
ORIGINAL RESEARCH
published: 15 June 2016

doi: 10.3389/fncom.2016.00053

Frontiers in Computational Neuroscience | www.frontiersin.org 1 June 2016 | Volume 10 | Article 53

Edited by:

Tomoki Fukai,

RIKEN Brain Science Institute, Japan

Reviewed by:

Robert Kozma,

University of Memphis, USA

Vladimir Klinshov,

Institute of Applied Physics, Russia

*Correspondence:

Carlo R. Laing

c.r.laing@massey.ac.nz

Received: 25 February 2016

Accepted: 23 May 2016

Published: 15 June 2016

Citation:

Laing CR (2016) Bumps in

Small-World Networks.

Front. Comput. Neurosci. 10:53.

doi: 10.3389/fncom.2016.00053

Bumps in Small-World Networks
Carlo R. Laing*

Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand

We consider a network of coupled excitatory and inhibitory theta neurons which is

capable of supporting stable spatially-localized “bump” solutions. We randomly add

long-range and simultaneously remove short-range connections within the network to

form a small-world network and investigate the effects of this rewiring on the existence

and stability of the bump solution. We consider two limits in which continuum equations

can be derived; bump solutions are fixed points of these equations. We can thus use

standard numerical bifurcation analysis to determine the stability of these bumps and to

follow them as parameters (such as rewiring probabilities) are varied. We find that under

some rewiring schemes bumps are quite robust, whereas in other schemes they can

become unstable via Hopf bifurcation or even be destroyed in saddle-node bifurcations.

Keywords: Ott/Antonsen, theta neuron, bump, small-world, working memory, bifurcation

1. INTRODUCTION

Spatially-localized “bumps” of activity in neuronal networks have been studied for many years,
as they are thought to play a role in short term memory (Camperi and Wang, 1998; Compte
et al., 2000; Bressloff, 2012; Wimmer et al., 2014) and the head direction system (Redish et al.,
1996; Zhang, 1996), among other phenomena. Some models of bump formation have used a
firing rate description (Wilson and Cowan, 1973; Amari, 1977; Laing et al., 2002; Laing and Troy,
2003; Owen et al., 2007) while others have considered networks of spiking neurons (Gutkin et al.,
2001; Laing and Chow, 2001; Wang, 2001). The simplest models typically have “Mexican-hat”
connectivity in a single population of neurons, where nearby neurons are excitatorily coupled and
more distant ones are inhibitorily coupled (Ermentrout, 1998; Bressloff, 2012). However, more
realistic models consider both excitatory and inhibitory neurons with non-negative connectivity
within and between populations (Pinto and Ermentrout, 2001; Blomquist et al., 2005). Almost all
previous models have considered homogeneous and isotropic networks, which typically support a
continuous family of reflection-symmetric bumps, parameterized by their position in the network.
Some exceptions are (Brackley and Turner, 2009, 2014), in which a spatially-inhomogeneous
coupling function is used, and (Thul et al., 2016), in which a spatially-varying random firing
threshold is imposed.

In this paper we further investigate the effects of breaking the spatial homogeneity of
neural networks which support bump solutions, by randomly adding long-range connections
and simultaneously removing short-range connections in a particular formulation of small-
world networks (Song and Wang, 2014). Small-world networks (Watts and Strogatz, 1998) have
been much studied and there is evidence for the existence of small-worldness in several brain
networks (Bullmore and Sporns, 2009). In particular, we are interested in determining how sensitive
networks which support bumps are to this type of random rewiring of connections, and thus how
precisely networks must be constructed in order to support bumps.

We will consider networks of heterogeneous excitatory and inhibitory theta neurons, the theta
neuron being the canonical model for a Type I neuron for which the onset of firing is through
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a saddle-node on an invariant circle bifurcation (Ermentrout and
Kopell, 1986; Ermentrout, 1996). In several limits such networks
are amenable to the use of the Ott/Antonsen ansatz (Ott and
Antonsen, 2008, 2009), and we will build on previous work
using this ansatz in the study of networks of heterogeneous
theta neurons (Luke et al., 2013; Laing, 2014a, 2015; So
et al., 2014). We present the model in Section 2.2 and then
consider two limiting cases: an infinite number of neurons
(Section 2.3) and an infinite ensemble of finite networks with the
same connectivity (Section 2.4). Results are given in Section 3
and we conclude in Section 4. The Appendix contains some
mathematical manipulations relating to Section 2.4.

2. MATERIALS AND METHODS

2.1. Introduction
First consider an all-to-all coupled network of N heterogeneous
theta neurons whose dynamics are given by

dθi

dt
= 1− cos θi + (1+ cos θi)(Ii + gr) (1)

τ
dr

dt
=

1

N

N
∑

j=1

Pn(θj)− r (2)

for i = 1, 2, . . .N where θi ∈ [0, 2π) is the phase of the
ith neuron, Pn(θ) = an(1 − cos θ)n, n ∈ N

+ and an is a
normalization factor such that

∫ 2π
0 Pn(θ)dθ = 2π . The function

Pn is meant to mimic the action potential generated when a
neuron fires, i.e., its phase increases through π ; n controls the
“sharpness” of this function. The Ii are input currents randomly
chosen from some distribution, g is the strength of connectivity
within the network (positive for excitatory coupling and negative
for inhibitory), and τ is a time constant governing the synaptic
dynamics. The variable r is driven up by spiking activity and
exponentially decays to zero in the absence of activity, on a
timescale τ .

The model (1)–(2) with τ = 0 (i.e., instantaneous synapses)
was studied by Luke et al. (2013), who found multistability
and oscillatory behavior. The case of τ > 0 was considered
in Laing, unpublished and similar forms of synaptic dynamics
have been considered elsewhere (Börgers and Kopell, 2005;
Ermentrout, 2006; Coombes and Byrne, unpublished). The
model presented below results from generalizing Equations (1)
and (2) in several ways. Firstly, we consider two populations
of neurons, one excitatory and one inhibitory. Thus, we will
have two sets of variables, one for each population. Such a pair
of interacting populations was previously considered by Luke
et al. (2014); Börgers and Kopell (2005); Coombes and Byrne,
unpublished; and Laing, unpublished. Secondly, we consider a
spatially-extended network, in which both the excitatory and
inhibitory neurons lie on a ring, and are (initially) coupled to
a fixed number of neurons either side of them. Networks with
similar structure have been studied by many authors (Redish
et al., 1996; Compte et al., 2000; Gutkin et al., 2001; Laing and
Chow, 2001; Laing, 2014a, 2015).

2.2. Model
We consider a network of 2N theta neurons, N excitatory and N
inhibitory. Within each population the neurons are arranged in
a ring, and there are synaptic connections between and within
populations, whose strength depends on the distance between
neurons, as in Laing and Chow (2002) and Gutkin et al. (2001)
(In the networks we will consider, connection strengths are either
1 or 0, i.e., neurons are either connected or not connected).
Inhibitory synapses act on a timescale τi, whereas the excitatory
ones act on a timescale, τ . θi ∈ [0, 2π) is the phase of the
ith excitatory neuron and φi ∈ [0, 2π) is the phase of the ith
inhibitory one. The equations are

dθi

dt
= 1− cos θi + (1+ cos θi)(Ii + gEEvi − gEIyi) (3)

dφi

dt
= 1− cosφi + (1+ cosφi)(Ji + gIEui − gIIzi) (4)

τ
dvi

dt
= ri − vi (5)

τ
dui

dt
= qi − ui (6)

τi
dyi

dt
= si − yi (7)

τi
dzi

dt
= wi − zi (8)

for i = 1, 2 . . .N, where

qi =
1

N

MIE
∑

j=−MIE

Pn(θi+j) (9)

ri =
1

N

MEE
∑

j=−MEE

Pn(θi+j) (10)

si =
1

N

MEI
∑

j=−MEI

Pn(φi+j) (11)

wi =
1

N

MII
∑

j=−MII

Pn(φi+j) (12)

where Pn is as in Section 2.1. The positive integers MIE,MEE,
MEI , and MII give the width of connectivity from excitatory
to inhibitory, excitatory to excitatory, inhibitory to excitatory,
and inhibitory to inhibitory populations, respectively. The
non-negative quantities gEE, gEI, gIE and gII give the overall
connection strengths within and between the two populations
(excitatory to excitatory, inhibitory to excitatory, excitatory
to inhibitory, and inhibitory to inhibitory, respectively). The
variable vi (when multiplied by gEE) gives the excitatory input
to the ith excitatory neuron, and whose dynamics are driven
by ri, which depends on the activity of the excitatory neurons
with indices between i − MEE and i + MEE. Similarly, ui (when
multiplied by gIE) gives the excitatory input to the ith inhibitory
neuron, and is driven by qi, which depends on the activity of the
excitatory neurons with indices between i − MIE and i + MIE.
gEIyi is the inhibitory input to the ith excitatory neuron, driven by
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si, which depends on the activity of the inhibitory neurons with
indices between i−MEI and i+MEI . Lastly, gIIzi is the inhibitory
input to the ith inhibitory neuron, driven by wi, which depends
on the activity of the inhibitory neurons with indices between
i−MII and i+MII .

For simplicity, and motivated by the results in Pinto and
Ermentrout (2001), we assume that the inhibitory synapses act
instantaneously, i.e. τi = 0, and that there are no connections
within the inhibitory population, i.e. gII = 0. Thus (8) and (12)
become irrelevant and from (7) we have that yi = si in (3).

The networks are made heterogeneous by randomly choosing
the currents Ii from the Lorentzian

h(I) =
1/π

(I − I0)2 + 12
(13)

and the currents Ji from the Lorentzian

g(J) =
1/π

(J − J0)2 + 12
. (14)

I0 and J0 are the centers of these distributions, and for simplicity
we assume that both have the same width, 1. The heterogeneity
of the neurons (i.e., the positive value of 1) is not necessary
in order for the network to support bumps, but it is necessary
for the Ott/Antonsen ansatz, used extensively below, to be
valid (Ott et al., 2011). Networks of identical phase oscillators
are known to show non-generic behavior which can be studied
using the Watanabe/Strogatz ansatz (Watanabe and Strogatz,
1993, 1994). We want to avoid non-generic behavior, and having
a heterogeneous network is also more realistic. For typical
parameter values we see the behavior shown in Figures 1, 2, i.e., a
stable stationary bump in which the active neurons are spatially
localized.

While these bumps may look superficially like “chimera”
states in a ring of oscillators (Abrams and Strogatz, 2004, 2006;
Laing, 2009; Panaggio and Abrams, 2015) they are different in
one important aspect. Chimera states in the references above
occur in networks for which the dynamics depend on only phase
differences. Thus these systems are invariant with respect to
adding the same constant to all oscillator phases, and can be
studied in a rotating coordinate frame in which the synchronous
oscillators have zero frequency, i.e., only relative frequencies
are meaningful. In contrast, networks of theta neurons like
those studied here are not invariant with respect to adding the
same constant to all oscillator phases. The actual value of phase
matters, and the neurons with zero frequency in Figure 2 have
zero frequency simply because their input is not large enough to
cause them to fire.

We now want to introduce rewiring parameters in such a way
that on average, the number of connections is preserved as the
networks are rewired. This is different from other formulations
of small-world networks in which additional edges are added
(Newman and Watts, 1999; Medvedev, 2014; but see Puljic and
Kozma, 2008 for an example in which the number of connections
to a node is precisely conserved). The reason for doing this is to
keep the balance of excitation and inhibition constant. If we were
to add additional connections, for example, within the excitatory

FIGURE 1 | A bump solution of Equations (3)–(6). Top: sin θi . Bottom:

sinφi . Parameter values: N = 1024,1 = 0.02, I0 = −0.16, J0 = −0.4, n =

2, gEE = 25,gIE = 25,gEI = 7.5,MIE = 40,MEE = 40,MEI = 60 and τ = 10.

FIGURE 2 | Average frequency for excitatory population (blue) and

inhibitory (red) for the solution shown in Figure 1.

population, the results seenmight just be a result of increasing the
number of connections, rather than their spatial arrangement.
We are interested in the effects of rewiring connections from
short range to long range, and thus use the form suggested
in Song and Wang (2014). We replace Equations (9) to (11) by

qi =
1

N

N
∑

j=1

AIE
ij Pn(θj); ri =

1

N

N
∑

j=1

AEE
ij Pn(θj);

si =
1

N

N
∑

j=1

AEI
ij Pn(φj); (15)
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where

AIE
ij =



















1 with

probability

{

1− [1− (2MIE + 1)/N]p1, |i− j| ≤ MIE

(2MIE + 1)p1/N, |i− j| > MIE

0 otherwise

(16)

AEE
ij =



















1 with

probability

{

1− [1− (2MEE + 1)/N]p2, |i− j| ≤ MEE

(2MEE + 1)p2/N, |i− j| > MEE

0 otherwise

(17)

and

AEI
ij =



















1 with

probability

{

1− [1− (2MEI + 1)/N]p3, |i− j| ≤ MEI

(2MEI + 1)p3/N, |i− j| > MEI

0 otherwise

(18)

where |i− j| refers to the shortest distance between neurons i and
j, measured on the ring. When p1 = p2 = p3 = 0, Equation
(15) reverts to Equations (9) to (11). Note that when p1 = 1,
the probability of AIE

ij being 1 is independent of i and j, and that

the expected number of nonzero entries in a row of AIE
ij (i.e., the

expected number of connections from the excitatory population
to an inhibitory neuron) is independent of p1. Similar statements
apply for the other two matrices and their parameters p2 and p3.
Typical variation ofAIE with p1 is shown in Figure 3 and it is clear
that increasing p1 interpolates between purely local connections
(p1 = 0) and uniform random connectivity (p1 = 1).

We could simply simulate Equations (3)–(6) with Equation
(15) for particular values of p1, p2, and p3 but we would like to
gain a deeper understanding of the dynamics of such a network.
The first approach is to take the continuum limit in which
the number of neurons in each network goes to infinity, in a
particular way.

2.3. Continuum Limit
We take the continuum limit: N,MEI,MEE,MIE → ∞ such that
MEI/N → αEI , MEE/N → αEE and MIE/N → αIE, where
0 < αEI, αEE, αIE < 1/2, and set the circumference of the ring

of neurons to be 1. In this limit the sums (Equation 15) are
replaced by integrals (more specifically, convolutions) with the
connectivity kernels

GIE(x, p1) =

{

1− (1− 2αIE)p1, |x| < αIE

2αIEp1, otherwise
(19)

GEE(x, p2) =

{

1− (1− 2αEE)p2, |x| < αEE

2αEEp2, otherwise
(20)

GEI(x, p3) =

{

1− (1− 2αEI)p3, |x| < αEI

2αEIp3, otherwise
(21)

where GIE(x, p1) is the probability that a point in the excitatory
population is connected to a point in the inhibitory population a
distance x away, and similarly for the other two kernels. The effect
of varying pj, j = 1, 2, 3, on one of the functions Equations (19)–
(21) is shown in Figure 4. Taking GIE for example, we see that
∫ 1/2
−1/2 GIE(x, p1) dx = 2αIE independent of p1, i.e., the expected

total number of connections is preserved, and similarly for the
other two functions.

Taking the continuum limit of Equations (3)–(6) we describe
the dynamics of the θi and φi in terms of probability densities
FE(θ, x, I, t) and FI(φ, x, J, t), respectively, where x and t
are (continuous) space and time, and I and J are random
variables with densities h(I) and g(J) respectively. FE satisfies the
continuity equation (Luke et al., 2013)

∂FE

∂t
+

∂

∂θ

{

FE
[

1− cos θ + (1+ cos θ)(I + gEEv− gEIs)
]}

= 0

(22)
and similarly FI satisfies

∂FI

∂t
+

∂

∂φ

{

FI
[

1− cosφ + (1+ cosφ)(J + gIEu)
]}

= 0 (23)

where

τ
∂v

∂t
= r − v (24)

τ
∂u

∂t
= q− u (25)

FIGURE 3 | Typical realizations of AIE for p1 = 0 (left) 0.5 (middle) and 1 (right). N = 1024,MIE = 40. Black corresponds to a matrix entry of 1, white to 0.
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FIGURE 4 | One of the functions Equations (19)–(21) with (A): p = 0, (B): p = 0.5, and (C): p = 1. For this example, α = 0.1. Note the similarity with the middle

row of the matrices shown in Figure 3.

and

q(x, t) =

∫ 1

0
GIE(|x− y|, p1)

∫ ∞

−∞

∫ 2π

0

FE(θ, y, I, t)an(1− cos θ)ndθ dI dy (26)

r(x, t) =

∫ 1

0
GEE(|x− y|, p2)

∫ ∞

−∞

∫ 2π

0

FE(θ, y, I, t)an(1− cos θ)ndθ dI dy (27)

s(x, t) =

∫ 1

0
GEI(|x− y|, p3)

∫ ∞

−∞

∫ 2π

0

FI(φ, y, J, t)an(1− cosφ)ndφ dJ dy (28)

The forms of Equations (22) and (23) mean that they are
amenable to the use of the Ott/Antonsen ansatz (Ott and
Antonsen, 2008, 2009). This ansatz states that if the neurons are
not identical (i.e.,1 > 0 for the networks studied here), solutions
of the continuity equation [Equations (22) and (23)] decay
exponentially onto a lower-dimensional manifold on which the
θ and φ dependence of FE and FI , respectively, have a particular
form. This form is a Fourier series in θ (or φ) in which the nth
coefficient is some function to the nth power. [See Equation (A8),
for example]. Thus, we can restrict Equations (22) and (23) to this
manifold, thereby simplifying the dynamics.

The standard Kuramoto order parameter for an all-to-all
coupled network with phases {θj} is the expected value of

eiθj (Strogatz, 2000). For the network studied here we can
define the analogous spatially-dependent order parameters for
the excitatory and inhibitory networks as

zE(x, t) =

∫ ∞

−∞

∫ 2π

0
FE(θ, x, I, t)eiθ dθ dI (29)

and

zI(x, t) =

∫ ∞

−∞

∫ 2π

0
FI(φ, x, J, t)eiφ dφ dJ (30)

respectively. For fixed x and t, zE(x, t) is a complex number with
a phase and a magnitude. The phase gives the most likely value of

θ and the magnitude governs the “sharpness” of the probability
distribution of θ (at that x and t), and similarly for zI(x, t) and
φ (Laing, 2014a, 2015). We can also determine from zE and zI
the instantaneous firing rate of each population (see Section 3.1
and Montbrió et al., 2015).

Performing manipulations as in Laing (2014a, 2015), Luke
et al. (2013), and So et al. (2014) we obtain the continuum limit
of Equations (3)–(6): evolution equations for zE and zI

∂zE

∂t
=

(iI0 − 1)(1+ zE)
2 − i(1− zE)

2

2

+
i(1+ zE)

2(gEEv− gEIs)

2
(31)

∂zI

∂t
=

(iJ0 − 1)(1+ zI)
2 − i(1− zI)

2

2
+

i(1+ zI)
2gIEu

2
(32)

together with Equations (24) and (25), where

q(x, t) =

∫ 1

0
GIE(|x− y|, p1)H(zE(y, t); n)dy (33)

r(x, t) =

∫ 1

0
GEE(|x− y|, p2)H(zE(y, t); n)dy (34)

s(x, t) =

∫ 1

0
GEI(|x− y|, p3)H(zI(y, t); n)dy (35)

and

H(z; n) = an



C0 +

n
∑

q=1

Cq

(

zq + z̄q
)



 (36)

where

Cq =

n
∑

k=0

k
∑

m=0

n!(−1)kδk−2m,q

2k(n− k)!m!(k−m)!
(37)

and where by |x−y| in Equations (26)–(28) we mean the shortest
distance between x and y given that they are both points on a
circle, i.e., |x− y| = min (|x− y|, 1− |x− y|).

Frontiers in Computational Neuroscience | www.frontiersin.org 5 June 2016 | Volume 10 | Article 53

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Laing Bumps in Small-World Networks

The advantage of this continuum formulation is that bumps
like that in Figure 1 are fixed points of Equations (31) and (32)
and Equations (24) and (25). Once these equations have been
spatially discretized, we can find fixed points of them using
Newton’s method, and determine the stability of these fixed
points by finding the eigenvalues of the linearization around
them. We can also follow these fixed points as parameter are
varied, detecting (local) bifurcations (Laing, 2014b). The results
of varying p1, p2 and p3 independently are shown in Section 3.1.

2.4. Infinite Ensembles
We now consider the case where N is fixed and finite, and
so are the matrices AIE,AEE and AEI , but we average over an
infinite ensemble of networks with these connectivities, where
each member of the ensemble has a different (but consistent)
realization of the random currents Ii and Ji (Barlev et al.,
2011; Laing et al., 2012). This procedure results in 4N ordinary
differential equations (ODEs), 2N of them for complex quantities
and the other 2N for real quantities. Thus, there is no reduction

FIGURE 5 | Firing rate for (A): excitatory population and (B): inhibitory

population, as a function of p1, with p2 = p3 = 0. There is a Hopf

bifurcation on both white vertical lines and the bump is unstable between

these. Other parameters: 1 = 0.02, I0 = −0.16, J0 = −0.4, n = 2,gEE = 25,

gIE = 25,gEI = 7.5, αIE = 40/1024, αEE = 40/1024, αEI = 60/1024 and

τ = 10.

of dimension from the original system (Equations 3–6), but as in
Section 2.3, bump states will be fixed points of these ODEs.

Letting the number of members in the ensemble go to infinity,
we describe the state of the excitatory network by the probability
density function

f E(θ1, θ2, . . . , θN; I1, I2, . . . IN; t) ≡ f E({θ}; {I}; t) (38)

and that of the inhibitory one by

f I(φ1, φ2, . . . , φN; J1, J2, . . . JN; t) ≡ f I ({φ}; {J}; t) (39)

which satisfy the continuity equations

∂f E

∂t
+

N
∑

j=1

∂

∂θj

[

f E
(

dθj

dt

)]

= 0 (40)

and

∂f I

∂t
+

N
∑

j=1

∂

∂φj

[

f I
(

dφj

dt

)]

= 0 (41)

where dθj/dt and dφj/dt are given by Equations (3) and (4).
Performing the manipulations in the Appendix we obtain

dzEj

dt
=

(iI0 − 1)
(

1+ zEj

)2
− i

(

1− zEj

)2

2

+
i(1+ zEj )

2(gEEvj − gEIsj)

2
(42)

dzIj

dt
=

(iJ0 − 1)
(

1+ zIj

)2
− i

(

1− zIj

)2

2
+

i
(

1+ zIj

)2
gIEuj

2
(43)

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

p
2

m
a

x
(f

)

FIGURE 6 | Maximum (over x) of the firing rate for the excitatory

population as a function of p2 with p1 = p3 = 0. Solid: stable; dashed:

unstable. The Hopf bifurcation is marked with a circle. Other parameters:

1 = 0.02, I0 = −0.16, J0 = −0.4, n = 2, gEE = 25, gIE = 25, gEI = 7.5,

αIE = 40/1024, αEE = 40/1024, αEI = 60/1024 and τ = 10.
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for j = 1, 2, . . .N where

qi =
1

N

N
∑

j=1

AIE
ij H

(

zEj (t); n
)

(44)

ri =
1

N

N
∑

j=1

AEE
ij H

(

zEj (t); n
)

(45)

si =
1

N

N
∑

j=1

AEI
ij H

(

zIj (t); n
)

(46)

and

τ
dvi

dt
= ri − vi (47)

τ
dui

dt
= qi − ui (48)

for i = 1, 2, . . .N. Equations (42)–(48) form a complete
description of the expected behavior of a network with
connectivities given by the matrices AIE,AEE and AEI . Note the

FIGURE 7 | Firing rate for (A): excitatory population and (B): inhibitory

population, as a function of p2, with p3 = p1 = 0. There is a Hopf

bifurcation at the white vertical line and the bump is destroyed in saddle-node

bifurcation at p2 ≈ 0.48. Other parameters: 1 = 0.02, I0 = −0.16, J0 = −0.4,

n = 2, gEE = 25, gIE = 25, gEI = 7.5, αIE = 40/1024, αEE = 40/1024,

αEI = 60/1024 and τ = 10.

similarities with Equations (31)–(35) and Equations (24) and
(25). As mentioned above, the advantage of this formulation
is that states like that in Figure 1 will be fixed points of
Equations (42)–(48), for the specified connectivities.

Recalling that the matrices AIE,AEE and AEI depend on the
parameters p1, p2 and p3 respectively we now investigate how
solutions of Equations (42)–(48) depend on these parameters.
One difficulty in trying to vary, say, p1, is that the entries of
AIE do not depend continuously on p1. Indeed, as presented,
one should recalculate AIE each time p1 is changed. In order
to generate results comparable with those from Section 2.3 we
introduce a consistent family of matrices, following Medvedev
(2014). Consider AIE (similar procedures apply for the other two
matrices) and define an N × N matrix r, each entry of which is
independently and randomly chosen from a uniform distribution
on the interval (0, 1). The matrix r is now considered to be fixed,
and we define AIE(p1) as follows:

AIE
ij (p1) =

{

2[rij − p1(1− (2MIE + 1)/N)], |i− j| ≤ MIE

2[rij − (1− p1(2MIE + 1)/N)], |i− j| > MIE

(49)

FIGURE 8 | Firing rate for (A): excitatory population and (B): inhibitory

population, as a function of p3, with p2 = p1 = 0. Other parameters:

1 = 0.02, I0 = −0.16, J0 = −0.4, n = 2, gEE = 25, gIE = 25, gEI = 7.5,

αIE = 40/1024, αEE = 40/1024, αEI = 60/1024 and τ = 10.

Frontiers in Computational Neuroscience | www.frontiersin.org 7 June 2016 | Volume 10 | Article 53

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Laing Bumps in Small-World Networks

where 2 is the Heaviside step function and the indices are taken
modulo N. Comparing this with Equation (16) we see that for a
fixed p1, generating a new r and using Equation (49) is equivalent
to generating AIE using Equation (16). The reason for using
Equation (49) is that since the rij are chosen once and then fixed,
an entry inAIE will switch from 0 to 1 (or vice versa) at most once
as p1 is varied monotonically in the interval [0, 1].

The effects of quasistatically increasing p1 and p3 for
Equations (42)–(48) are shown in Section 3.2.

3. RESULTS

3.1. Results for Continuum Limit
For the system Equations (31) and (32) and Equations (24) and
(25) we discretize the spatial domain into 1024 evenly spaced
points and approximate the integrals in Equations (33)–(35)
with Riemann sums. We numerically integrate the spatially-
discretized evolution equations in time, using appropriate initial
conditions, until a steady state is reached. This steady state is
then continued using pseudo-arclength continuation, and the

FIGURE 9 | Firing rate for (A): excitatory population and (B): inhibitory

population, as a function of p1, with p2 = p3 = 0. Compare with Figure 5.

Other parameters: 1 = 0.02, I0 = −0.16, J0 = −0.4, n = 2,gEE = 25,

gIE = 25,gEI = 7.5,N = 1024,MIE = 40,MEE = 40,MEI = 60 and τ = 10.

stability of the solutions found determined by examining the
eigenvalues of the Jacobian evaluated at them (Laing, 2014b).
The increment between successive values of the pi found during
continuation is not fixed and the numerical results found were
interpolated to a uniform grid for plotting in Figures 5, 7, 8. We
consider varying p1, p2 and p3 independently, keeping the other
two parameters fixed at zero. The results of varying p1 are shown
in Figure 5, where we plot the firing rate of the two populations,
derived as Re(wi)/π where wi = (1 − z̄i)/(1 + z̄i) for i = I,E,
as in Montbrió et al. (2015), where the zi are fixed points of
Equations (31) and (32). We see an increase and then decrease in
bump width as p1 is increased. There is also a pair of supercritical
Hopf bifurcations, between which the bump is unstable (It is only
weakly unstable, with the rightmost eigenvalue of the Jacobian
having a maximal real part of 0.015 in this interval). At the
leftmost Hopf bifurcation the Jacobian has eigenvalues ±1.8191i
and at the rightmost it has eigenvalues ±1.7972i, with all other
eigenvalues having negative real parts. One notable aspect is the
increase in firing rate of the inhibitory population “outside” the
bump as p1 is increased, such that when p1 = 1 the firing rate in
this population is spatially homogeneous. This is to be expected,

FIGURE 10 | Firing rate for (A): excitatory population and (B): inhibitory

population, as a function of p3, with p2 = p1 = 0. Compare with Figure 8.

Other parameters: 1 = 0.02, I0 = −0.16, J0 = −0.4, n = 2,gEE = 25,

gIE = 25,gEI = 7.5,N = 1024,MIE = 40,MEE = 40,MEI = 60 and τ = 10.
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FIGURE 11 | Instantaneous firing rate for (A): excitatory population and

(B): inhibitory population, with p2 = 0.3 and p3 = p1 = 0. Other

parameters: 1 = 0.02, I0 = −0.16, J0 = −0.4, n = 2,gEE = 25,

gIE = 25,gEI = 7.5,N = 1024,MIE = 40,MEE = 40,MEI = 60 and τ = 10.

as there are no inhibitory-to-inhibitory connections, and when
p1 = 1 all inhibitory neurons receive the same input from the
excitatory population.

Increasing p2 while keeping p1 = p3 = 0 we find that the
bump undergoes a Hopf bifurcation (Jacobian has eigenvalues
±0.3404i) and then is destroyed in a saddle-node bifurcation at
p2 ≈ 0.48, as shown in Figure 6. The behavior of the bumps for
0 ≤ p2 ≤ 0.48 is shown in Figure 7.

Varying p3 we obtain Figure 8, where there are no bifurcations
as p3 is increased all the way to 1, corresponding to the case where
all excitatory neurons feel the same inhibition, just a weighted
mean of the output from the inhibitory population. We again
see an increase and then slight decrease in bump width as p3 is
increased.

While a Hopf bifurcation of a bump may seem undesirable
from a neurocomputational point of view, it should be kept in
mind that oscillations are an essential phenomenon in many
different neural networks, and they are widely studied (Ashwin
et al., 2016).

We have only varied one of p1, p2 and p3, keeping the
other two probabilities at zero. A clearer picture of the system’s
behavior could be obtained by simultaneously varying two, or

FIGURE 12 | Firing rate for (A): excitatory population and (B): inhibitory

population in the full network Equations (3)–(6), averaged over a time

window of length 500, as a function of p1 with p2 = p3 = 0. Compare

with Figure 9. Other parameters: 1 = 0.02, I0 = −0.16, J0 = −0.4, n = 2,

gEE = 25, gIE = 25, gEI = 7.5, N = 1024, MIE = 40, MEE = 40, MEI = 60 and

τ = 10.

all three, of these probabilities. We leave this as future work,
but mention that for the special case p1 = p2 = p3 = p, the
bump persists and is stable up to p ≈ 0.49, where it undergoes a
saddle-node bifurcation (not shown).

3.2. Results for Infinite Ensemble
This section refers to Equations (42)–(48). In Figure 9 we show
the results of slowly increasing p1, while keeping p2 = p3 = 0.
We initially set p1 = 0 and integrated Equations (42)–(48) to a
steady state, using initial conditions that give a bump solution.
We then increased p1 by 0.01 and integrated Equations (42)–(48)
again for 10,000 time units, using as an initial condition the final
state of the previous integration. We continued this process up to
p1 = 1. The firing rate for the jth excitatory neuron is Re(wj)/π
where wj = (1 − z̄Ej )/(1 + z̄Ej ), and similarly for an inhibitory

neuron. Comparing Figure 9 with Figure 5 we see the same
behavior, the main difference being that the bump now moves in
an unpredictable way around the domain as p1 is increased. This
is due to the system no longer being translationally invariant, and

Frontiers in Computational Neuroscience | www.frontiersin.org 9 June 2016 | Volume 10 | Article 53

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Laing Bumps in Small-World Networks

FIGURE 13 | Firing rate for (A): excitatory population and (B): inhibitory

population in the full network Equations (3)–(6), averaged over a time

window of length 500, as a function of p3 with p2 = p1 = 0. Compare

with Figure 10. Other parameters: 1 = 0.02, I0 = −0.16, J0 = −0.4, n = 2,

gEE = 25, gIE = 25, gEI = 7.5, N = 1024, MIE = 40, MEE = 40, MEI = 60 and

τ = 10.

the bump moving to a position in which it is stable (Thul et al.,
2016). Unlike the situation shown in Figure 5 we did not observe
any Hopf bifurcations, for this realization of the AIE. Presumably
this is also a result of breaking the translational invariance and the
weakly unstable nature of the bump shown in Figure 5 between
the Hopf bifurcations.

Repeating this process as p3 is varied with p1 = p2 = 0
we obtain the results in Figure 10. Comparing with Figure 8

we see very good agreement, although the bump does move
considerably for small p3, as in Figure 9. Varing p2 with p1 =

p3 = 0 we obtain similar results to those in Figure 7 (not
shown). Typical behavior of (42)–(48) with p2 = 0.3 (i.e., beyond
the Hopf bifurcation shown in Figure 7) is shown in Figure 11,
where the oscillations are clearly seen.

3.3. Results for Original Network
To verify the results obtained above we ran the full network
Equations (3)–(6) but using the connectivity Equation (49) (and
similar constructions forAEE andAEI) to calculate Equation (15).
The frequency was measured directly from simulations. Varying
p1 we obtain the results in Figure 12; again, no oscillatory
behavior associated with a Hopf bifurcation was observed and the

FIGURE 14 | Behavior of the full network Equations (3)–(6) with p2 = 0.3

and p3 = p1 = 0. (A): 1− cos θj , (B): vj . Compare with Figure 11. Other

parameters: 1 = 0.02, I0 = −0.16, J0 = −0.4, n = 2,gEE = 25,

gIE = 25,gEI = 7.5,N = 1024,MIE = 40,MEE = 40,MEI = 60 and τ = 10.

results are similar to those in Figure 9. Varying p3 we obtained
Figure 13 (compare with Figure 10). Figure 14 shows oscillatory
behavior at p2 = 0.3, p1 = p3 = 0 (the same parameter values as
used in Figure 11).

Note that the results in Figures 9–14 are each for a single
realization of a typical (parameterized) small-world network. To
gain insight into general small-world networks it would be of
interest to study the statistics of the behavior of such networks.

4. DISCUSSION

We have considered the effects of randomly adding long-range
and simultaneously removing short-range connections in a
network of model theta neurons which is capable of supporting
spatially localized bump solutions. Such rewiring makes the
networks small-world, at least for small values of the rewiring
probabilities. By using theta neurons we are able to use the
Ott/Antonsen ansatz to derive descriptions of the networks
in two limits: an infinite number of neurons, and an infinite
ensemble of finite networks, each with the same connectivity. The
usefulness of this is that the bumps of interest are fixed points of
the dynamical equations derived in these ways, and can thus be
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found, their stability determined, and followed as parameters are
varied using standard dynamical systems techniques.

For the parameters chosen we found bumps to be surprisingly
robust: in several cases a rewiring probability could be taken from
0 to 1 without destroying a bump. However, rewiring connections
within the excitatory population (increasing p2) was found to
destabilize a bump through a Hopf bifurcation and later destroy
the unstable bump in a saddle-node bifurcation. Simulations of
the full network were used to verify our results.

The network studied has many parameters: the spatial spread
of local couplings, the timescale of excitatory synapses, the
connection strengths within and between populations, and the
distributions of heterogeneous input currents. These were all set
so that the network without rewiring supported a stable bump
solution, but we have not investigated the effects of varying

any of these parameters. However, even without considering
rewiring, Equations (31)–(35) and Equations (24) and (25)
provide a framework for investigating the effects of varying these
parameters on the existence and stability of bump solutions, since
these continuum equations are derived directly from networks of
spiking neurons, unlike many neural field models.
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APPENDIX

Mathematical Details Relating to Section 2.4
In the limit of an infinite ensemble we have

qi =
1

N

N
∑

j=1

AIE
ij

∫

· · ·

∫

Pn(θj)f
E({θ}; {I}; t) dθ1 dθ2 . . . dθN dI1 dI2 . . . dIN (A1)

=
1

N

N
∑

j=1

AIE
ij

∫ ∞

−∞

∫ 2π

0
Pn(θj)f

E
j (θj, Ij, t)dθj dIj

ri =
1

N

N
∑

j=1

AEE
ij

∫

· · ·

∫

Pn(θj)f
E({θ}; {I}; t) dθ1 dθ2 . . . dθN dI1 dI2 . . . dIN (A2)

=
1

N

N
∑

j=1

AEE
ij

∫ ∞

−∞

∫ 2π

0
Pn(θj)f

E
j (θj, Ij, t)dθj dIj

si =
1

N

N
∑

j=1

AEI
ij

∫

· · ·

∫

Pn(φj)f
I({φ}; {J}; t) dφ1 dφ2 . . . dφN dJ1 dJ2 . . . dJN (A3)

=
1

N

N
∑

j=1

AEI
ij

∫ ∞

−∞

∫ 2π

0
Pn(φj)f

I
j (φj, Jj, t)dφj dJj

where f Ej (θj, Ij, t) is the marginal distribution for θj, given by

f Ej (θj, Ij, t) =

∫

· · ·

∫

f E({θ}; {I}; t)
∏

k 6=j

dθk dIk (A4)

and similarly

f Ij (φj, Jj, t) =

∫

· · ·

∫

f I({φ}; {J}; t)
∏

k 6=j

dφk dJk (A5)

Multiplying the continuity equation (40) by
∏

k 6=j dθk dIk and integrating we find that each f Ej satisfies

∂f Ej

∂t
+

∂

∂θj

[

f Ej

(

dθj

dt

)]

= 0 (A6)

Similarly each f Ij satisfies

∂f Ij

∂t
+

∂

∂φj

[

f Ij

(

dφj

dt

)]

= 0 (A7)

Using the Ott/Antonsen ansatz we write

f Ej (θj, Ij, t) =
h(Ij)

2π

{

1+

∞
∑

n=1

[

αE
j (Ij, t)

]n
einθj + c.c.

}

(A8)

and

f Ij (φj, Jj, t) =
g(Jj)

2π

{

1+

∞
∑

n=1

[

αI
j (Jj, t)

]n
einφj + c.c.

}

(A9)
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for some functions αE
j (Ij, t) and αI

j (Jj, t), where “c.c.” means the complex conjugate of the previous term. Substituting Equation (A8)

into Equation (A6) and Equation (A9) into Equation (A7) we find that

∂αE
j

∂t
= −i

[

Ij + gEEvj − gEIsj − 1

2
+ (Ij + gEEvj − gEIsj + 1)αE

j +
Ij + gEEvj − gEIsj − 1

2

(

αE
j

)2
]

(A10)

and

∂αI
j

∂t
= −i

[

Jj + gIEuj − 1

2
+ (Jj + gIEuj + 1)αI

j +
Jj + gIEuj − 1

2

(

αI
j

)2
]

(A11)

Substituting Equations (A8) and (A9) into Equations (A1)–(A3) we obtain

qi =
1

N

N
∑

j=1

AIE
ij

∫ ∞

−∞

h(Ij)H
(

αE
j (Ij, t); n

)

dIj (A12)

ri =
1

N

N
∑

j=1

AEE
ij

∫ ∞

−∞

h(Ij)H
(

αE
j (Ij, t); n

)

dIj (A13)

si =
1

N

N
∑

j=1

AEI
ij

∫ ∞

−∞

g(Jj)H
(

αI
j (Jj, t); n

)

dJj (A14)

whereH is given by Equation (36). Using standard properties of the Lorentzian one can perform the integrals in Equations (A12)–(A14)
and defining zEj (t) ≡ ᾱE

j (I0 + i1, t) and zIj (t) ≡ ᾱI
j (J0 + i1, t) we have

qi =
1

N

N
∑

j=1

AIE
ij H

(

zEj (t); n
)

(A15)

ri =
1

N

N
∑

j=1

AEE
ij H

(

zEj (t); n
)

(A16)

si =
1

N

N
∑

j=1

AEI
ij H

(

zIj (t); n
)

(A17)

Evaluating Equation (A10) at Ij = I0 + i1 and Equation (A11) at Jj = J0 + i1 we obtain

dzEj

dt
=

(iI0 − 1)
(

1+ zEj

)2
− i

(

1− zEj

)2

2
+

i(1+ zEj )
2(gEEvj − gEIsj)

2
(A18)

dzIj

dt
=

(iJ0 − 1)
(

1+ zIj

)2
− i

(

1− zIj

)2

2
+

i
(

1+ zIj

)2
gIEuj

2
(A19)

for j = 1, 2, . . .N. Equations (A15)–(A19) are Equations (42)–(46) in Section 2.4.
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