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Deep brain stimulation (DBS) leads with radially distributed electrodes have potential to

improve clinical outcomes through more selective targeting of pathways and networks

within the brain. However, increasing the number of electrodes on clinical DBS leads

by replacing conventional cylindrical shell electrodes with radially distributed electrodes

raises practical design and stimulation programming challenges. We used computational

modeling to investigate: (1) how the number of radial electrodes impact the ability to steer,

shift, and sculpt a region of neural activation (RoA), and (2) which RoA features are best

used in combination with machine learning classifiers to predict programming settings to

target a particular area near the lead. Stimulation configurations were modeled using 27

lead designs with one to nine radially distributed electrodes. The computational modeling

framework consisted of a three-dimensional finite element tissue conductance model in

combination with a multi-compartment biophysical axon model. For each lead design,

two-dimensional threshold-dependent RoAs were calculated from the computational

modeling results. The models showed more radial electrodes enabled finer resolution

RoA steering; however, stimulation amplitude, and therefore spatial extent of the RoA,

was limited by charge injection and charge storage capacity constraints due to the

small electrode surface area for leads with more than four radially distributed electrodes.

RoA shifting resolution was improved by the addition of radial electrodes when using

uniform multi-cathode stimulation, but non-uniform multi-cathode stimulation produced

equivalent or better resolution shifting without increasing the number of radial electrodes.

Robust machine learning classification of 15 monopolar stimulation configurations was

achieved using as few as three geometric features describing a RoA. The results of

this study indicate that, for a clinical-scale DBS lead, more than four radial electrodes

minimally improved in the ability to steer, shift, and sculpt axonal activation around a

DBS lead and a simple feature set consisting of the RoA center of mass and orientation

enabled robust machine learning classification. These results provide important design

constraints for future development of high-density DBS arrays.
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INTRODUCTION

Deep brain stimulation (DBS) is a neurosurgical intervention
for symptomatic treatment of a number of brain disorders. The
success of DBS therapy relies on accurate electrode placement
within the brain (Rezai et al., 2006) and generation of spatially
defined tissue voltage distributions that can precisely modulate
brain activity with millimeter, or even sub-millimeter resolution
(Butson et al., 2007). The size of the anatomical targets, and
their proximity to neural pathways that when stimulated generate
unwanted side effects, make selective modulation challenging for
this therapy. Commercial DBS leads currently consist of a stack
of cylindrical shell electrodes that can accommodate current
steering along the lead axis (Wei and Grill, 2005; Chaturvedi
et al., 2012; Barbe et al., 2014a,b). Such current steering can
be useful for enhancing the ability to target the subthalamic
nucleus (Kuncel and Grill, 2004; Butson and McIntyre, 2008;
Frankemolle et al., 2010), globus pallidus (Johnson andMcIntyre,
2008; Johnson et al., 2012), and motor thalamus (Kuncel and
Grill, 2004; Butson and McIntyre, 2008; Keane et al., 2012).
However, the cylindrical electrode design of current DBS leads
produces predominantly axisymmetric modulation of neuronal
activity (Keane et al., 2012). This axisymmetric modulation
enables inadequate flexibility to adapt stimulation to compensate
for neurosurgical targeting errors tangential to the DBS lead
(Martens et al., 2011; Keane et al., 2012) or for targeting
anatomical regions with complex geometries (Zitella et al., 2013;
Teplitzky et al., 2014). In such cases, delivering therapy without
evoking side effects such as phantom sensory perceptions,
involuntary motor contractions, and cognitive/mood changes
can be challenging (Frankemolle et al., 2010; Chaturvedi et al.,
2012; Keane et al., 2012).

The concept of current steering with implantable electrode
arrays has existed in the fields of spinal cord stimulation
(Holsheimer et al., 1998; Manola et al., 2007), intracochlear
stimulation (Firszt et al., 2007; Berenstein et al., 2008), and
retinal stimulation (Matteucci et al., 2013; Dumm et al., 2014)
for some time. Recent computational and experimental work has
also applied this concept to preclinical and clinical DBS electrode
arrays, which employ three to four radially distributed electrodes
per row and several rows per lead (Buhlmann et al., 2011;Martens
et al., 2011; Contarino et al., 2014; Cubo et al., 2014; Pollo
et al., 2014; Bour et al., 2015). Such DBS arrays (DBSAs) have
potential to improve steering, shifting, and sculpting of neural
activation beyond the capacity of conventional DBS leads with
cylindrical shell electrodes. However, it is presently not clear how
the number of radial DBSA electrodes impact the ability to steer,
shift, and sculpt a region of neural activation (RoA).

In addition to the challenges associated with understanding
current steering with DBS arrays, leads with more than the
conventional four electrodes have the potential to create
significant patient programming challenges. Currently, clinicians
select programing settings for a patient using trial-and-error
through a monopolar review. A clinician will systematically
stimulate through each of the available electrodes using
increasing stimulation amplitudes, evaluate the patient’s
symptoms and the presence of side effects, and select the

optimal stimulation configuration for the patient (Volkmann
et al., 2006). With only four electrodes this can be a time
consuming and imprecise task. Increasing the number of
electrodes has the potential to greatly complicate this problem,
making programming impractical or even infeasible in a
clinical setting. To address this issue, model based optimization
algorithms (Xiao et al., 2016) and machine learning classifiers
(Chaturvedi et al., 2013) have been proposed. In general, the
goal of these algorithms is to use medical imaging to determine
the location of an implanted DBS lead relative to the targeted
brain region and using this information, predict potentially
therapeutic stimulation settings in order to guide the clinician
in programming the implanted DBS system. Implementation
of such techniques; however, relies heavily on the identification
of robust quantifiable measures, or features, that describe the
desired region or volume of activation. Currently, it remains
unclear which RoA features are best used in combination with
machine learning classifiers to predict programming settings to
target a particular area near a DBSA.

In the first section of this manuscript we used computational
modeling to explore DBSA lead design and current steering
strategies. In particular, we calculated the maximum stimulation
amplitude for various DBSA designs in the context of
charge injection and charge storage capacity limits. We then
investigated the size, shape, and location of a region of neural
activation resulting from stimulation using a variety of electrode
configurations within these limits. In the second section of this
manuscript, we evaluate various machine learning feature sets for
predicting stimulation settings to target a particular region near
the DBS lead.

MATERIALS AND METHODS

Radially Segmented DBS Arrays
Twenty-four deep brain stimulation array (DBSA) and three
non-array leads were created in COMSOL Multiphysics v4.4.
DBSA leads included two to nine electrodes per row. Each
DBSA electrode was constructed by projecting an ellipse onto the
cylindrical lead body and extruding the resulting surface 0.1mm
into the lead body. The width of the projected ellipse (Figure 1)
was calculated using the equation of a chord whose endpoints
lie on a circle with a diameter equal to the lead body diameter,
1.27mm (Equations 1, 2).

2 =

360

n
(1)

electrode width = d ∗ sin

(

2

2

)

(2)

where 2 was the center-to-center electrode separation, d was the
lead body diameter, and n was the number of radial electrodes
in a row. Non-array leads included conventional cylindrical shell
electrodes. Both array and non-array electrodes were constructed
with three heights: 0.5, 1.0, and 1.5mm. Each DBS lead included
four rows of electrodes and the separation between rows was
equal to electrode height. Each lead diameter was 1.27mm
in accordance with the diameter of the clinical Medtronic
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3387 and 3389 DBS leads (Medtronic Inc., Minneapolis, MN).
To simplify reference to each DBS lead design, the following
naming convention was implemented: DBSA–e[number of radial
electrodes]–h[electrode height]. For example, DBSA–e4–h1.5
would refer to the DBSA lead with 4 radial electrodes per row,
each with a height of 1.5mm.

Tissue Conductance Models
Simulations were conducted using only the bottom row of
electrodes for each lead. A three-dimensional tissue conductance
model was created for each stimulation configuration using
COMSOL Multiphysics v4.4 and solved for using the finite
element method (FEM; Figure 2A). Each tissue model
incorporated a lead body (σ = 1e−12 S/m), electrodes (σ
= 1e6 S/m), a 0.25mm thick encapsulation layer (σ = 0.18
S/m; Grill and Mortimer, 1994; Lempka et al., 2009), and a
20 cm diameter sphere representing bulk neural tissue (σ = 0.3
S/m; (Ranck, 1963; Stances, 1975). Point current-sources were
placed at the three-dimensional center of each electrode. The
surface of the bulk neural tissue sphere was set to ground,
i.e., zero volts, via Dirichlet boundary conditions. A variable
resolution mesh containing quadratic tetrahedral elements
ranging from 0.2mm near the electrode to 10mm near the
model perimeter was generated via Delaunay triangulation. The
resulting mesh contained 280,000–310,000 elements depending
on the lead design. To confirm that further mesh refinement was

not advantageous, the average relative change in the calculated
potentials were determined at the midpoint of each axon model
compartment using a mesh with elements that were two and
three times smaller than the previously described model. The
average relative change in the calculated potentials was found to
be <1% for these more refined models.

To investigate impact of the changes to the electrode-tissue
interface (ETI) resulting from novel electrode geometries, a
three-element Randles equivalent circuit model of the ETI was
constructed for the lead with the smallest and largest electrode
surface areas. In these models, the Fourier FEM described by
Butson and McIntyre (2005) was implemented so that capacitive
effects of the ETI could be captured. Briefly, the Fourier FEMwas
carried out by creating a waveform with a 90µs cathodic pulse in
the time domain (dt = 1 µs), performing the 1024 point discrete
Fourier transform (DFT), solving the finite element model (tissue
εr = 1×106, Gabriel S. et al., 1996) at each of the 513 frequencies
represented within the DFT (0–512 kHz), scaling and phase
shifting the finite element model results by the DFT magnitude
and phase, and finally performing the 1024 point inverse DFT on
the result to reconstruct the stimulation waveform in the time
domain. The equivalent circuit model was represented at the
electrode surface within the frequency dependent finite element
model as a circuit terminal using the COMSOL Multiphysics
AC/DC module. In accordance with previous work (Howell
et al., 2014), the equivalent circuit model included an access

FIGURE 1 | DBSA lead design. DBSA leads were designed with two to nine electrodes per row. DBSA electrode width and radial separation were calculated for

each lead design using Equations (1, 2). The DBSA–e3–h1.5 lead design is shown. Electrode height was 1.5 (shown), 1.0, or 0.5mm.

FIGURE 2 | Modeling axonal activation. Tissue voltage during stimulation was modeled for each stimulation configuration using the finite element method (A). The

multi-compartment axon model population superimposed with extracellular potentials derived from the tissue voltage predictions (B). A spatial axonal activation

profile, or region of activation (RoA) plot resulting from stimulation at 2.5mA (C). RoA quantification using regional properties calculated from a closed binary image of

the RoA plot (D).
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resistance, Ra, in series with a parallel RC pair consisting of a
faradaic resistance, Rf, and double layer capacitance, Cdl. Ra was
calculated using the finite element model solution for 1 v applied
at the electrode surface from which the effective applied current
was calculated by integrating the normal current density across
the electrode surface and taking the reciprocal. Rf and Cdl were
calculated from the distributed faradaic resistance (150 �-cm2,
Wei and Grill, 2009) and the distributed double layer capacitance
(30µF/cm2,Wei andGrill, 2009) using the electrode surface area.
Inclusion of the ETI was confirmed to have no discernable impact
on the stimulation results, and thus the ETI equivalent circuit
model was excluded from subsequent simulations.

Stimulation Configurations
Current-regulated stimulation was modeled using one or
multiple independent sources. Variations on stimulation
configuration were constrained to monopolar settings and
included single-cathode stimulation, uniform multi-cathode
stimulation, and non-uniform multi-cathode stimulation.
Uniform multi-cathode stimulation involved uniformly splitting
the total cathodic current across all designated cathodes. Non-
uniform multi-cathode stimulation involved assigning different
proportions of total cathodic current to a single, primary
cathode, and evenly distributing the remaining cathodic current
across the remaining electrodes in a given row. Simulations
of 15 monopolar single-cathode and uniform multi-cathode
stimulation configurations using only the DBSA–e4–h1.5 lead
were used for machine learning feature set analysis.

Multi-Compartment Axon Models
Three-dimensional multi-compartment myelinated axon models
were distributed within a lead-centered 13-by-13mmgrid. Axons
were separated by 0.25mm and aligned parallel to the DBS lead.
While the axon model orientations were generated in an artificial
framework, the orientations were generally similar to fiber tracts
(e.g., corticospinal tract of internal capsule) (Chaturvedi et al.,
2013) that course approximately parallel to clinical DBS lead
targets (e.g., subthalamic nucleus DBS) and that are hypothesized
to elicit side effects when stimulated (Tommasi et al., 2008).
Fibers were modeled with a 2µm diameter (Kamiya et al.,
2014) and populated with compartments representing nodes of
Ranvier, myelin attachment segments, paranode main segments,
and internode segments connected through an axial resistance.
Axon compartment properties were consistent with the multi-
compartment cablemodel axon developed and described in detail
by McIntyre et al. (2004).

Rather than incorporating tissue conductance using the
computationally expensive Fourier FEM method, the quasistatic
solution at each axon compartment was scaled by a time-
varying experimentally-recorded 135Hz charge-balanced
current-regulated stimulation waveform (Lempka et al., 2010;
Equation 3).

8
(

x, y, z, t
)

= 8
(

x, y, z
)

∗w(t) (3)

Extracellular potential, represented by 8 for a given model
axon compartment was scaled by the time varying 135Hz

waveform, w(t). The charge-balanced waveform consisted
of a 90µs pulse followed by a 400µs interphase delay and
a 3ms pulse with opposite polarity. The waveform-scaled
extracellular potential was dynamically incorporated into the
model axon compartments (Figure 2B) using the Neuron
programming environment v7.3 (Hines and Carnevale, 1997).
Within the Neuron programming environment, the axonal
membranes were perturbed by driving membrane current using
the extracellular mechanism (e_extracellular), with parameters
consistent with previous work (Teplitzky et al., 2014).

Calculating Neural Activation Thresholds
and Regions of Activation
The total applied cathodic current threshold for inducing
axonal spiking was calculated for each model axon within
each tissue voltage model using a binary threshold-searching
algorithm. The algorithm relied upon trial-and-error within a
narrowing range of stimulation amplitudes that was considered
to have converged once the range of stimulation amplitudes
was reduced to 0.01mA. Axons were considered “activated” if
an action potential was recorded within 3ms of stimulation
following 8 out of 10 stimulation pulses at the distal node of
Ranvier. For each stimulation configuration, two-dimensional
spatial activation plots, referred to as region of activation (RoA)
plots, were generated by plotting the cross-section of the axon
population with activation-thresholds less than or equal to
a specified stimulation amplitude (Figure 2C). Where charge
storage capacity and charge injection limits were considered,
the maximum safe stimulation amplitude was calculated using
Equations (4, 5), respectively. The reversible charge storage
capacity, 150µC/cm2, represented the upper limit of reported
values (Merrill et al., 2005; Cogan, 2008) for platinum-iridium
electrodes like those generally used in DBS for cathodic-pulse
leading charge balanced waveforms. The charge injection limit
was characterized by a safety factor, k = 2.0, was derived from
the charge per phase verses charge density per phase relationship
(McCreery et al., 1990; Merrill et al., 2005) as a limit for safe
charge delivery to neural tissue.

ICSC =

CSC ×A

pw
(4)

ISF =

√

A×10k

pw
(5)

With stimulation amplitude in amperes, I; charge storage
capacity in µC/cm2, CSC; surface area of a single electrode in
cm2, A; and cathodic pulse-width, pw.

RoA Quantification
Binary image analysis techniques were used to extract
quantifiable metrics from each RoA at amplitudes ranging
from 1 to 5mA in 0.1mA increments resulting in 41 RoAs
per stimulation configuration. These techniques were used for
quantification rather than precise measurement of the spatial
activation profile to ensure that the process could be replicated
in the context of post-operative medical imaging for the purpose
of patient programing. Post-processing began with saving RoA

Frontiers in Computational Neuroscience | www.frontiersin.org 4 June 2016 | Volume 10 | Article 58

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Teplitzky et al. Model-Based Comparison of DBSA Designs

plots spanning the 13-by-13mm axon-space within 20-by-20 cm
lead-centered images. A binary transform of each image was
performed and morphologically closed using disk-shaped
elements in order to preserve the ellipsoidal nature of the region.
Regional properties including area, perimeter, center-of-mass
(CoM), major axis length, and minor axis length were extracted
from each of the closed images (Figure 2).

From these regional properties, several metrics were
calculated to compare lead designs. These included lateral
shift, angular shift, aspect ratio, target region coverage, and
target region overspill. Lateral shift was calculated as distance
from the lead-center to the RoA CoM in the direction of the
primary cathode (usually along the x-axis). Angular shift, in the
context of single-cathode stimulation through two neighboring
electrodes, was calculated as the angle, in degrees, between
vectors running from the lead-center to each RoA CoM. Aspect
ratio was calculated as the RoA minor axis length divided by
the RoA major axis length. Target region coverage and overspill
were calculated for a set of experiments where a target region
was placed between neighboring electrodes. These experiments
were run using only the DBSA–e4–h1.5, which has electrodes
separated by 90◦. The target region, therefore, was generated
from the same lead but was rotated 45◦ about the lead-center.
Overlap between the target region and the activated region was
calculated by first multiplying the binary image transforms of the
two regions and then calculating the percent of the target region
area covered by the overlapped region. Overspill was estimated
by multiplying the binary image transforms of the activated
region and the inverse of the target region, and then calculating
the resulting area in mm2. Overlap and overspill were calculated
for stimulation amplitudes ranging from 1 to 5mA at 0.1mA
increments using three monopolar configurations. All processing
and calculations of regional properties were performed using the
Matlab Image Processing Toolbox (v2014b).

Feature Sets
Feature sets (Table 1) were derived from simulations of 15
monopolar stimulation configurations using the DBSA–e4–h1.5
lead (Figure 3). Because RoA measures were conducted at
41 amplitudes (1 to 5mA in 0.1mA increments) using 15
stimulation configurations, feature sets for 41 × 15 = 615 RoAs
were generated. Post-processing of RoA plots was performed
using the same binary image analysis techniques as described
in Section RoA Quantification. From the post-processed binary
images, three feature sets were generated: a region properties
feature set (RPFS), a Legendre polynomial feature set (LPFS;
Giselsson et al., 2013), and a 7 Hu invariant moments feature
set (7 HuIM; Hu, 1962). The RPFS included the common
region properties; center or mass, area, perimeter, convex hull
area, solidity as well as features derived from an ellipse fit
to the RoA; eccentricity, orientation, major axis length, and
minor axis length. The LPFS was generated using the distance
transform of each RoA binary image. The distance transform
results were sorted in ascending order, normalized to the
largest value, and fit to a 9th order Legendre polynomial. The
features consisted of the coefficients of this 9th order Legendre
polynomial. The majority of features that were investigated

TABLE 1 | Features extracted from 15 monopolar stimulation

configurations using the DBSA–e4–h1.5 lead.

Number Feature

1 Center of mass x-coordinate

2 Center of mass y-coordinate

3 Eccentricity of ellipse fit

4 Orientation of ellipse fit

5 Major axis length of ellipse fit

6 Minor axis length of ellipse fit

7 Area

8 Perimeter

9 Convex hull area

10 Solidity

11–20 Legendre polynomial coefficients from distance

transform (Giselsson et al., 2013)

20–27 7 Hu invariant moments (Hu, 1962)

Twenty-seven features were extracted from each RoA. The region properties feature

set (RPFS) included features 1 through 10, the Legendre polynomial feature set (LPFS)

included features 1, 2, and 11 through 20, and the 7-Hu invariant moments feature set (7

HuIM) included features 1, 2, and 20 through 27.

FIGURE 3 | Machine learning feature set generation. Machine learning

features were extracted from simulation results spanning 15 monopolar

stimulation configurations at simulation amplitudes ranging from 1 to 5mA in

0.1mA increments.

originate from computer vision applications where desirable
traits include invariance to scale, rotation, and translation (Lowe,
1999).We hypothesized that the ideal feature set for prediction of
stimulation configuration would (1) be rotation and translation
variant since RoA direction underlies current steering, and (2)
scale invariant with regard to stimulation amplitude but not with
regard to RoA offset. To achieve this, distance of the RoA CoM
from lead-center in the x and y directions were included in each
feature set.

Classification and Feature Set Quality
Assessment
Each of the 615 samples in the proposed classification problem
included all features (Table 1) from a single RoA. The goal of
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the classification problem was to classify each sample, using a
subset of features i.e., one of the three feature sets, as originating
from the correct stimulation configuration, of which there were
15. The quality of each feature set was assessed using 10-
fold cross validation of five classification models: k-nearest
neighbor (KNN), naïve Bayes (NB), a multi-class support vector
machine (mSVM) with a radial-basis function kernel (Lauer and
Guermeur, 2011), a two-layer feed-forward pattern recognition
neural network (NN) with 20 hidden elements, and a random
forest (RF) decision tree ensemble with 100 trees (Breiman,
2001). All models except the mSVMwere implemented using the
Matlab Statistics Toolbox (v2014b). Training and testing data sets
were pseudo-randomly divided within each cross validation fold
such that each class was represented approximately equally and
no samples were used for both training and testing. Classification
accuracy was calculated for each fold as the number of correctly
classified samples divided by the number of classified samples.
The mean accuracy and standard error of the accuracy were then
calculated across all 10 folds.

Feature importance was assessed using sequential forward
selection and Breiman’s random forest algorithm. Sequential
forward selection was performed using the neural network and
naïve Bayes classifiers. In each case, starting with an empty
feature set, the classifier was run using each of the 27 features
and the feature with the highest accuracy was considered the
most important and added to the feature set. Classification was
then performed using each of the remaining 26 features in
combination with the first elected feature, and again the feature
with the highest accuracy was considered the most important
and added to the feature set. This process was repeated until the
feature set contained 10 of the 27 features. From the random
forest classifier, feature importance was assessed by calculating
the increase in prediction error that resulted from random
permutation of each feature across the out-of-bag samples.
Features with the greatest effect on error were considered the
most important.

RESULTS

Stimulation Amplitude Limits
Increasing the number of radial electrodes resulted in a reduced
electrode surface area. This in-turn lowered the theoretical
stimulation amplitude that could be safely delivered through each
electrode to neural tissue. More precisely, as the number of radial
electrodes was increased both charge storage capacity and charge
injection constraints limited the safe stimulation amplitude.
This relationship followed an exponentially decaying trend
(Figure 4). Charge injection constraints limited stimulation
amplitude for leads with five or fewer radial electrodes with
an electrode height of 1.5mm. Charge storage capacity limited
the stimulation amplitude for leads with more than five radial
electrodes and electrode height of 1.5mm. As electrode height
was decreased, the intersection of the two lines: charge storage
capacity constrained amplitude and charge injection constrained
amplitude was shifted left, toward a smaller number of radial
electrodes. Charge storage capacity was found to be the limiting
factor for all DBSAs with an electrode height of 0.5mm. In
accordance with the inclusion of surface area in Equations (4,5),
stimulation amplitude limited by charge storage capacity was
proportional to the electrode height, while stimulation amplitude
limited by charge injection was proportional to the square root
of electrode height. Most electrode designs (23/27) were limited
to stimulation amplitudes below 10mA per electrode, while
approximately half (13/27) were limited to amplitudes below
5mA using the 150µC/cm2 and k = 2.0 limits. All DBSA designs
with an electrode height of 0.5mm were limited to amplitudes
below 5mA per electrode.

Steering, Shifting, and Sculpting Activation
with Single-Cathode Monopolar DBS
Lateral shift, angular shift, and aspect ratio were used to evaluate
the ability of each lead to shift, steer, and sculpt a RoA using
monopolar stimulation within the range of 1–5mA. Lateral shift

FIGURE 4 | Stimulation amplitude limits. Maximum stimulation amplitude (for a biphasic waveform with a 90µs initial pulse) was calculated for each lead design

using a charge storage capacity of 150µC/cm2 and a safety factor limit of k = 2.0 (A). RoAs resulting from stimulation amplitude limits for several example DBSA lead

designs (B).
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for cylindrical shell electrodes did not significantly vary from zero
as they produced a radially symmetric RoA. For all DBSA lead
designs, at 1mA, lateral shift increased from 0mm to ∼1.1mm,
regardless of the number of radial electrodes (Figure 5) or
electrode height. Lateral shift increased moderately from 1.1mm
to 1.3mm with stimulation amplitude increasing beyond 1mA
for all DBSA lead designs. Aspect ratio increased with stimulation
amplitude at a similar rate for DBSA lead designs with the
same electrode height (Figure 5). Electrodes with shorter heights
were found to produce a slightly more circular RoA resulting
in an aspect ratio closer to 1. For instance, the mean aspect
ratio at 1 and 5mA increased from 0.48 and 0.63 for DBSAs

with 1.5mm electrodes to 0.51 and 0.65 for DBSAs with 0.5mm
electrodes.

Angular shift varied in accordance with angular separation
of electrodes (Figure 6). For example, the six radial electrode
lead incorporated electrodes separated by 60◦ and the RoA CoM
angular shift resulting from stimulation through neighboring
contacts was calculated to be 60◦. Angular shift did not vary
for leads with different electrode height nor did it vary with
stimulation amplitude.

None of the stimulation configurations tested resulted
in complete coverage of a rotated target region without
moderate to large overspill (Figure 7). The dual cathode

FIGURE 5 | Monopolar single-cathode lateral shift and aspect ratio. RoA lateral shift and aspect ratio for monopolar single-cathode stimulation using DBSA

lead designs with 1.5mm electrode height within the range of 1–5mA. Similar RoAs were produced from all DBSA designs (A). As stimulation amplitude was

increased, lateral shift and aspect ratio both increased at similar rates (B,C).

FIGURE 6 | Monopolar single-cathode steering. Angular shift for monopolar single-cathode stimulation using DBSA lead designs with 1.5mm electrode height

within the range of 1 to 5mA. DBSA leads with more electrodes were capable of finer RoA CoM angular shifting (A) in accordance with electrode angular separation

(B).
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configuration performed the best overall. The angular shift for
this configuration was closest to 45◦ and target coverage was
highest with the lowest spillover.

Shifting and Sculpting Activation with
Multi-Cathode Monopolar DBS
For each DBSA lead design, uniform multi-cathode stimulation
using a larger proportion of available radial electrodes enabled
shifting of the RoA CoM from 0, lead-center, to ∼1.3mm in the
direction of the primary cathode. The resolution with which RoA
CoM could be shifted from one extreme to the other increased
as the number of radial electrodes increased (Figure 8). Lateral
shift increased slightly for larger stimulation amplitudes and did

not change with electrode height. Increasing the proportion of
active electrodes first decreased then increased aspect ratio for
leads with more than four radial electrodes. The initial decrease
in aspect ratio was a result of added cathodes facing the same
direction as the center-most cathode. In general, increasing the
proportion of active electrodes increased the aspect ratio toward
one, indicating a more radially uniform RoA. These trends were
found to be consistent for DBSA lead designs with different
electrode heights.

Non-uniform multi-cathode stimulation enabled RoA CoM
shifting within the same range as uniform current shifting, but
with improvement in shifting resolution (Figure 8). Shifting
resolution approximately doubled non-uniform multi-cathode

FIGURE 7 | Steering toward an offset target region. Steering activation toward a target region between electrodes was investigated using DBSA–e4–h1.5 with

single-cathode and multi-cathode stimulation configurations (A). The multi-cathode configuration performed best with a 45◦ angular shift (B) and exhibited the largest

overlap and smallest overspill for any given stimulation amplitude (C).

FIGURE 8 | Incremental CoM shifting using monopolar multi-cathode stimulation. Monopolar stimulation currents were uniformly split across an increasing

number of radial electrodes for each DBSA (A). DBSAs with more radial electrodes enabled shifting within the same range but at improved resolution (B). Aspect ratio

decreased initially for DBSAs with more than 4-radial electrodes and increased from ∼0.5 to 1 as the proportion of active electrodes increased (C).
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stimulation using DBSA–e4–h1.5 in comparison to uniform
multi-cathode stimulation using DBSA–e8–h1.5. The aspect ratio
range was approximately the same for uniform and non-uniform
multi-cathode stimulation; however, the aspect ratio profile
shifted to the left indicating that the non-uniform multi-cathode
stimulation produced more circular RoAs (Figure 9).

Classification
Cross validation using 10 folds was performed using three feature
sets in combination with five machine learning algorithms.
In general, high mean classification accuracy was achieved
with low standard error across the 10 folds. The random
forest classification algorithm, which involves automated feature
selection, performed best, achieving perfect classification using
any of the three feature sets (Figure 10). Of the remaining
classifiers where no feature selection/reduction was performed:
the neural network classifier achieved perfect accuracy and
the naïve Bayes classifier achieved accuracy above 0.95 using
the RPFS. Classification using the RPFS produced the highest
accuracy for all except in the case of the k-nearest neighbors
classifier. The LPFS and 7 HuIM feature set achieved similar
accuracy when used in combination with the neural network,
naïve Bayes and k-Nearest neighbors classifiers.

Feature Importance
Sequential forward selection and results from the random
forest classification algorithm were used to evaluate feature
importance. Mean accuracy was calculated as an indicator of
feature importance at each stage of the forward selection for both
the neural network and naïve Bayes classifiers. From the random
forest algorithm, mean effect on prediction error resulting
from random permutation of each feature across the out-of-
bag samples was used as an indicator of feature importance. A

low standard error was calculated for all indicators of feature
importance. Using either the neural network or naïve Bayes
classifier, mean accuracy converged to one after the addition of
the same four features: CoM x-coordinate, CoM y-coordinate,
ellipse fit eccentricity and ellipse fit orientation. These same four
features were ranked as the most important by the random forest
algorithm (Figure 11). Although all features were included in the
analysis, forward selection using the neural network and naïve
Bayes classifiers resulted in the most important features being
from only the RPFS.

DISCUSSION

While DBS therapy is often successful in managing the symptoms
of a range of medication-refractory brain disorders, the spatial
precision with which the therapy can be delivered using a
conventional lead with cylindrical shell electrodes can be limiting
for cases of slight neurosurgical targeting error or for brain
regions with complex morphologies. Previous studies have
developed methodologies to steer and direct activation volumes
along a DBS lead studies (Wei and Grill, 2005; Butson and
McIntyre, 2008; Chaturvedi et al., 2012; Barbe et al., 2014a,b), but
less is known about programming stimulation settings around a
DBS lead (Martens et al., 2011). The results of this study show
for a DBS lead embedded within or near a fiber tract that: (1)
four ellipsoidal electrodes around a DBS lead provided good
flexibility to steer, sculpt, and shift a region of neural activation
without exceeding the charge storage capacity of platinum-
iridium electrodes or charge injection limits for neural tissue, and
(2) a small feature set, including only three geometric features
representing a target region enabled robust machine learning
classification of electrode stimulation configuration.

FIGURE 9 | Multi-cathode, non-uniform current shifting of the CoM. Monopolar stimulation currents uniformly split across an increasing number of radial

electrodes using DBSA–e8–h1.5 compared to monopolar stimulation non-uniformly split across electrodes using DBSA–e4–h1.5 (A). Non-uniform configurations

using DBSA–e4–h1.5 resulted in improved shifting resolution in comparison to uniform configurations using DBSA–e8–h1.5 (B). Aspect ratio profile was similar for the

two strategies but was shifted for non-uniform current shifting indicating more circular RoAs were generated from non-uniform shifting (C).
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FIGURE 10 | Classification accuracy. Mean classification accuracy and accuracy standard error (represented by error bars) were calculated for each

classifier/feature set combination across 10-folds. Perfect classification of monopolar stimulation settings was achieved with the random forest classifier using any of

the three feature sets. The neural network, naïve Bayes and random forest classifiers achieved perfect or near perfect accuracy using the region properties feature set.

FIGURE 11 | Feature importance. Sequential forward selection accuracy converged to one after the addition of features 1, 2, and 4 using both the neural network

and naïve Bayes classifiers. From the random forest algorithm, the effect on classification error was increased most by the random permutation of features 1, 2, 3, and

4. Features 1: CoM x-coordinate, 2: CoM y-coordinate, and 4: ellipse fit orientation were found to be the most important features and using only these three features

in combination with the neural network and naïve Bayes classifiers enabled perfect classification.

DBS Array Design Considerations
Microfabrication processes enable new opportunities to develop
stimulating probe technology with many more electrode sites
than what is currently in clinical use for DBS applications
(Martens et al., 2011; Willsie and Dorval, 2015; Connolly et al.,
2016). Increasing the number of electrodes and in turn decreasing
the size of electrodes has several important effects on the region
of neural tissue including limiting the spatial extent of the RoA
due to charge storage capacity and charge injection limits (Merrill
et al., 2005; Wei and Grill, 2005). Previous preclinical studies
in animal models of neurological disorders have also noted that
DBS therapy is partially based on modulating the neuronal firing
patterns of a fairly large volume of tissue (Johnson and McIntyre,
2008; Johnson et al., 2012) within a target volume (Butson
et al., 2007). Thus, while increasing the number of electrodes

may provide more spatially focused stimulation, generating
a therapeutic effect through DBS arrays is likely to require
grouping electrodes together for high-density DBS arrays. This
grouping approach would be complicated by radial diffusion
properties that result in higher charge densities near the edges of
each electrode in a group (Wei and Grill, 2005; Howell and Grill,
2014).

In this study, we extend these results showing that charge
storage capacity and charge injection are limiting factors, though
to different extents as the number of radially electrodes is
increased. For DBSA designs with small electrode surface areas,
advanced electrode coatings (Cogan et al., 2004; Cogan, 2008; Luo
et al., 2011) may address the issue of charge storage capacity, but
the charge injection limits will remain an issue as was shown for
DBSA lead designs with five or more radial electrodes. Elliptical
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electrodes with height ranging from 0.5 to 1.5mm and width
ranging from 0.2 to 0.9mmwere used in this study. For electrodes
with the largest height and the smallest width, it is possible
that these highly eccentric electrodes would have higher charge
density values at the ends of the electrode major axis (Grill
and Wei, 2009) similar to how large current density values are
found at the corners of rectangular electrodes (Wei and Grill,
2005).

Shaping the Region of Activation
One of the primary motivations for advances in DBS lead and
stimulator designs is to enable compensation for sub-optimally
placed leads. Ideally, leads with cylindrical shell electrodes are
implanted with one of the electrodes at the geometric center
of the neural target enabling good stimulation coverage with
minimal overspill. With targets that are several centimeters deep
and only millimeters across, precise lead placement can be
challenging. With a cylindrical shell electrode, a small offset in
the final lead location may significantly limit stimulation efficacy
and result in stimulation induced side effects resulting from
activation of nearby pathways. DBSAs have been proposed as able
to compensate for such placement issues (Martens et al., 2011;
Contarino et al., 2014; Pollo et al., 2014). As we have shown,
monopolar stimulation through a single radial electrode resulted
in a 1–1.3mm RoA CoM lateral shift and increasing stimulation
amplitude minimally affected the CoM location. Additional
radial electrodes or proportional current steering provided
options to incrementally shift the RoA CoM with sub-millimeter
resolution, but in cases where more than a 1mm shift in the
RoA CoM is needed for compensation of lead misplacement,
this need would not be adequately addressed by any of the
DBSA designs evaluated in this study. The results showed that
uniform multi-cathode stimulation enabled incremental CoM
shifting, but was limited by the number of available radial
electrodes. Non-uniform multi-cathode stimulation resulted in
better shifting resolution with four radial electrodes than could
be achieved using uniform multi-cathode stimulation with eight
radial electrodes. From this we conclude that fewer electrodes
does not limit shifting if non-uniform stimulation strategies
are used. However, practical implementation of non-uniform
stimulation requires fine and independent control of multiple
stimulation channels. In regard to lead design, leads with
fewer radial electrodes may be preferable because of larger
electrode surface areas and possibly less complex manufacturing
processes. In regard to implantable pulse generator design, fewer
independent current sources may be preferable to allow for
device miniaturization.

Stimulators with independent current-regulated channels are
well-established in the fields of spinal cord stimulation for
pain mediation (Hegarty, 2011), auditory nerve stimulation for
hearing restoration (Wilson and Dorman, 2008), and retinal
stimulation for vision restoration (Matteucci et al., 2013).
The advent of stimulators with independent channels in these
fields have prompted significant research into the utility of
various stimulation strategies for directing and focusing current,
particularly in the case of auditory nerve stimulation, where
highly conductive fluid separates the stimulating electrodes from

the stimulation target (Dallas, 1992). Strategies for steering and
focusing stimulation include the use of multiple sources to steer
a region of neural activation and the use of bipolar stimulation
to narrowly focus current (Berenstein et al., 2008; Bonham and
Litvak, 2008). These strategies have been implemented with
varying degrees of success for cochlear implants and spinal
cord stimulation. These strategies have also been investigated
in DBS systems via modeling studies (Butson and McIntyre,
2008; Chaturvedi et al., 2012) and clinical studies (Barbe et al.,
2014a,b) for the purpose of steering neural activation along the
length of a conventional DBS lead. Our results indicate that for
steering, shifting, and sculpting of neural activation around the
lead, a DBSA with four electrodes per row combined with a
pulse generator that has independent current sources for each
electrode would be highly effective at steering and shifting a
region of neural activation around a DBSA lead. Our results
also indicate that more than four electrodes would be minimally
advantageous.

Radial shifting and steering have potential to benefit clinical
outcomes for a number of DBS targets (Montgomery, 2010). For
instance, the subthalamic nucleus target for Parkinson’s disease is
adjacent to the corticospinal tract of internal capsule (Chaturvedi
et al., 2012) and non-motor territories of the subthalamic
nucleus (Frankemolle et al., 2010) that when stimulated can
lead to adverse side effects. The ventral intermediate nucleus
of thalamus, which is the primary target for treating Essential
Tremor, is adjacent to the internal capsule, the somatosensory
nucleus of thalamus, and non-motor pathways involved in
language and cognition (Herrero et al., 2002). Similarly, the
pedunculopontine tegmental area is replete with adjacent fibers
of passage including the superior cerebellar peduncle, medial and
lateral lemnisci, and the central tegmental tract among others
that may have confounding effects on treatment of medication-
refractory gait disorders (Zitella et al., 2013). Radial current
shifting and steering may also have important applications to
DBS targets that are embedded within fiber tracts including those
for depression (Riva-Posse et al., 2014), obsessive compulsive
disorder (Greenberg et al., 2006), and memory disorders
(Hamani et al., 2008).

Machine Learning to Facilitate
Programming
Along with greater flexibility in directing neural activation, DBS
arrays present exponentially more options during programming.
This necessitates the use of (1) guided programming through
computational algorithms (Chaturvedi et al., 2013; Xiao et al.,
2016), and (2) empirical algorithms that rely on the spatial
distribution of electrophysiological biomarkers (Little and
Brown, 2012). Here, we investigated feature sets to be used
in building machine learning classifiers for predicting DBSA
stimulation settings. These feature sets were constructed from
the two-dimensional computational modeling results of axonal
activation using the DBSA–e4–h1.5 lead and relied upon
computer vision feature extraction techniques. In computer
vision, feature extraction is commonly performed to identify
objects that may be “viewed” by a machine using images or video
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that was captured and processed internally. Robust computer
vision identification requires that objects be identifiable when
viewed at different distances, angles, and locations within the
field of view requiring the use of scale, rotation, and translation
invariant feature sets (Lowe, 1999). The feature sets we have
designed for use in machine learning classifiers for DBS rely
on these same principles, but include a center of mass estimate
that is relative to the lead-center so that changes in the RoA
direction and shift may be detected. In addition to investigating
the value of various features for such classification algorithms,
we have demonstrated robust machine learning classification
of electrode stimulation configuration using a single row of
electrodes. Our investigation into feature sets revealed that
excellent classification could be achieved using a small number
of two dimensional geometric features that may be readily
translated in three-dimensional geometric measures. Running
axonmodel simulations, feature extraction, and classifier training
required significant computation time, but the resulting five
classification algorithms were able to be deployed in less than
1min using a conventional desktop computer. The speed with
which such algorithms can be deployed demonstrates the power
and practicality of such algorithms for use in clinical DBS
programming.

Limitations
The quasistatic finite element models used for predicting tissue
voltage in this study were idealized as isotropic and were
homogeneous within bulk neural tissue. Increasingly complex
models that more precisely model tissue conductivity using
diffusion weighted imaging have been introduced in the past
decade and have been shown to impact biophysical simulation
results (Butson et al., 2007; Chaturvedi et al., 2010; Zitella et al.,
2015), particularly for modeling of electrical stimulation near
white matter fiber tracts (Butson et al., 2007; Schmidt and van
Rienen, 2012). Further, the conductance values utilized in the
tissue models presented here rely on experimentally determined
values for conductance that are subject to uncertainty as evident
by the range of values reported within the scientific literature
(Gabriel C. et al., 1996; Faes et al., 1999). Variations of tissue
conductance within the range of reported values have been shown
to lead to significant uncertainty in the activation predictions of
biophysical models (Schmidt et al., 2013). Additionally, stimulus
waveforms propagating through encapsulation and brain tissue
are likely to be influenced reactive tissue impedances (Johnson
et al., 2005; Otto et al., 2006; Williams et al., 2007; Yousif and
Liu, 2009) and the quasistatic model does not incorporate this
feature. Using the modeling framework presented here, future
work may assess the impact of variations in conductance, brain
anisotropy, and reactive tissue response on the DBSA design and
feature selection for model based programing algorithms.

The multi-compartment axon models used in this study
were idealized straight cables coursing parallel to the DBS lead.
Modeling work with straight axons has potential utility for
DBS targets that are within or near large fiber tracts that have
minimal curvature (Greenberg et al., 2006; Hamani et al., 2008;
Blomstedt et al., 2010; Riva-Posse et al., 2014). However, it is
important to consider that this idealized model geometry lacks

the anatomical trajectories known to occur in many targets of
DBS. In these cases, factors such as stimulating regions with
networks of cellular and axonal processes (Zitella et al., 2013),
inducing complex cellular entrainment patterns (Hashimoto
et al., 2003; Agnesi et al., 2013), and increasing the likelihood
of axonal conduction failure due to axonal branching (Debanne,
2004), lack of myelination (Chomiak andHu, 2007), and synaptic
fatigue (Rosenbaum et al., 2014) should be considered.

Elimination of the ETI from the finite element models
relied on a subset of simulations that incorporated an ETI
equivalent circuit model that assumed the electrode material
was platinum-iridium. To avoid exceeding the charge storage
capacity of the electrodes with a clinically acceptable factor of
safety, realistic lead designs with small electrodes would likely
require the use of coatings such as iridium oxide (Cogan, 2008),
PEDOT (Ludwig et al., 2011), or TiN (Weiland et al., 2002) for
which lumped ETI equivalent circuit model values would likely
differ.

CONCLUSIONS

DBS arrays with radially distributed electrodes have potential
to improve patient outcomes by enhancing the flexibility of
directing stimulation around an implanted DBS lead. Clinical
DBS leads with cylindrical shell electrodes do not exceed
electrode charge storage capacity or charge injection limits due to
the large surface area and existing voltage or current compliances
of current implantable pulse generators. However, segmenting
the cylindrical shell electrode design into two or more electrodes
around the lead circumference would bring these stimulation
limits into consideration. For DBSAs, monopolar single-cathode
stimulation was useful for shifting the RoA CoM from lead-
center to 1.3mm in the direction of the stimulating electrode.
Shifting resolution on the scale of 0.1mm was achievable with
four radial electrodes using non-uniform distribution of current,
suggesting a higher density DBSAs would not be needed to
achieve clinically relevant RoA shifting if independent current
sources are utilized. A simple feature set consisting of the RoA
center of mass and orientation enabled robust machine learning
classification with accuracy equal to 1 for a range of monopolar
stimulation settings.
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