Figures 6E,F) by using
the pseudo-equilibrium point during the on-phase. However, it
is less apparent than the type-1 model, because the pendulum
in the type-2 model passes though the upright position during
on-phases in contrast to the type-1 model, which makes the
trajectories moving from one side of the θ-ω plane to the other
side of the θ-ω plane round (the black arc segments lying between
the right and the left half planes) as distinct from the hyperbolic
curves (the red curve segments lying between the right and the
left half planes) in the type-1 model. In other words, the tilt
angle of the pendulum in the type-2 model is altered from side
to side actively with the feedback force, whereby the pendulum
tends to gain a large falling velocity after it passes through the
upright position. The resultant fast dynamics, in contrast to the
slow dynamics along the stable and unstable manifolds for the
type-1 model, should be halted quickly by reversing the cart
motion (i.e., by generating a large control force with a large
cart acceleration), after which the large control force should be
terminated immediately for triggering an off-phase with slow
dynamics, if not the pendulum falls. The skillfulness [modeled by
the switching conditions in Equation (16)] enables the subjects
(the feedback controller model) to achieve this quick transition
between the on-phase and the off-phase.

Similarity between the Pseudo-Equilibrium
Point and Ballistic-Bias Control Model
The delayed intermittent feedback-controller examined in this
study stabilizes the pendulum in a similar way as the one
proposed for the human postural control during quiet standing
(Bottaro et al., 2008; Asai et al., 2009, 2013) in the sense that both
controllers exploit the slow dynamics along the stable manifold
of the upright saddle point during the off-phases. Meanwhile,
the appearance of the pseudo-equilibrium point during the CIP
stabilization, which moves alternately from side to side on the

θ-ω plane for the CIP controller involving the derivative feedback
control with respect to the cart velocity, characterizes the CIP
system differently from the human postural control in which the
ankle joints (corresponding to the pivot of the stick) are fixed in
the space.

Interestingly, however, dynamics of the state point that
chases the pseudo-equilibrium point in an anti-phase manner
in the intermittent control model for the CIP seems similar
conceptually to the ballistic bias control model proposed for the
human postural control (Loram and Lakie, 2002; Lakie et al.,
2003; Loram et al., 2005). In the bias control model, the CNS
controls “the bias” that plays a role of the virtual equilibrium-
point trajectory that has been considered during human arm
reaching movement (Gomi and Kawato, 1996), where the
mechanical system (e.g., the arm or the standing body) chases the
virtual equilibrium-point trajectory as the desired trajectory. A
large bias, i.e., a large difference between the current state and the
desired state, is generated actively by the CNS in a feedforward
and/or anticipatory manner in order to generate an appropriate
control force even with a small stiffness of the joint actuator (a set
of the antagonist muscles actuating the joint). In the intermittent
control model for the CIP, re-positioning of the cart, particularly
reverse in the direction of the cart movement, is performed based
on the delayed information, in which the pendulum and the
cart moves in an anti-phase manner. That is, the cart always
chases the pendulum and catches it up, and then chases it again
repeatedly. The pseudo-equilibrium point alternating from side
to side represents such chase-and-escape dynamics, and the cart
velocity that might reflect a distance between the chaser and
the escaper, i.e., the bias, creates the pseudo-equilibrium point.
Although the model examined in this study considered only
the feedback controller, well-skilled subjects might control the
cart position (also velocity and acceleration) in an anticipatory
manner, leading to a more skilled performance of the task.

Criticality at the Edge of Stability
Interestingly, the set of parameters of the models for the best-
fit intermittent control models were located relatively close to
the stability boundary of the models. The results imply that the
mechanisms for non-Gaussian and power-law behaviors of the
CIP dynamics are not necessarily limited to the intermittent
feedback control and could be related to criticality of the system
near the border of instability. This observation may be associated
with the mechanism of “noise-induced stabilization” discussed
by previous studies (e.g., Cabrera and Milton, 2002), in which
a state-dependent multiplicative motor noise arises when the
delay-affected system is tuned at, or near, the edge of stability and
a critical control parameter is stochastically forced back and forth
across the boundary.

Moreover, this observation might also be associated with
a problem in the experimental estimate of the critical length
where the stick always falls: sometimes it falls quickly other
times it takes a longer time before it falls. This fact is consistent
with a feedback controller whose parameters are tuned toward
the edge of stability (Cabrera and Milton, 2004b). It might be
useful to mention that, in delay equations models with state-
dependent intermittent feedback such as considered in this
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study, there is a possibility that dynamics of the models include
transient micro-chaos (Insperger et al., 2015). Although the
current study deals with a simple scalar model of balancing
task, it is likely that similar phenomena occur for more realistic
models.

Comparison of Stability Robustness
among the Models
The stability regions for the type-1 and type-2 intermittent
control models were not necessarily significantly wider than
those for the continuous control model, as shown in Figures 4,
5. This is not consistent with the cases for the models of
posture control during quiet standing with a single or double
inverted pendulum (Asai et al., 2009; Suzuki et al., 2012), where
the stability regions of the intermittent control model are far
wider than those of the continuous control model. However,
the stability region for the type-2 intermittent control model
with positive values of α is widely extended for large values
of the proportional gain Pθ (figures not shown). This means
that stability of the CIP dynamics is less sensitive to the gain
Pθ , but the timings for triggering the off-phases and/or the
on-phases are critical. Moreover, if we speculate a situation
where the CNS can change the on-off switching boundary (i.e.,
the parameter a in the intermittent control models) adaptively
depending on the risk of falls, the sum of all the stability regions
across a variety of values of a can be considered as the stability
region of the CIP system with the intermittent controller, which
makes the overall stability region quite large, contributing to
increasing the robustness of stability of the intermittent control
model.

In addition to the computational study reported in this
paper, we numerically explored the stability of the CIP dynamics
in the continuous and the intermittent control models when
the length of the pendulum is shorter than the critical length
(ℓcr = 0.392 m), assuming 1 = 0.2 s for the same parameter
range as examined in this study (results and figures not shown
here). As theoretically predicted, we confirmed that there is
no stability region in the continuous control model. However,
remarkably, there are non-negligible stability regions in the type-
1 intermittent control model, suggesting the robustness of the
intermittent control model for CIP tasks with higher difficulty.
Interestingly, one of our experimental subjects (Subject 3, one
of the most skilled subjects) successfully balanced the CIP with
a length of ℓ = 0.25 m for more than 70 s several times,
which can be considered as an extremely skillful performance.
Because this length is far shorter than the critical length,
there is no possibility that the subject used the continuous
feedback control with tuned gain parameters, which may support
the fact that the CNS utilizes more sophisticated control
mechanisms than the “tuned continuous time-delayed feedback
control.”

It is interesting to point out that stick balancing on the
fingertip or cart is a voluntary motor skill, and hence practice
is required to both attain and maintain the skill. The phrase
“road to automatic” has been used to emphasize that novices
likely use state-dependent feedback control, and as skill is

acquired, it moves onto progressively more efficient control
strategies that might involve various degrees of anticipation,
etc (for a review see, for example, (Milton et al., 2004)).
Thus, it is not hard to imagine that there might be an
evolution of the control strategies through state dependent
feedback involving first position, then position/velocity then
position/velocity/acceleration (Insperger et al., 2012) then the
intermittent type of control described in this paper and by
Cabrera and Milton (2002), and then finally to something even
more sophisticated as the nervous systems learns more and
more about the task. In other words intermittent control might
just be a step on the road to automatic and the observation of
our balancer who could balance a shorter stick might just be a
lighthouse.

Limitations of the Current Study
We considered only two types of computational models for
fitting the experimental data. As mentioned in Introduction,
several types of neural control mechanisms, including time-
delayed feedback with multiplicative noise (Cabrera and
Milton, 2002), model predictive controllers with a sensory
uncertainty (Mehta and Schaal, 2002; Gawthrop et al., 2011;
Loram et al., 2011; Insperger and Milton, 2014), act-and-
wait control (Insperger and Stepan, 2010), and time-delayed
feedback with proportional-derivative-acceleration (Insperger
andMilton, 2014), can reproduce at least some aspects of the CIP
dynamics. The current study alone cannot exclude the plausibility
of those other mechanisms. Nevertheless, intermittent time-
delay feedback control that exploits stable manifold and
hyperbolic dynamics around the saddle point is a promising
alternative strategy for how the CNS stabilizes unstable
dynamics.

The models considered in this study assume enough rail
length for the translational motion of the cart. However, in
reality, the length of the rail is limited. Thus, the cart moves
only within a given limited range and collides with either end
of the linear track (which is also the case in the fingertip stick
balancing, where the hand exceeds the range that the subjects
can reach). Therefore, the CIP task requires the control of not
only the rotational motion of the inverted pendulum but also
the translational motion (position) of the cart. The inclusion of
additional feedback controllers such as a proportional control
for restoring the cart position back to the origin is beneficial
for modeling this situation. However, in this study, the use
of proportional feedback control for the cart position in the
models examined substantially narrowed the stability region.
This suggests that other control strategies than the intermittent
proportional and derivative control, such as feedback controllers
that utilize acceleration and/or higher derivative information
(Insperger et al., 2012; Insperger andMilton, 2014) and predictive
feedforward controllers (Mehta and Schaal, 2002; Gawthrop
et al., 2011; Loram et al., 2011) may be exploited by the CNS.
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