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This paper describes an active inference scheme for visual searches and the perceptual

synthesis entailed by scene construction. Active inference assumes that perception

and action minimize variational free energy, where actions are selected to minimize

the free energy expected in the future. This assumption generalizes risk-sensitive

control and expected utility theory to include epistemic value; namely, the value (or

salience) of information inherent in resolving uncertainty about the causes of ambiguous

cues or outcomes. Here, we apply active inference to saccadic searches of a visual

scene. We consider the (difficult) problem of categorizing a scene, based on the

spatial relationship among visual objects where, crucially, visual cues are sampled

myopically through a sequence of saccadic eye movements. This means that evidence

for competing hypotheses about the scene has to be accumulated sequentially, calling

upon both prediction (planning) and postdiction (memory). Our aim is to highlight some

simple but fundamental aspects of the requisite functional anatomy; namely, the link

between approximate Bayesian inference under mean field assumptions and functional

segregation in the visual cortex. This link rests upon the (neurobiologically plausible)

process theory that accompanies the normative formulation of active inference for

Markov decision processes. In future work, we hope to use this scheme to model

empirical saccadic searches and identify the prior beliefs that underwrite intersubject

variability in the way people forage for information in visual scenes (e.g., in schizophrenia).

Keywords: active inference, visual search, Bayesian inference, scene construction, free energy, information gain,

epistemic value, salience

INTRODUCTION

We have a remarkable capacity to sample our visual world in an efficient fashion, resolving
uncertainty about the causes of our sensations so that we can act accordingly. This capacity calls
on the ability to optimize not just beliefs about the world that is “out there” but also the way in
which we sample information (Howard, 1966; Shen et al., 2011; Wurtz et al., 2011; Andreopoulos
and Tsotsos, 2013; Pezzulo et al., 2013). This is particularly evident in active vision, where discrete
and restricted (foveal) visual data is solicited every few 100ms, through saccadic eye movements
(Grossberg et al., 1997; Srihasam et al., 2009). In this paper, we consider the principles that underlie
this visual foraging—and how it is underwritten by resolving uncertainty about the visual scene that
is being explored. We approach this problem from the point of view of active inference; namely,
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the assumption that action and perception serve to minimize
surprise or uncertainty under prior beliefs about how sensations
are caused.

Active or embodied inference is a corollary of the free
energy principle that tries to explain everything in terms of the
minimization of variational free energy. Variational free energy
is a proxy for surprise or Bayesian model evidence. This means
that minimizing free energy corresponds to avoiding surprises
or maximizing model evidence. The embodied or situated
aspect of active inference acknowledges the fact that we are the
authors of the sensory evidence we garner. This means that the
consequences of sampling or action must themselves be inferred.
In turn, this implies that we have (prior) beliefs about our
behavior. Active inference assumes that the only self-consistent
prior belief is that our actions will minimize free energy; in
other words, we (believe we) will behave to avoid surprises or
resolve uncertainty through active sampling of the world. This
paper illustrates how this works with simulations of saccadic
eye movements and scene construction using a discrete (Markov
decision process) formulation of active inference (Friston et al.,
2011, 2015).

We consider the problem of categorizing a scene based
upon the sequential sampling of local visual cues to construct
a picture or hypothesis about how visual input is generated.
This is essentially the problem of scene construction (Hassabis
and Maguire, 2007; Zeidman et al., 2015), where each scene
corresponds to a hypothesis or explanation for sequences of
visual cues. The main point that emerges from this perspective
is that the scene exists only in the eye of the beholder: it is
represented in a distributed fashion through recurrent message
passing or belief propagation among functionally segregated
representations of where (we are currently sampling) and what
(is sampled). This application of active inference emphasizes
the epistemic value of free energy minimizing behavior—as
opposed to the pragmatic (utilitarian) value of searching for
preferred outcomes. However, having said this, the theory (resp.
simulations) uses exactly the same mathematics (resp. software
routines) that we have previously used to illustrate foraging
behavior in the context of reward seeking (Friston et al., 2015).

Our aim is to introduce a model of epistemic foraging that can
be applied to empirical saccadic eye movements and, ultimately,
be used to phenotype individual subjects in terms of their prior
beliefs: namely, the prior precision of beliefs about competing
epistemic policies and the precision of prior preferences (c.f.,
“incentive epistemic” and motivational salience). This may be
particularly interesting when looking at schizophrenia and other
clinical phenotypes that show characteristic abnormalities during
visual (saccadic) exploration. For example, schizophrenia has
been associated with “aberrant salience,” in which subjects
attend to—and hence saccade to—inconsequential features of
the environment (Kapur, 2003; Beedie et al., 2011). It is
unclear, however, whether “aberrant” salience is epistemic or
motivational, or both; put simply, do subjects with schizophrenia
fail to gather information, and/or fulfill their goals?

This paper comprises three sections. In the first, we briefly
rehearse active inference and the underlying formalism. The
second section describes the paradigm that it subsequently

modeled using the formalism of the first section. In brief, this
requires agents to categorize a scene based upon discrete (visual)
cues that can be sampled from one of four peripheral locations
(starting from central fixation). Crucially, the scene category
is determined purely by the spatial relationships among the
cues—as opposed to their absolute position. By equipping the
agent’s generative model with preferences for correct (as opposed
to incorrect) feedback, we also model the overt reporting of
categorical decisions; thereby emulating a speeded response task.
In the final section, we characterize sequences of trials under
different levels of prior precision and preferences (for avoiding
incorrect feedback). The results are characterized in terms
of simulated electrophysiological responses, saccadic intervals,
and the usual behavioral measures of speed and accuracy. We
conclude with a brief discussion of how this model might be used
in an empirical (computational psychiatry) setting.

ACTIVE INFERENCE AND EPISTEMIC
VALUE

Active inference is based upon the premise that every living thing
minimizes variational free energy. This single premise leads to
some surprisingly simple update rules for action, perception,
policy selection, and the encoding of salience or precision. In
principle, the active inference scheme described below can be
applied to any paradigm or choice behavior. Indeed, earlier
versions have already been used to model waiting games (Friston
et al., 2013), two-step maze tasks (Friston et al., 2015), the urn
task and evidence accumulation (FitzGerald et al., 2015), trust
games from behavioral economics (Moutoussis et al., 2014),
addictive behavior (Schwartenbeck et al., 2015) and engineering
benchmarks such as the mountain car problem. It has also been
used in the setting of computational fMRI (Schwartenbeck et al.,
2014).

Active Inference and Generative Models
Active inference rests upon a generative model of observed
outcomes. This model is used to infer the most likely causes
of outcomes in terms of expectations about states of the
world. These states are called hidden states because they can
only be inferred indirectly through, possibly limited, sensory
observations. Crucially, observations depend upon action, which
requires the generative model to entertain expectations under
different policies or action sequences. Because the model
generates the consequences of sequential action, it has explicit
representations of the past and future; in other words, it is
equipped with a working memory and expectations about future
(counterfactual) states of the world under competing policies.
These expectations are optimized by minimizing variational free
energy, which renders them (approximately) the most likely
(posterior) expectations about states of the world, given the
current observations.

Expectations or beliefs about the most likely policy are based
upon the prior belief that policies are more likely if they
pursue a trajectory or path that has the least free energy (or
greatest model evidence). As we will see below, this expected
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free energy can be expressed in terms of epistemic and extrinsic
value, where epistemic value scores the information gain or
reduction in uncertainty about states of the world—and extrinsic
value depends upon prior beliefs about future outcomes. These
prior preferences play the role of utility in economics and
reinforcement learning.

Having evaluated the relative probability of different policies,
expectations under each policy can then be averaged in
proportion to their (posterior) probability. In statistics, this is
known as Bayesian model averaging. The results of this averaging
specify the next most likely outcome, which determines the
next action. Once an action has been selected, it generates
a new outcome and the (perception and action) cycle starts
again. The resulting behavior is a principled interrogation and
sampling of sensory cues that has both epistemic and pragmatic
aspects. Generally, behavior in an ambiguous and uncertain
context is dominated by epistemic drives until there is no further
uncertainty to resolve—and extrinsic value predominates. At this
point, explorative behavior gives way to exploitative behavior. In
this paper, we are primarily interested in the epistemic behavior,
and only use extrinsic value to encourage the agent to report its
decision, when it is sufficiently confident.

In more detail: expectations about hidden states (and the
precision of beliefs about competing policies) are updated to
minimize variational free energy under a generative model. The
generative model considered here is fairly generic (see Figure 1).

Outcomes at any particular time depend upon hidden states,
while hidden states evolve in a way that depends upon action.
Formally, this model is specified by two sets of matrices (strictly
speaking these are multidimensional arrays). The first, Am,
maps from hidden states to the m-th outcome and can embody
ambiguity in the outcomes generated by any particular state. The
m-th sort of outcome here can be considered the m-th modality;
for example, exteroceptive or proprioceptive observations. The
second set of matrices Bn(a), prescribe the transitions among
the n-th hidden states, under an action, a. The n-th sort of
hidden state can correspond to different factors or attributes of
the world; for example, the location of an object and its identity.
The remaining parameters encode prior beliefs about the initial
states Dn, the precision of beliefs about policies γ = 1/β, where
a policy returns an action at a particular time a = π(t) and prior
preferences Cm that define the expected free energy (see below).

The form of the generative model in Figure 1 means that
outcomes are generated in the following way: first, a policy is
selected using a softmax function of expected free energy for each
policy, where the inverse temperature or precision is selected
from a prior (exponential) density. Sequences of hidden states
are then generated using the probability transitions specified by
a selected policy. These hidden states then generate outcomes
in several modalities. Figure 2 (left panel) provides a graphical
summary of the dependencies implied by the generative model
in Figure 1. Perception or inference corresponds to inverting or

FIGURE 1 | Formal specification of the generative model and (approximate) posterior. (A) These equations specify the form of the (Markovian) generative

model used in this paper. A generative model is essentially a specification of the joint probability of outcomes or consequences and their (latent or hidden) causes.

Usually, this model is expressed in terms of a likelihood (the probability of consequences given causes) and priors over the causes. When a prior depends upon a

random variable it is called an empirical prior. Here, the generative model specifies the mapping between hidden states and observable outcomes in terms of the

likelihood. The priors in this instance pertain to transitions among hidden states that depend upon action, where actions are determined probabilistically in terms of

policies (sequences of actions). The key aspect of this generative model is that, a priori, policies are more probable if they minimize the (path integral of) expected free

energy G. Bayesian model inversion refers to the inverse mapping from consequences to causes; i.e., estimating the hidden states and other variables that cause

outcomes. (B) In variational Bayesian inversion, one has to specify the form of an approximate posterior distribution, which is provided on the right panel. This particular

form uses a mean field approximation, in which posterior beliefs are approximated by the product of marginals or factors. Here, a mean field approximation is applied

both to posterior beliefs at different points in time and different sorts of hidden states. See the main text and Table 1 for more detailed explanation of the variables.
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FIGURE 2 | Graphical model corresponding to the generative model. (A) The left panel shows the conditional dependencies implied by the generative model of

previous figure. Here, the variables in white circles constitute (hyper) priors, while the blue circles denote random variables. This format shows how outcomes are

generated from hidden states that evolve according to probabilistic transitions, which depend on policies. The probability of a particular policy being selected depends

upon expected free energy and a precision or inverse temperature. (B) The right panels show an example of different hidden states and outcomes modalities. This

particular example will be used later to model perceptual categorization in terms of three scenarios or scenes (flee, feed, or wait). The two outcome modalities

effectively report what is seen and where it is seen. See the main text for a more detailed explanation.

fitting this generative model, given a sequence of outcomes. This
corresponds to optimizing the expected hidden states, policies
and precision with respect to variational free energy. These
(posterior) estimates constitute posterior beliefs, usually denoted
by the probability distribution Q(x), where x = s̃, π, γ are the
hidden or unknown variables.

Variational Free Energy and Inference
In variational Bayesian inference, model inversion entails
minimizing variational free energy with respect to the sufficient
statistics (i.e., parameters) of the posterior beliefs (see Figure 1,
right panel and Table 1 for a glossary of expressions):

Q(x) = argminQ(x) F
≈ P(x|õ)

F = EQ[lnQ(x)− ln P(õ|x)− ln P(x)]
= EQ[lnQ(x)− ln P(x|õ)− ln P(õ)]

= D[Q(x)||P(x|õ)]
︸ ︷︷ ︸

relative entropy

− ln P(õ)
︸ ︷︷ ︸

log evidence

= D[Q(x)||P(x)]
︸ ︷︷ ︸

complexity

−EQ[lnP(õ|x)]
︸ ︷︷ ︸

accuracy

(1)

where õ = (o1, . . . , ot) denotes observations up until the current
time.

Remarks

Because the relative entropy (or Kullback-Leibler divergence)
cannot be less than zero, the penultimate equality means that free
energy is minimized when the approximate posterior becomes
the true posterior. At this point, the free energy becomes the
negative log evidence for the generative model (Beal, 2003). This
meansminimizing free energy is equivalent tomaximizingmodel
evidence, which is equivalent to minimizing the complexity
of accurate explanations for observed outcomes (last equality
above).

Minimizing free energy ensures expectations encode posterior
beliefs, given observed outcomes. However, beliefs about policies
rest on future outcomes. This means that policies should, a priori,
minimize the free energy of beliefs about the future. This can be
formalized by making the log probability of a policy proportional
to the free energy expected in the future (Friston et al., 2015):

G(π) =
∑

τ
G(π, τ )

G(π, τ ) = EQ̃[lnQ(sτ |π)− lnQ(sτ |oτ , π)− ln P(oτ )]
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TABLE 1 | Glossary of expressions.

Expression Description

oτ = (o1τ , . . . , oMτ ) ∈ {0,1},oτ ∈ [0, 1],
⌢
o τ = lnoτ Outcomes in M modalities, their posterior expectations and logarithms

õ = (o1, . . . , ot ) Sequences of outcomes up until the current time

sτ = (s1τ , . . . , sNτ ) ∈ {0,1}, sτ ∈ [0, 1],
⌢
s τ = ln sτ Hidden states in N factors, their posterior expectations and logarithms

s̃ = (s1, . . . , sT ) Sequences of hidden states up until the end of the current trial

π = (π1, . . . , πK ), π ∈ [0,1],
⌢

π= lnπ Policies specifying action sequences, their posterior expectations and logarithms

a = π (t) = (a1, . . . , aN ) Action or control variables for each factor of hidden states

γ, γ = 1
β

The precision (inverse temperature) of beliefs about policies and its posterior expectation

β Prior expectation of temperature (inverse precision) of beliefs about policies

Am Likelihood array mapping from hidden states to the m-th modality

Bn (a),Bn,πτ = Bn (a = π (τ )) Transition probability for the n-th hidden state under each action

Cmτ Logarithm of the prior probability of the m-th outcome; i.e., preferences or utility

Dn Prior expectation of the n-th hidden state at the beginning of each trial

F:Fπ = F (π ) =
∑

τ F (π, τ ) =
∑

n,τ F (π, τ, n) Variational free energy for each policy

G:Gπ = G(π ) =
∑

τ G(π, τ ) =
∑

m,τ G(π, τ,m) Expected free energy for each policy

Hm Entropy of the m-th outcome

A· s• =
∑

i,j,k... Ai,j,k...s
1
i
s2
j
s3
k

. . . Dot product (or sum of products), returning a scalar

A· s/n A dot product over all but the n-th vector

= EQ̃[lnQ(sτ |π)− lnQ(sτ |oτ , π)]
︸ ︷︷ ︸

(negative) mutual information

− EQ̃[ln P(oτ )]
︸ ︷︷ ︸

expected log evidence

= EQ̃[lnQ(oτ |π)− lnQ(oτ |sτ , π)]
︸ ︷︷ ︸

(negative) epistemic value

−EQ̃[ln P(oτ )]
︸ ︷︷ ︸

extrinsic value

= D[Q(oτ |π)||P(oτ )]
︸ ︷︷ ︸

expected cost

+EQ̃[H[P(oτ |sτ )]]
︸ ︷︷ ︸

expected ambiguity

where Q̃ = Q(oτ , sτ |π) = P(oτ |sτ )Q(sτ |π) ≈ P(oτ , sτ |õ, π) and
Q(oτ |sτ , π) = P(oτ |sτ ) for τ > t.

Remarks

The expected relative entropy now becomes mutual information
or epistemic value, while the expected log-evidence becomes
extrinsic value—if we associate the prior preferences with value
or utility. The final equality expression shows how expected
free energy can be evaluated relatively easily: it is just the
divergence between the predicted and preferred outcomes, plus
the ambiguity (i.e., entropy) expected under predicted states.

There are several helpful interpretations of expected free
energy that appeal to (and contextualize) established constructs.
For example, maximizing epistemic value is equivalent to
maximizing (expected) Bayesian surprise (Itti and Baldi,
2009), where Bayesian surprise is the Kullback-Leibler (KL)
divergence between posterior and prior beliefs. This can also
be interpreted in terms of the principle of maximum mutual
information or minimum redundancy (Barlow, 1961; Linsker,
1990; Olshausen and Field, 1996; Laughlin, 2001). This is
because epistemic value is the mutual information between
hidden states and observations. In other words, it reports
the reduction in uncertainty about hidden states afforded by
observations. Because the information gain cannot be less than
zero, it disappears when the (predictive) posterior ceases to

be informed by new observations. Heuristically, this means
epistemic behavior will search out observations that resolve
uncertainty about the state of the world (e.g., foraging to resolve
uncertainty about the hidden location of prey or fixating on
informative part of a face). However, when there is no posterior
uncertainty—and the agent is confident about the state of the
world—there can be no further information gain and epistemic
value will be the same for all policies, enabling extrinsic value
to dominate. This resolution of uncertainty is closely related
to satisfying artificial curiosity (Schmidhuber, 1991; Still and
Precup, 2012) and speaks to the value of information (Howard,
1966).

The expected complexity or cost is exactly the same quantity
minimized in risk sensitive or KL control (Klyubin et al.,
2005; van den Broek et al., 2010), and underpins related (free
energy) formulations of bounded rationality based on complexity
costs (Braun et al., 2011; Ortega and Braun, 2013). In other
words, minimizing expected complexity or cost renders behavior
risk sensitive, while maximizing expected accuracy induces
ambiguity-sensitive behavior. This completes our description of
free energy. We now turn to belief updating that is based on
minimizing free energy under the generative model described
above.

Belief Updating and a Neuronal (Process)
Theory
In practice, expectations about hidden variables can be updated
using a standard gradient descent on variational free energy.
Figure 3 provides an example of these updates. It is easy to see
that the updates minimize variational free energy because they
converge when the free energy gradients are zero: i.e., ∇F = 0.
Although the updates look complicated, they are remarkably
plausible in terms of neurobiological schemes—as discussed
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FIGURE 3 | Schematic overview of the belief updates describing active inference: (A) The left panel lists the belief updates mediating, perception, policy

selection, precision, and action selection; (B) while the right panel assigns the quantities that are updated (sufficient statistics or expectations) to various brain areas.

The implicit attribution should not be taken too seriously but serves to illustrate the functional anatomy implied by the form of the belief updates. Here, we have

assigned observed outcomes to visual representations in the occipital cortex; with exteroceptive (what) modalities entering a ventral stream and proprioceptive (where)

modalities originating a dorsal stream. Hidden states encoding context have been associated with the hippocampal formation, while the remaining states encoding

sampling location and spatial invariance have been assigned to the parietal cortex. The evaluation of policies, in terms of their (expected) free energy, has been placed

in the ventral prefrontal cortex. Expectations about policies per se and the precision of these beliefs have been associated with striatal and ventral tegmental areas to

indicate a putative role for dopamine in encoding precision. Finally, beliefs about policies are used to create Bayesian model averages of future outcomes (in the frontal

eye fields)—that are fulfilled by action, via the deep layers of the superior colliculus. The arrows denote message passing among the sufficient statistics of each factor

or marginal. Please see the text and Table 1 for an explanation of the equations and variables. In this paper, the hat notation denotes a natural logarithm; i.e.,
⌢
o= lno.

elsewhere (Friston et al., 2014). For example, expectations about
hidden states are a softmax function (c.f., neuronal activation
function) of two terms. The first is a decay term, because the log

of a probability is always zero or less
⌢
s
n,π

τ = ln sn,πτ ≤ 0. The
second is the free energy gradient, which is just a linear mixture
of (spiking) activity from other representations (expectations).
Similarly, the precision updates are a softmax function of free
energy and its expected value in the future, weighted by precision
or inverse temperature. The expected precision is driven by the
difference in expected free energy with and without observations;
much like dopamine is driven by the difference in expected and
observed rewards (Schultz et al., 1997). See Friston et al. (2015)
for further discussion.

The key thing about these updates is that they provide a
process theory that implements the normative theory offered by
active inference. In other words, they constitute specific processes
that make predictions about neuronal dynamics and responses.
Although the focus of this paper is on behavior and large-scale
functional anatomy, we will illustrate the simulated neuronal
responses associated with active inference in later sections.

Functional Segregation and the Mean Field
Approximation
An important aspect of the belief updating in Figure 3 is that it is
formulated for a particular form of posterior density. This form
rests upon something called amean field approximation, which is
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a ubiquitous device in Bayesian statistics (and statistical physics)
(Jaakkola and Jordan, 1998). Figure 1 (right panel) expresses the
posterior as a product of independentmarginal distributions over
different sorts of hidden states (i.e., factors) at different time
points. This mean field assumption is quite important: it means
hidden states are represented in a compact and parsimonious
fashion. In other words, instead of encoding expectations of a
full joint distribution over several factors (e.g., where an object
is and what an object is), we just need to represent both attributes
in terms of their marginal distributions. Similarly, instead of
representing the entire trajectory of hidden states over time, we
can approximate the trajectory by encoding expectations at each
time point separately. This leads to an enormous simplification
of the numerics and belief updating. However, there is a price to
pay: because the posterior beliefs are conditionally independent,
dependencies among the factors are ignored. Generally, this leads
to overconfidence, when inferring hidden states—we will see an
example of this below.

From a neurobiological perspective, the mean field
approximation corresponds to the principle of functional
segregation, in which representations are anatomically segregated
in the cortical mantle (Zeki and Shipp, 1988). A nice example
of this is the segregation of ventral and dorsal visual processing
streams that deal with “what” and “where” attributes of a visual
scene, respectively (Ungerleider and Mishkin, 1982). In the
absence of a mean field approximation, there would be neuronal
representations of every possible object in every location. It
is this aspect of approximate (variational) Bayesian inference
we emphasize in this paper, by sketching the implications for
large-scale functional anatomy. The segregation or factorization
into “what” and “where” attributes is particularly prescient for
the oculomotor control of saccadic eye movements. This is
because—as we will see next—action is only specified by the
states or attributes of the world that it can change. Clearly,
saccadic eye movements only change where one is looking but
not what is sampled. This means that only one factor or posterior
marginal is sufficient to prescribe action.

For illustrative purposes, Figure 3 shows how the variables
in our scheme could be encoded in the brain. The encoding of
object identity is assigned to inferotemporal cortex (Seeck et al.,
1995). The representation of location is associated with (dorsal)
extrastriate cortex (Haxby et al., 1994). Beliefs about sampling
locations and spatial invariances are attributed to parietal cortex,
which anticipates the retinal location of stimuli in the future and
updates the locations of stimuli sampled in the past (Duhamel
et al., 1992). Inference about scene identity (based on the spatial
relationships among objects) is attributed to the hippocampus
(Rudy, 2009). Beliefs about policies are assigned to the striatum
(Frank, 2011), which receives inputs from prefrontal cortex,
ventral tegmental area and hippocampus to coordinate planning
(in prefrontal cortex, Tanji and Hoshi, 2001) and execution
(VTA/SN), given a particular context. In active inference, action
selection depends upon the precision of beliefs about policies
(future behavior), encoded by dopaminergic projections from
VTA/SN to the striatum (Schwartenbeck et al., 2014). Frontal
eye fields are involved in saccade planning (Srihasam et al.,
2009) and the superior colliculus mediates eye movement control

(Grossberg et al., 1997)—by fulfilling expectations about action
that are conveyed from frontal eye fields.

Action and Behavior
The equations in Figure 3 conclude with a specification of
action, where action is selected to minimize the difference
(KL divergence) between the outcome predicted under each
action—based on beliefs about the current state—and the
outcome predicted for the next state. This specification of
action is considered reflexive by analogy to motor reflexes
that minimize the discrepancy between proprioceptive signals
(primary afferents) and descending motor commands or
predictions. If we regard competing policies as models of
behavior, the expected outcome is formally equivalent to Bayesian
model average of outcomes, under posterior beliefs about policies.

Summary
By assuming a generic (Markovian) form for the generative
model, it is fairly simple to derive Bayesian updates that clarify
the interrelationships between perception, policy selection,
precision and action. In brief, the agent first infers the hidden
states under each model or policy that it entertains. It then
evaluates the evidence for each policy based upon prior beliefs or
preferences about future states. Having optimized the confidence
in beliefs about policies, their expectations are used to form a
Bayesian model average of the next outcome, which is realized
through action. The anatomy of the implicit message passing is
not inconsistent with functional anatomy in the brain: see Friston
et al. (2014) and Figure 3. Figure 3 shows the functional anatomy
implied by the belief updating and mean field approximation in
Figure 1. Here, we have assumed two input modalities (what and
where) and four sets of hidden states; one encoding the content
of the visual scene and the remaining three encoding the location
at which it was sampled (and various spatial transformations).
The anatomical designation in Figure 3 should not be taken
too seriously—the purpose of this illustration is to highlight the
recurrentmessage passing among the expectations that constitute
beliefs about segregated or factorized states of the world. Here, we
emphasize the segregation between what and where streams—
and how the dorsal where stream supplies predicted outcomes
(to frontal eye fields) that action can realize (via the superior
colliculus). The precision of beliefs about policies has been
assigned to dopaminergic projections to the striatum. We will
use this particular architecture in the next section to illustrate
the behavioral (and electrophysiological) responses that emerge
under this scheme.

Although the generative model—specified by the (A,B,C,D)
matrices—changes from application to application, the belief
updates in Figure 3 are generic and can be implemented using
standard software routines (here, spm_MDP_VB_X.m). These
routines are available as Matlab code in the SPM academic
software: http://www.fil.ion.ucl.ac.uk/spm/. In fact, the following
simulations can be reproduced (and modified) by downloading
the DEM Toolbox and invoking DEM_demo_MDP_search.m.
This annotated code can also be edited and executed via a
graphical user interface; by typing >> DEM and selecting the
Visual foraging demo. This demo can be compared with the
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equivalent variational filtering scheme (for continuous state-
space models) in the Visual search demo, described in Friston
et al. (2012).

ACTIVE INFERENCE AND VISUAL
FORAGING

This section uses active inference for Markov decision processes
to illustrate epistemic foraging in the setting of visual searches.
Here, the agent has to categorize a scene on the basis of the
relative position of various visual objects—that are initially
unknown. Crucially, the agent can only sample one object or
location at a time and therefore has to accumulate evidence for
competing hypotheses about the underlying scene. When the
agent is sufficiently confident about its perceptual categorization,
it makes a saccade to a choice location—to obtain feedback
(“right” or “wrong”). A priori, the agent prefers to be right
and does not expect to be wrong. We first illustrate a single
trial in terms of behavior and underlying electrophysiological
responses. The next section then considers sequences of trials
and how average behavior (accuracy, number of saccades
and saccadic intervals) depends upon prior preferences and
precision.

This demonstration uses a mean field approximation to the
posterior over different hidden states (context, sampling location,
and spatial transformations). In addition, we consider two
outcome modalities (exteroceptive or “what” and proprioceptive
or “where”). In this example, the agent has to categorize a
scene that comprises cues at four peripheral locations, starting
from a central fixation point. This involves a form of scene
construction, in which the relationship between various cues
determines the category of scene. The scene always contains
a bird and seed, or a bird and a cat. If the bird is next to
the seed or the cat, then the scene is categorized as “feed”
or “flee,” respectively. Conversely, if the seed is diagonally
opposite the bird, the category is “wait.” The particular
positions of the cues are irrelevant; the important attributes
are their spatial relationship. This means hidden states have
to include spatial mappings that induce invariances to spatial
transformations. These are reflections around the horizontal and
vertical axes.

The right panel of Figure 2 shows the hidden states in more
detail: there are two outcome modalities (what and where),
encoding one of six cues (distractor, seed, bird, cat, and right
or wrong feedback) and one of eight sampled locations (central
fixation, four quadrants, and three choice locations that provide
feedback about the respective decision). The hidden states have
four factors; corresponding to context (feed, flee, and wait),
the currently sampled location (the eight locations above) and
two further factors modeling invariance (i.e., with and without
reflections about the vertical and horizontal axes). The three
scenes under each context (flee, feed and wait) in the top right
panel of Figure 2 are referred to as base scenes. The context or
category defines the objects (distractor, seed, bird, and cat) and
their relative locations. The hidden states mediating (vertical and
horizontal) transformations define the absolute locations and are

implemented with respect to the base scenes. For example, in
the case of a flee scene, the bird and cat may exchange locations
under a vertical transformation. Since the absolute and relative
positions of the objects (and the objects themselves) are hidden
causes of the scene’s appearance, they are not affected by the
agent’s actions.

Heuristically, the model in Figure 2 generates outcomes in the
following way. First, one of the three canonical scenes or contexts
is selected. This scene can be flipped vertically or horizontally (or
both) depending upon the spatial transformation states. Finally,
the sampled location specifies the exteroceptive visual cue and the
proprioceptive outcome signaling the location. This model can be
specified in a straightforward way by specifying the two outcomes
for every combination of hidden states in A1 ∈ R

6×(3×8×2×2)

and A2 ∈ R
8×(3×8×2×2). The arrays in these two matrices just

contain a one for each outcome when the combination of hidden
states generates the appropriate outcome, and zeros elsewhere.
These twomatrices encode the observation likelihoods in the two
outcomemodalitieswhat andwhere. Here,A1 defines the identity
(what) of objects that are likely to be sampled (i.e., observed),
under all possible combinations of hidden states, whileA2 defines
the likely locations (where) of the objects. The transition matrices
are similarly simple: because the only state that changes is the
sample location, the transition matrices are identity matrices,
apart from the (action dependent) matrix encoding transitions
among sampled locations:

B2
ij(k) = R

(8×8)×8 =

{

1, i = k
0, i 6= k

where k ∈ {1, 2, ..., 8}. Prior beliefs about the initial states Dn

(context and projections) were uniform distributions; apart from
the sampled location, which always started at the central fixation
D2 = [1, 0, . . . , 0]. Here, n indicates the dimension of the hidden
states with n ∈ {1, 2, 3, 4}. There are four dimensions of hidden
states, namely context, sampling location, and the two spatial
transformations.

Although we have chosen to illustrate a particular paradigm,
the computational architecture of the scheme is fairly generic.
Furthermore, after the generative model has been specified,
all its parameters are specified through minimization of free
energy. This means there are only two parameters that can be
adjusted; namely, prior preferences about outcomes, C and prior
precision, γ . In our case, the agent has no prior preference
(i.e., flat priors) about locations but believes that it will correctly
categorize a scene after it has accumulated sufficient evidence.
Prior preferences over the outcome modalities were therefore
used to encourage the agent to choose policies that elicited correct
feedback C1 = [0, . . . , 0, c,−2c]:c = 2, with no preference for
sampled locations C2 = [0, . . . , 0]. Here, c is the utility of
making a correct categorization,−2c is the utility of being wrong.
These preferences mean that the agent expects to obtain correct
feedback exp (c) times more than visual cues—and believes it
will solicit incorrect feedback very rarely. The prior precision
of beliefs about behaviors (policies or future actions) γ plays
the role of an inverse temperature parameter. As the precision
increases, the sampling of the next action tends to be more
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deterministic; favoring the policy with the lowest expected free
energy. Conversely as the precision of beliefs decreases the
distribution of beliefs over the policies becomes more uniform;
i.e., the agent becomes more uncertain about the policy it is
pursuing.

With these preferences, the agent should act to maximize
epistemic value or resolve uncertainty about the unknown
context (the scene and its spatial transformations), until the
uncertainty about the scene is reduced to a minimum. At this
point, it should maximize extrinsic value by sampling the choice
location it believes will provide feedback that endorses its beliefs.
This speaks to the trade-off between exploration and exploitation.
Essentially, actions associated with exploration of the scene
(one of four quadrants) have no extrinsic value—they are
purely epistemic. In contrast, actions associated with the choice
locations (locations that are used to report the scene’s category)
have extrinsic value, because the agent has prior preferences
about the consequences of these actions. The contributions of
epistemic and extrinsic value to policy (and subsequent action)
selection are determined by their contributions to expected free
energy (see Equation 2). In other words, there is only one
imperative (to minimize free energy); however, free energy can
always be expressed as a mixture of epistemic and extrinsic
value. The relative contribution is determined by the precision
of prior preferences, in relation to the epistemic part. The
exploration and exploitation dilemma is resolved such that when
the extrinsic value of the policies associated with a choice
is greater than the epistemic value, the agent terminates the
exploration and exploits one of the choice locations (i.e., declares
its decision). This reflects a general behavioral pattern during
active inference; namely, uncertainty is resolved via minimizing
a free energy that is initially dominated by epistemic value—until
extrinsic value or prior preferences dominate and exploitation
supervenes. Notice that pragmatic behavior (choice behavior) is
driven by preferences in one modality (exteroceptive outcomes),
while action is driven by predictions in another (proprioceptive
sampling location). Despite this, action brings about preferred
outcomes. This rests upon the recurrent belief updating that links
the “what” and “where” streams in Figure 3. In this graphic, we
have assumed that proprioceptive information has been passed
from the trigeminal nucleus, via the superior colliculus to visual
cortex (Donaldson, 2000).

Simulating Saccadic Searches
Figure 4 shows the results of updating the equations in Figure 3,
using 16 belief updates between each of five saccades. Beliefs
about hidden states are updated using a gradient descent on
variational free energy. This gradient descent usually converges
to a minimum within about 16 iterations. We therefore fixed
the number of iterations to 16 for simplicity. This imposes
a temporal scheduling on belief updates and ensures that the
majority (here, more than 80%) of epochs attain convergence
(this convergence can be seen in later figures, in terms of
simulated electrophysiological responses). The belief updates
are shown in terms of posterior beliefs about hidden states
(upper left panels), posterior beliefs about action (upper center
panel) and the ensuing behavior (upper right panel). Here,

the agent constructed policies on-the-fly by adding all possible
actions (saccadic movement to the eight possible locations) to
previous actions. This means that the agent only looks one move
ahead—and yet manages to make a correct categorization in
the minimum number of saccadic eye movements: in this trial,
the agent first looks to the lower right quadrant and finds a
distractor (omitted in the figures for clarity). It then samples the
upper quadrants to resolve uncertainty about the context, before
soliciting feedback by choosing the (correct) choice location.
The progressive resolution of uncertainty over the three initial
saccades is shown in more detail in the lower panels.

Here, posterior beliefs about the state of the world (the nature
of the canonical scene and spatial transformations) are illustrated
graphically by weighting the predicted visual cue—under each
state—in proportion to the posterior beliefs about that state.
Each successive image reports the posterior beliefs after the first
three saccades to the peripheral locations, while the insert in the
center is the visual outcome after each saccade. Initially, all four
peripheral cue locations could contain any of the visual objects;
however, after the first saccade to the lower right quadrant, the
agent believes that the objects (bird and seed or cat) are in
the upper quadrants. It then confirms this belief and resolves
uncertainty about vertical reflection by sampling the upper right
quadrant to disclose a bird. Finally, to make a definitive decision
about the underlying scene, it has to sample the juxtaposed
location to resolve its uncertainty about whether this contains
seed or cat. Having observed cat, it can then make the correct
choice and fulfill its prior beliefs or preferences.

This particular example is interesting because it illustrates
the overconfidence associated with a mean field approximation.
Note that after the first saccade the agent assumes that the
scene must be either a feed or flee category, with no horizontal
reflection. This is reflected in the fact that the lower quadrants
are perceived as empty. If the agent was performing exact
Bayesian inference it would allow for the possibility of a wait
scenario, with the bird and seed on the diagonal locations. In
this instance, it would know that there must have been either
a vertical or horizontal reflection (but not both). However,
this knowledge (belief) cannot be entertained under the mean
field approximation, because inferring a vertical or horizontal
reflection depends on whether or not the scene is a wait category.
It is these conditional dependencies that are precluded by the
mean field approximation; in other words, posterior beliefs about
one dimension of hidden states (e.g., reflection) cannot depend
upon posterior beliefs about another (e.g., scene category).
The agent therefore finds the most plausible explanation for
the current sensory evidence, in the absence of conditional
dependencies; namely, there has been no vertical reflection and
the scene is not “wait.” If the brain does indeed use mean field
approximations—as suggested by the overwhelming evidence for
functional segregation—one might anticipate similar perceptual
synthesis and saccadic eye movements in human subjects.
In principle, one could compare predictions of empirical eye
movements under active inference schemes with and without
mean field approximations—and test the hypothesis that the
brain uses marginal representations of the sort assumed here (see
Discussion).
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FIGURE 4 | Simulated visual search: (A) This panel shows the expectations about hidden states and the expectations of actions are shown in (B) (upper middle),

producing the search trajectory in (C)—after completion of the last saccadic movement. Expectations are shown in image format with black representing 100%

probability. For the hidden states each of the four factors or marginals are shown separately, with the true states indicated by cyan dots. Here, there are five saccades

and the agent represents hidden states generating six outcomes (the initial state and five subsequent outcomes). The results are shown after completion of the last

saccadic, which means that, retrospectively, the agent believes it started in a flee context, with no horizontal or vertical reflection. The sequence of sampling locations

indicates that the agent first interrogated the lower right quadrant and then emitted saccades to the upper locations to correctly infer the scene—and make the

correct choice (indicated by the red label). The lower panel (D) illustrates the beliefs about context during the first four saccades. Initially, the agent is very uncertain

about the constituents of each peripheral location; however, this uncertainty is progressively resolved through epistemic foraging, based upon the cues that are

elicited by saccades (shown in the central location). The blue dots indicate the sampling location after each saccade.

Electrophysiological Correlates of
Variational Belief Updating
Figure 5 shows the belief updating during the above visual search
to emulate electrophysiological responses measured in empirical
studies. The upper left panel shows simulated neuronal activity
(firing rates) for units encoding the first (scene category) hidden
state using an image (or raster) format. Units here correspond to
the expectations (posterior probabilities) about hidden states of
the world. There are six hidden states for each of the three scenes
(flee, feed, or wait) at six different times. Crucially, there are two
sorts of time shown in these responses. Each block of the raster
encodes the activity over 16 time bins (belief updates) between
one saccade and the next, with one hidden state in each row. Each
row of blocks reports expectations about one of the three hidden
states at different times in the future (or past)—here, beliefs about
the context following each of the six saccades. Each column of
blocks shows the expectations (about the past and future) at a
particular point during the trial. This effectively shows the beliefs
about the hidden states in the past and the future. For example,
the second row of blocks summarizes belief updates about the
second epoch over subsequent saccades; i.e., expectations about
the context in the second saccade are updated in the following
saccades (blocks to the right), while the first column of blocks
encodes beliefs about future states prior to emission of the first

saccade; i.e., expectations about the context in the second time
step is projected into the past (one block above) and into the
future (one block below). This means beliefs about the current
state occupy blocks along the leading diagonal (highlighted in
red), while expectations about states in the past and future are
above and below the diagonal, respectively. For example, the
color density in the first row denotes the posterior probability of
the context being “flee” during the first saccade: this expectation
about context prior to the first saccade only becomes definitive
at around 0.9 s (during the fourth saccade). Conversely, row
12 denotes the posterior probability of ‘wait’ during the fourth
saccade: note that this converges to zero before the fourth saccade
has occurred.

This format illustrates the encoding of states over time,
emphasizing the implicit representation of the past and future.
To interpret these responses in relation to empirical results, one
can assume that outcomes are sampled every 250ms (Srihasam
et al., 2009). Note the changes in activity after each new outcome
is observed. For example, the two units encoding the first two
hidden states start off with uniform expectations over the three
scenes that switches after the second and fourth saccade to
eventually encode the expectation that the first (flee) scene is
being sampled. Crucially, by the end of the visual search, these
expectations pertain to the past; namely, the context at the start
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FIGURE 5 | Simulated electrophysiological responses: this figure reports

the belief updating behind the behavior shown in the previous figure. (A) The

upper left panel shows the activity (firing rate) of units encoding the context or

scene in image (raster) format, over the six intervals between saccades. These

responses are organized such that the upper rows encode the probability of

alternative states in the first epoch, with subsequent epochs in lower rows. (B)

The upper right panel plots the same information to illustrate the evidence

accumulation and the resulting disambiguation of context. (C) The simulated

local field potentials for these units (i.e., the rate of change of neuronal firing)

are shown in the middle left panel. (D) The middle right panel shows average

local field potential over all units before (dotted line) and after (solid line)

bandpass filtering at 4Hz, superimposed upon its time frequency

decomposition. (E) The lower panel illustrates simulated dopamine responses

in terms of a mixture of precision and its rate of change.

of the trial. In other words, these memories are based upon
postdiction. Although not illustrated here, this can be very useful
when updating beliefs between trials (when the context does not
change).

The upper right panel plots the same information
(expectations about the hidden states) to highlight saltatory
evidence accumulation, in which expectations diverge as the
search progresses. This belief updating is formally identical
to evidence accumulation described by drift diffusion or race-
to-bound models (de Lafuente et al., 2015; Kira et al., 2015).
Furthermore, the separation of timescales implicit in variational
updating reproduces the stepping dynamics seen in parietal
responses during decision-making (Latimer et al., 2015). The
middle left panel shows the associated local field potentials,
which are simply the rate of change of neuronal firing shown

on the upper right panel. The middle right panel of Figure 5
shows the simulated local field potential averaged over all units
before (dotted line) and after (solid line) bandpass filtering at
4Hz. These responses are superimposed on its time frequency
decomposition. The key observation here is that depolarization
in the theta range coincides with induced responses—a theme
that we pursue elsewhere in terms of theta-gamma coupling in
the brain (Canolty et al., 2006; Lisman and Redish, 2009; Friston
et al., 2014).

The lower panel illustrates simulated dopamine responses in
terms of a mixture of expected precision γ (or equivalently
inverse temperature 1/β) and its rate of change. Here, we
see a phasic suppression when the null or distractor cue is
sampled after the first saccade, followed by a phasic burst
when the bird is seen—and a degree of uncertainty about
policies is resolved. A second burst occurs on the third saccade,
when the agent resolves uncertainty about the underlying scene
(and the decision it will report). Collectively, these simulated
electrophysiological responses are not dissimilar to the sorts of
responses recorded in empirical studies; however, in this paper,
we are primarily interested in modeling (epistemic) behavior.
Figure 5 shows some of the expectations that are updated
using the scheme presented in the left panel of Figure 3. These
simulated electrophysiological responses can be associated with
activity in the various brain regions in Figure 2; i.e., expectations
about hidden states encoding context s1,πτ with the hippocampus
and the expected precision of beliefs γ with the VTA/SN. In the
final section, we consider multiple trials and how performance
depends upon prior preferences and precision.

THE EFFECTS OF PRIOR BELIEFS ON
PERFORMANCE

Figure 6 summarizes the (simulated) behavioral and
physiological responses over 32 successive trials in which
the context (scene and spatial transformations) was selected
at random. Each trial comprises six saccades following an
initial fixation. The first panel shows the initial states on each
trial as colored circles for each of the four marginal hidden
states: context, sampling location (always central fixation first),
horizontal, and vertical flips and subsequent policy selection (in
image format) over the eight actions (i.e., locations) considered at
each saccade. Here, the actions one to five correspond to visiting
the central fixation point and quadrants with cues (locations two
to five), whereas, actions six to eight select the locations reporting
the choice (flee, feed, and wait). Choice locations are just there
to enable the agent to report its beliefs about the scene category.
The second panel reports the agent’s decision about the category
of the scene and whether this categorization is correct (encoded
by colored circles) and performance in terms of expected utility
and reaction time. Expected utility (black bars) is the utility of
the observed outcomes averaged over time. The utility of an
outcome is defined by the prior preference. Note, that because
preferences are log probabilities they are always negative—and
the best outcome is zero. The performance measure differs
across trials because the number of saccades the agent employs
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FIGURE 6 | Simulated responses over 32 trials: this figure reports the behavioral and (simulated) physiological responses during 32 successive trials. The scenes

in these 32 trials were specified via randomly selected hidden states of the world. (A) The first panel shows the hidden states of the scene (as colored circles) and the

selected action (i.e., the sampled location) on the last saccade. The y-axis on this panel shows two quantities. The selected action is shown using black bars. The

agent can saccade to locations one to eight, where the locations six to eight correspond to the choice locations the agent uses to report the scene category. The true

hidden states are shown with colored circles. These specify the objects in the scene and their locations (in terms of the context and spatial transformations). The

second row of cyan dots indicates that the agent always starts exploring a scene from the central fixation point. Individual rows in the y-axis indicate the sampled

locations according to the following: Fix, Fixation; U. Left, Upper left; L. Left, Lower Left; U. Right, Upper Right; L. Right, Lower Right; and Ch. Flee, Choose Flee; Ch.

Feed, Choose Feed; and Ch. Wait, Choose Wait. (B) The second panel reports the final outcomes (encoded by colored circles) and performance measures in terms of

preferred outcomes (utility of observed outcomes), summed over time (black bars) and standardized reaction times (cyan dots). The final outcomes are shown for the

sample location (upper row of dots) and outcome (lower row of dots): yellow means the agent made a right choice. (C) The third panel shows a succession of

simulated event related potentials following each outcome. These are taken to be the rate of change of neuronal activity, encoding the expected probability of hidden

states encoding context (i.e., simulated hippocampal activity).

before categorizing a scene differs from trial to trial. The reaction
times or saccadic intervals (cyan dots) here are based upon the
actual processing time in the simulations and are shown after
normalization to a mean of zero and standard deviation of one.
Our definition of reaction time as the actual processing time
(using Matlab tic-toc facility) in the simulations is based upon
the assumption that belief updates in the brain—via neuronal
message passing—follow a similar scheduling to the exchange of
sufficient statistics described in Figure 3.

These simulations show that, with the exception of the third
trial, the agent makes veridical decisions on every occasion.
Interestingly, the third (incorrect) trial is associated with the
greatest reaction time. Reaction time here varies because the
minimization of free energy converges at a certain tolerance
(here, the variational updates terminate when the decrease in free
energy falls below 1/128). The lower panel shows the simulated
electrophysiological responses using the same format as in the
previous figure. Here, we see bursts of high-frequency activity

every 100ms or so; in other words, a nesting of gamma activity
in the alpha range.

The associated behavior, over the first nine trials is depicted
in Figure 7. Again, with the exception of the third trial, we see
optimal search behavior, with a correct choice after the minimum
number of saccades. For example, on the first trial, the first
saccade samples a bird, which just requires a second saccade to
the adjacent location in order to completely disambiguate the
context. A detailed analysis of the belief updating for the failed
trial suggested that this was an unlucky failure of the mean
field approximation; particularly the factorization over time—
and a partial failure of convergence due to the use of a fixed
number (i.e., 16) of iterations. These sorts of failures highlight the
distinction between exact Bayesian inference and approximate
Bayesian inference that may underlie bounded rationality in real
agents. With these simulated responses is at hand, we can now
assess the effects of changing prior preference and priors over the
precision of beliefs about action or policies.
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FIGURE 7 | Sequences of saccades: this figure illustrates the behavior for

the first nine trials shown in the previous figure using the same format as

Figure 4 (upper right panel). The numbers on the top left in each cell show the

trial number. With the exception of the third trial, the agent is able to recognize

or categorize the scene after a small number of epistemically efficient

saccades.

Clearly, there are many model parameters (and
hyperparameters) we could consider, in terms of their effects on
simulated behavior. We focused on the precision of preferences
and policies because these correspond intuitively to the different
aspects of salience that may be aberrant in schizophrenia.
Motivational salience can be associated with the preferences
that incentivise choice behavior. Conversely, the precision of
beliefs about policies speaks to the visual salience associated with
information gain and epistemic value. Heuristically, one might
expect different patterns of behavior depending upon whether
subjects have imprecise preferences (i.e., are not confident
about what to do), as opposed to imprecise beliefs about the
consequences of their actions (i.e., not confident about how to
do it). In what follows, we address this heuristic using simulated
behavior.

The Effect of Priors
Finally, Figure 8 reports the performance during presentations
of 300 trials, where hidden states of the world were selected
randomly—and we allowed the agent to make up to 8 saccades.
We measured the performance over these trials in terms
of percent accuracy (a correct choice in the absence of an

incorrect choice), decision time or number of saccades until
any (correct or incorrect) choice and reaction time or saccadic
interval (measured in seconds). Here, we repeated the 300 trial
paradigm over all combinations of eight levels of prior preference
and precision. To manipulate the precision of preferences, we
increased the parameter c—specifying the prior preferences for
different outcomes—from 0 to 4 (i.e., no preferences to very
precise preferences).

The left panel in Figure 8 (Accuracy) shows that accurate
categorization requires both precise preferences and a high
precision. Interestingly, precise prior preferences degrade
accuracy when the prior precision is very low. With greater
prior preference, the agent does not want to make mistakes.
However, a low prior precision precludes a resolution of
uncertainty about the scene. The combination of these two priors
discourages the agent from making a choice, resulting in an
incorrect categorization. The trials where agent doesn’t attempt
to categorize the scene are considered an incorrect categorization.
When prior preferences are less precise, the agent is less afraid
of making an incorrect choice, resulting in an improvement
in performance but it is still below the chance level. Similarly,
greater prior precision does not improve accuracy when prior
preference is low. In short, the agent only respond accurately
when prior preference and precision are high, as seen on the
upper right portion of the image.

The center panel (Decision Time) shows decision time in
terms of number of saccades before choosing a choice location.
When prior preferences are high and prior precision is very low
(first column), it takes seven or eight saccades for the agent to
make a decision. Comparing this figure with the accuracy results,
it can be seen that accuracy is low even though the agent is
making more saccades; i.e., taking its time. When prior precision
is high but prior preference is very low, the agent rushes to make
a decision—but in the absence of precise prior preferences it
makes mistakes (see left panel). In short, the agent successfully
categorizes a scene when it deploys three to four saccades (upper
right quadrants), under precise preferences and high precision.

The right panel (Reaction Time) shows the reaction time in
terms of actual processing time of the simulations. Although,
quantitatively, reaction times only vary between about 800 and
900ms, there seems to be a systematic effect of prior precision,
with an increase in reaction time at very low levels.

Crucially, results demonstrate a distinct dependency of
accuracy and decision time on prior preference and prior
precision. This speaks to the possibility of distinct behavioral
phenotypes that are characterized by different combinations
of prior preference and precision. For example, agents who
do not expect themselves to make mistakes may choose
more assiduously, inducing a classical speed accuracy trade-off.
Conversely, subjects with more precise beliefs about their choices
may behave in a more purposeful and deliberate fashion, taking
less time to obtain preferred outcomes. We pursue this theme in
the discussion.

DISCUSSION

In summary, we have presented an active inference formulation
of epistemic foraging that provides a framework for
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FIGURE 8 | Performance and priors: this figure illustrates the average performance over 300 trials. (A) The insert (lower panel) shows the prior parameters that

were varied; namely, prior preference and precision. These parameters are varied over eight levels. (B) For each combination, the accuracy, decision and reaction time

were evaluated using simulations (upper row). The accuracy is expressed as the percentage of correct trials (defined as a correct choice in the absence of a

proceeding or subsequent incorrect choice). Decision time is defined in terms of the number of saccades until a (correct or incorrect) decision. Reaction time or the

interval between saccades is measured in seconds and corresponds to the actual computation time during the simulations.

understanding the functional anatomy of visual search entailed
by sequences of saccadic eye movements. This formulation
provides an elementary solution to the problem of scene
construction in the context of active sensing and sequential
policy optimization, while incidentally furnishing a model of
spatial invariance in vision.

Although the problem considered above is relatively simple,
it would confound most existing approaches. For example,
reinforcement learning and optimal control theories are not
applicable because the problem is quintessentially epistemic
(belief-based) in nature. This means that the optimal action
depends on beliefs or uncertainty about hidden states. This
context sensitivity precludes any state-action policy and
implicitly any scheme based on the Bellman optimality principle
(Bellman, 1952). This is because the optimal action from any
state depends upon beliefs about that state and all others.
Although, in principle, a belief-state (partially observed) Markov
decision process could be entertained (Bonet and Geffner,
2014), the combinatorics of formulating beliefs states over
3 × 8 × 2 × 2 = 96 hidden states are daunting. Furthermore,
given the problem calls for sequential policy optimization—
and that five moves are necessary to guarantee a correct
categorization—one would have to evaluate 85 = 32768
policies.

The active inference solution offered here is based upon
minimizing the path-integral of (expected) free energy under
a mean field approximation. The exciting thing about this
approach is that, computationally, it operates (nearly) in real-
time. For example, the reaction times in Figure 8 are based
on the actual computation time using a standard desktop
personal computer. This computational efficiency may be useful
for neurorobotic applications. Having said this, the primary
motivation for developing this scheme was to characterize
empirical (human) visual searches given observed performance,
eye movement, and electrophysiological responses.

The example in this paper has some limitations: for example,
all potential spatial combinations of objects can be obtained using
just two transformations (e.g., the cat can never be below the
bird), and scenes in larger grid worlds may not be describable in
terms of simple transformations from a small number of contexts.
Clearly, the brain does not use the mean field approximation
used to illustrate the scheme—but questions about different
forms of meaningful approximations can, in principle, be
answered empirically using Bayesian model comparison of such
approximations when explaining behavioral or neuroimaging
data.

This toy example shows how a scene comprising 2 × 2
quadrants can be explored using the resolution of uncertainty.
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A scene of this small size could be explored systematically, if
inefficiently, (e.g., in a clockwise manner) or by just visiting all
locations randomly. However, more complex scenes—which we
hope to use in future work—could not be categorized efficiently
in such a fashion. In future work, we intend to expand the
scene in terms of its size and contents, while retaining the
same (active inference) formulation of exploration and ensuing
categorization. Our hope is to characterize different behavioral
phenotypes, defined in terms of the free parameters of this model;
namely, the prior preferences and precision. This paradigm will
be used to test the aberrant salience hypothesis of schizophrenia.
For that purpose, the experimental design will include task
irrelevant distractors (as opposed to the null cues used above),
probabilistic relationships between the contents of the scene and
its category—and a greater number of cue locations. In principle,
this will allow us to explain the difference between normal and
schizotypal visual searches in terms of prior preferences, prior
precision or a mixture of the two.

Although the accuracy, number of saccades and saccadic
intervals (Figure 8) provide a degree of validation for active
inference in this setting, it is unlikely that these responses will
provide an efficient estimate of subject-specific priors, such as
prior preferences and precision. However, it is relatively easy
to fit the individual saccadic eye movements by evaluating the
probability of each saccade in relation to posterior beliefs about
action, using the history of action and outcomes in the model
above. This means, in principle, it should be possible to estimate

things like prior preference and precision efficiently, given the
sequence of eye movements from any subject. In subsequent
work, we will use the active inference scheme described in
this paper to explain empirical eye movements in terms of
subject-specific priors. This enables one to simulate or model
electrophysiological responses or identify the regional correlates
of belief updating, using functional magnetic resonance
imaging. This speaks to the ultimate aim of this work, which
is to provide a computational phenotyping of individuals, in
the hope of characterizing the (formal or computational)
psychopathology of conditions like addiction and
schizophrenia.
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