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Exploring time-varying connectivity networks in neurodegenerative disorders is a recent

field of research in functional MRI. Dementia with Lewy bodies (DLB) represents 20%

of the neurodegenerative forms of dementia. Fluctuations of cognition and vigilance

are the key symptoms of DLB. To date, no dynamic functional connectivity (DFC)

investigations of this disorder have been performed. In this paper, we refer to the

concept of connectivity state as a piecewise stationary configuration of functional

connectivity between brain networks. From this concept, we propose a new method for

group-level as well as for subject-level studies to compare and characterize connectivity

state changes between a set of resting-state networks (RSNs). Dynamic Bayesian

networks, statistical and graph theory-based models, enable one to learn dependencies

between interacting state-based processes. Product hidden Markov models (PHMM),

an instance of dynamic Bayesian networks, are introduced here to capture both

statistical and temporal aspects of DFC of a set of RSNs. This analysis was based

on sliding-window cross-correlations between seven RSNs extracted from a group

independent component analysis performed on 20 healthy elderly subjects and 16

patients with DLB. Statistical models of DFC differed in patients compared to healthy

subjects for the occipito-parieto-frontal network, the medial occipital network and the

right fronto-parietal network. In addition, pairwise comparisons of DFC of RSNs revealed

a decrease of dependency between these two visual networks (occipito-parieto-frontal

and medial occipital networks) and the right fronto-parietal control network. The analysis

of DFC state changes thus pointed out networks related to the cognitive functions that

are known to be impaired in DLB: visual processing as well as attentional and executive

functions. Besides this context, product HMM applied to RSNs cross-correlations offers

a promising new approach to investigate structural and temporal aspects of brain DFC.

Keywords: dynamic functional connectivity, dynamic Bayesian networks, resting-state fMRI, product HMM,

dementia with Lewy bodies
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1. INTRODUCTION

Brain functional connectivity studies in resting-state functional
MRI provide functional networks that correspond to
spontaneously co-activated cerebral regions, also named
resting-state networks (RSNs) when shared by a population.
So far, interactions between brain areas have been described
under the assumption of temporal stationarity of functional
connectivity, producing a static description of those interactions.
Recently, dynamic functional connectivity (DFC) investigations
demonstrated that cerebral regions do not interact in a static
way, but rather in a dynamic process that could change over time
(Hutchison et al., 2013; Calhoun et al., 2014). These variations
have been particularly highlighted by Chang and Glover (2010)
with a time-frequency analysis that allows to investigate dynamic
proofs in functional connectivity signal at different time scales.
To go further in this new growing field of research, the studies
are nowadays directed toward the concept of neural connectivity
state, along with the possibility of reproducible patterns of DFC.
Several methods have been developed to assess interactions
between cerebral regions or networks mainly based on a sliding
windows approach used with correlation (Leonardi et al., 2013;
Allen et al., 2014) and spatial (Kiviniemi et al., 2011) or temporal
(Smith et al., 2012) independent component analysis. But there
is no consensus on the definition of “connectivity state,” and
tools to measure and quantify this dynamics are still to be
developed.

When considering the dialectic used in DFC analysis
(“dynamic,” “brain state,” “graph,” “network,” etc.), it seems
natural to think about methodological tools such as dynamic
Bayesian networks (DBN), or instances of DBN such as hidden
Markov models (HMM), or product HMM (PHMM), to capture
temporal dependencies between RSN. Markov models (not
“hidden” Markov models) have already been used in DFC
analysis, but not as a primary tool, to point out different
connectivity states from sliding-windows correlations on time-
series of defined brain regions (Allen et al., 2014; Ma et al., 2014).
To date, very few studies have used dynamic Bayesian networks,
HMM, or product HMM to investigate DFC in resting-state
fMRI (Eavani et al., 2013; Ou et al., 2013). For an exploratory
purpose, Eavani et al. (2013) proposed a method to highlight, at
subject level, the variability of functional connectivity. Applied on
clustering covariance matrices from defined regions of interest,
the HMM approach they proposed was able to decode DFC
into temporal sequences of hidden states, each state associated
with a distinct connectivity pattern. The authors introduced their
algorithm with two to ten connectivity states allowing them to
distinguish different brain patterns. Ou et al. (2013) used HMM
on a large scale functional connectivity matrix to distinguish
children with an attention deficit hyperactivity disorder from
control children. With multiple initialization parameters, their
method led to 15 to 25 hidden connectivity states that well
described the two studied groups. In order to be computational,
the cited methods introduced data reduction techniques to cope
with the high dimension of fMRI data. Then, the number of states
is usually limited either by the number of cerebral regions to
include in the connectivity study, or by a clustering of functional

connectivity regions performed prior to the Markov model
analysis (Eavani et al., 2013; Allen et al., 2014; Ma et al., 2014).

The number of cerebral regions or RSNs to observe and
thus the number of possible interactions are very numerous
in DFC studies. This remark should be especially taken into
consideration as fMRI studies provide a limited number of
observations, making the robustness more difficult to ensure.
To solve this problem, the methods mentioned above rely on a
data reduction step. Connectivity states are defined by clustering
according to what was observed during a first step of DFC
analysis. This strategy leads to a small number of states and
allows one to focus exclusively on the observed data. The states,
defined in a group of subjects, represent spatial patterns of
connectivity between RSNs that appear in a reproducible manner
in time and/or across subjects. The dynamics between these
states is thereafter modeled by a Markov chain. This procedure
is assumed to sufficiently take into account, in the reduction
and in the Markov modeling, spatial and temporal interactions
between RSNs. However, this approach, although closer to the
data, does not allow one to observe the states that are more
ephemeral or less representative of the DFC of a group of subject.
An alternative approach consists in defining the connectivity
states, directly from the states in each RSN, without knowledge of
which interactions will appear in the observed sequence. In this
way, the complexity of these RSN interactions is transferred into
a multi-dimensional modeling as proposed by product HMM.
These states represent all the possibilities of interactions between
the RSNs and are defined as the Cartesian product of the states
sub-spaces in each process. Thereafter, the DFC is modeled by
the product HMM. This large state space allowed by this multi-
dimensional approach enables a better consideration of dynamic
aspects without requiring a reduction of upstream data.

Within the product HMM framework, this paper compares
brain DFC between patients with dementia with Lewy bodies
(DLB) and healthy elderly controls. DLB is the second most
prevalent form of neurodegenerative dementia after Alzheimer’s
disease, affecting from 16 to 20% of patients with dementia
(Aarsland et al., 2008). The main clinical criteria of DLB
are cognitive impairment together with fluctuating cognition,
parkinsonism and visual hallucination. To better understand

brain abnormalities in DLB, numerous MRI studies have
been performed but very few assessed resting-state functional
connectivity, and only in a perspective of spatial analysis
(Lowther et al., 2014; Peraza et al., 2014). Indeed, none of them
focused on network time-courses or on interactions between
networks. Yet, these are particularly relevant in DLB as cognitive
fluctuations and hallucinations suggest that functional brain
abnormalities in DLB may be transient. For computational
concerns, and considering the number of volumes acquired per
subject, we focused on seven specific RSNs exhibited during the
resting-state fMRI session. They were chosen according to their

relevance with respect to the disease, which is characterized by
dysexecutive/attentional disorders (Ferman et al., 2006, 2013;

Johns et al., 2009; Yoon et al., 2015), and visual (Ferman et al.,
2006, 2013) and motor (McKeith et al., 2005) impairments:

- DMN (default mode network): self-oriented cognition,
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- LFPN (left fronto-Parietal network): executive control,
- RFPN (right fronto-Parietal network): executive orientation of

attention,
- OPFN (occipito-parieto-frontal network): visuo-oculomotor

pathway, visuo-attentional and visuo-constructive processing,
- OPN (occipital posterior network): visual processing,
- MON (medial occipital network): visual processing,
- BG (basal ganglia): motor processing.

In assessing brain dynamic functional connectivity in DLB based
on product HMM, our purpose is double: (1) to differentiate
DLB patients from healthy elderly controls from their DFC
analyses, and (2) to provide new analysis tools to explore DFC
and characterize interactions between RSNs.

2. MATERIALS AND METHODS

2.1. Data
2.1.1. Participants
Forty-four participants were recruited for this study from the
Memory Resources and Research Center of the University
Hospital of Strasbourg, France. Six participants were excluded
due to excessive motion during the fMRI acquisition i.e.,
translation and rotation respectively higher than 2 mm or 2
degrees, according to the motion parameter resulting from
SPM) and two participants were excluded due to neurological
abnormalities. Therefore, groups consisted in 16 patients with
DLB at the stage of mild dementia [8 females; mean age,
74.7 (range: 54–89) years] and 20 healthy elderly controls [11
females; mean age, 64.4 (range: 46–76) years]. All patients
had formal assessment of their diagnosis by three independent
expert clinicians. Controls underwent similar clinical, cognitive,
psychiatric and neurological assessments to exclude any that
may have had occult cognitive impairments. All patients satisfied
McKeith’s criteria for probable DLB i.e., at least two core
symptoms out of three (McKeith et al., 2005). No patients shared
both DLB and Alzheimer’s disease clinical features. The MMSE
(Mini Mental State Examination) scores (Folstein et al., 1975),
as a cognitive functions scale, were 20.8 (std: 3.2; range 15–
24) and 29.0 (std: 1.0; range 27–30) respectively, for patients
and controls. Exclusion criteria included contraindications for
MRI, history of alcohol/substance misuse, evidence suggesting
alternative neurological or psychiatric explanations for their
symptoms, focal brain lesions on brain imaging, and the presence
of other severe or unstable medical illness. This study was
approved by the local Ethics Committee (Comité de Protections
des Personnes Est IV, Strasbourg, France). Controls and patients
gave written informed consent. Patients were older than controls
(two-sample t-test, p< 0.01), but did not differ in terms of gender
(chi-squared tests at p < 0.05) (see Table S1 for details on the
database).

2.1.2. Data Acquisition
A concomitant resting-state blood-oxygen-level-dependent
(BOLD) and pulsed arterial-spin labeling (ASL) sequence was
performed on a Siemens Verio 3T scanner equipped with a 32-
channel head coil (Siemens, Erlangen, Germany). One-hundred

twenty-one whole brain T2∗-weighted (gradient echo) echo
planar images were acquired using the QUIPPS II sequence
provided by the manufacturer. Parameters were: TR = 3 s; flip
angle = 90; TE = 21ms; TI1 = 600 ms, TI2 = 1325.1 ms; FOV
= 152 × 256 × 112 mm; imaging matrix: 38 × 64 × 28; 4 mm
isotropic voxels, acceleration factor (generalized autocalibrating
partially parallel acquisitions). The first volume served for ASL
assessment and was therefore not considered for functional
connectivity. A 3D MPRAGE T1-weighted image was also
acquired at the same session. Parameters were: imaging matrix
192× 192× 176; 1 mm isotropic voxels.

2.2. Theory: Product HMM
A product HMM λ is a standard HMM built upon a set {λk} of
HMM, by taking into account their temporal interdependencies
(Nefian et al., 2002). First, as a reminder, it should be noted that
an HMM λk is a double stochastic process (Xk,Yk) where Xk =

(Xk
1, · · · ,Xk

T) is a hidden Markov chain observed through the

observation sequence Yk = (Yk
1 , · · · ,Yk

T) of length T. Xk
t = ik

means that λk is in state ik at time t. Sk = {ik} is the state space of
Xk. The product HMM λ built upon {λk}, 1 ≤ k ≤ K, is a double
stochastic process (X,Y) in which state space S is by definition
the Cartesian product of the Sk, hence the term product HMM:

S , S1 × S2 × · · · × SK (1)

X = (X1, · · · ,XT) is a hidden Markov chain where Xt =

(X1
t , · · · ,XK

t )
T denotes the state vector at t. Xt = i means that

λ is in state i = (i1, · · · , ik, · · · , iK), i ∈ S. Y = (Y1, · · · ,YT)
is the observation sequence of λ where Yt = (Y1

t , · · · ,YK
t )

T is

obtained through the concatenation of the observations Yk
t . The

parameters of a product HMM λ are:

πi = P[X1 = i], (2)

aij = P[Xt = j|Xt−1 = i], (3)

bj(Yt) = P[Yt|Xt = j] (4)

5 = {πi, i ∈ S}, is the set of initial probabilities where πi denotes
the probability to be in state i at time t = 1. The transition
matrix A = {aij, i, j ∈ S}, reflects the temporal dependencies
between the K hidden Markov chains. It probabilistically models
their joint state evolution in time. B = {bj(·), j ∈ S}, is the set
of observation probabilities associated with states j. In practice,
the conditional independence of Yk

t given Xk
t is assumed, in

Equation (4), so as:

P[Yt|Xt = j] =
∏

k

P[Yk
t |X

k
t = j k] =

∏

k

bj k (Y
k
t ) (5)

The dynamic Bayesian network representation of a product
HMM is shown Figure 1.

As a standard HMM, a product HMM preserves the
algorithmic aspects of an HMM related to the evaluation,
learning and decoding procedures (Rabiner, 1989; Nefian et al.,
2002). The likelihood P(Y|λ) can be calculated to assess how well
the model fits the observed data and vice versa (evaluation). The
product HMM parameter set θ = {πi, aij, bjk (�); i, j ∈ S, jk ∈
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FIGURE 1 | Representation of a product HMM as a dynamic Bayesian

network. The transparent circles represent the hidden variables Xkt . The

shaded circles represent the observations Ykt . The rectangular boxes and their

conditional dependencies represented by arrows depict the DBN

representation of a standard HMM.

Sk, 1 ≤ k ≤ K} can be learned by iteratively training the model
λ(θ) to produce Y (learning). The optimal, K-dimensional state
sequence X̂, and the resulting K state sequences X̂k, underlying
Y can be inferred or decoded to lead to the “symbolic” state-
based transcription of Y (decoding). Finally, product HMM can
be compared in pairs using the distance measure between two
models λ1 and λ2, defined in Juang and Rabiner (1985) and
Rabiner (1989) as:

D(λ1, λ2) =
1

T

[

log P(Y(2)|λ1)− log P(Y(2)|λ2)
]

(6)

where Y(2) is a sequence of observations generated by model λ2.
Equation (6) is a measure of how well λ1 matches observations
generated by λ2, relative to how well λ2 matches observations
generated by itself. Several interpretations of Equation (6) exist in
terms of cross entropy, divergence or discrimination information
(Juang and Rabiner, 1985). The symmetrized version of this
measure is

D1−2 =
D(λ1, λ2)+ D(λ2, λ1)

2
(7)

Further details of product HMM can be found in Nefian et al.
(2002).

2.3. Product HMM for Dynamic Functional
Analysis of RSNs
2.3.1. Data Preprocessing and Organization
As the TE is high enough to make the BOLD sequence
sensitive to ASL signals, data were low-pass filtered at 0.1125
Hz according to the method of Chuang et al. (2008) to remove
ASL frequencies. After this filtering, each subject underwent the
following preprocessing steps using the SPM8 toolbox (Statistical
Parametric Mapping, 2009): slice-timing correction; rigid body
registration with correction of effects of B0 field inhomogeneities;
coregistration to anatomical space; spatial normalization onto
the MNI space with the DARTEL approach i.e., from the
transformation parameters provided by the T1-weighted image
normalization).

A group-level spatial independent component analysis (ICA)
was carried out using the GIFT toolbox (GIFT, 2004) to
extract the common RSNs of all the subjects (controls and
patients included). We used 80 components for the subject-
specific data reduction with principal components analysis
(PCA) according to the automatic estimator available in GIFT,
and 30 components for the group data reduction. The ICA with
Infomax algorithm (Bell and Sejnowski, 1995) was repeated 10
times using ICASSO (Himberg et al., 2004) to provide stable
components.

According to previous RSN templates from group
ICA (Damoiseaux et al., 2006), two experts selected among
the 30 components the ten that match a RSN. For computational
concerns, and considering the number of volumes acquired
by subject, we focused on seven specific RSNs (see Figure 2)
described in Section 1: the default mode network, the left
fronto-parietal network, the right fronto-parietal network,
the occipito-parieto-frontal network, the occipital posterior
network, the medial occipital network and the basal
ganglia. These networks were relevant due to their possible
implications in the DLB disorders, such as attention and
executive functions (the fronto-parietal networks), visual
processing (the occipital networks), parkinsonism (the basal
ganglia network), or for being a major RSN (the default
mode network). The three remaining RSNs consisted in a
frontal network and two central networks (see Figure S1
for the spatial maps of the frontal network and a central
network).

For each of these RSNs, a subject-specific spatial map and its
associated time-course were back-reconstructed (Calhoun et al.,
2001). It led to 7× 16 = 112 time-courses for the patients group
and 7× 20 = 140 time-courses for the control group.

Then, to reduce the parameters set θ to learn permodel λ, RSN
data of each subject were organized according to a “one RSN vs.
the others” analysis strategy. For each RSN n, 1 ≤ n ≤ N = 7,
a correlation coefficient plot CCn = {ccn,m(t); 1 ≤ m ≤ N = 7,
m 6= n, 1 ≤ t ≤ T} was formed. It is composed of K = N−1 = 6
time series ccn,m(t) of length T representing the evolution of the
correlation coefficient for each pair of time-courses associated
with RSNn and RSNm 6=n. ccn,m(t) was calculated using a sliding
tapered window made by convolving a Gaussian with a rectangle
of 15∗TR (45 s) and sliding in steps of 1 TR, leading to T = 103
windows. An example of CCn is shown at the top of Figure 3A,
for N = 4 (K = 3) for clarity.

2.3.2. DFC Modeling and Analysis by Product HMM
The method was implemented with Matlab R2012b (The
Mathworks Inc., Natick, MA, USA). The DFC modeling
procedure is illustrated in Figure 3A. A model λn is assigned
to each CCn, leading to 7 product HMM λn per subject. The
correlation coefficient plot CCn is considered as the observable
process of λn, that is, Y ≡ CCn. Y = {Yk

t } is thus a K × T matrix

of observations with Yk
t = ccn,m(t). As described in Section 2.2,

the product HMM λn is built upon 6 HMM λkn with 1 ≤ k ≤

K = 6. λkn models the kth correlation coefficient time series, or
row, of Y. The state space Sk of λkn is composed of two states,
the anticorrelation state “−1” and the correlation state “+1,” so
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FIGURE 2 | Spatial maps of the 7 studied RSNs from group-ICA expressed in z-score, plotted upon mean T1 from all subjects (patients and controls

combined). (DMN, Default Mode Network; LFPN, Left Fronto-Parietal Network; RFPN, Right Fronto-Parietal Network; OPFN, Occipito-Parieto-Frontal Network; OPN,

Occipital Posterior Network; MON, Medial Occipital Network; BG, Basal ganglia.)

A B C

FIGURE 3 | DFC modeling and analysis steps of a subject, for RSN n vs. the others with N = 4, K = 3 (see text). (A) Product HMM modeling of the

corresponding correlation plot CCn. (B) Parameter initialization, learning, decoding. (C) Two examples of output results: decoded state sequence X̂ (top), transition

matrix Â estimated by learning (bottom).

that the state space of λn is S = {“−1,”“+1”}K , with Card(S) =

26 = 64. The transition matrix A={aij, i} and j in S, models the
temporal dependencies between the correlation coefficient times
series of Y. The matrix A of dimension 64 × 64, captures the
overall dynamics of the CCn. The conditional probability density
functions (pdf) bjk (�) model the distribution of Yk

t = ccn,m(t)

given the state Xk
t = jk, jk ∈ {“−1”;“+1”}. These pdf are assumed

to be unimodal Gaussians with means µjk and variances σjk , so as

Equation (5) can be written as:

P[Yt|Xt = j] =
∏

k

bjk (Y
k
t ) =

K
∏

k=1

[

N (Y
(k)
t , µjk , σjk )

]

(8)

As described in Figure 3B, before learning, the parameters of
the model λn are initialized (θ = θ0). The initial probabilities
of Equation (2) are set uniform, with πik = 1

64 . Regarding to
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Equation (3), {aij} have been set to 1
64+1 except for the diagonal

terms {aii} set to
2

64+1 . The means µjk and variances σjk were

initialized directly from the data. For each channel k, we used
the positive values of the correlation coefficients ccn,m(t) to
calculate µ′′+1′′ and σ ′′+1′′ and the negative values for µ′′−1′′ and
σ ′′−1′′ . Then bj(Yt) are initialized as directly observable using
Equation (8). Then, λn is iteratively trained to produce Y =

CCn until convergence (θ = θ̂). For computational concerns,
and to keep the approach as simple as possible, without losing
performance in decoding, the means and variances were not
learned, but just initialized. After learning, the DFC model λn(θ̂)
is used to decode Y, i.e., to infer the hidden state sequence
X̂ that best explains the observation CCn. By way of example,
Figure 3C shows the hidden state sequence X̂ decoded from the
CCn of Figure 3A, as well as the transition matrix Â obtained
after learning.

Finally, the DFC was compared between participants to detect
if there was a significant DFC change between controls and
patients. To this end, the DFC models λn, 1 ≤ n ≤ 7, were
compared in pairs by means of the distance measure D (see
Equation (7)). First, the models were asked to generate Tgen =

150 then Tgen = 300 observations (against T = 103 for
the real observations). Let {Dc−c} be the distances between all
pairs of controls (190 pairs) and {Dc−p} the distances between
all pairs of patients and controls (320 pairs). A two samples
t-test was performed between the distance sets {Dc−c} and
{Dc−p} for each of the 7 studied RSN. A positive result at a
t-test (p < 0.01) would signify that a significant DFC change
is observed between patients and controls with regard to the
interactions between the RSN under concern and the six others.
A complementary study has also been conducted that includes
the other networks revealed by ICA (the central and the frontal
networks), in place of BG and DMN which are less affected by
DLB as previously described.

2.3.3. Product HMM Tools for DFC Analysis
An interesting feature of product HMM, which makes the
product HMM modeling and analysis framework attractive, is
the range of analysis tools available for the user to investigate
different aspects of the DFC. These tools can provide useful
information of a global nature about the DFC or enable more
insight to be gained into it. We have added more information
about these tools and the interpretation of their output results
before the Results section.

The distance measure of Equation (7) provides global
information on the degree of similarity of two models of DFC:
it allows pairs of models to be compared through their ability
to separately generate the same observation sequence. We use
this distance extensively to infer significant differences between
the DFC models of DLB patients and those of healthy elderly
subjects.

Also, the transition matrix A of a DFC model provides a
compact and global representation of the statistical behavior of
the observed DFC. It allows us to see at a glance which transitions
are privileged, ignored or modified for a given subject or between
subjects. But the transition matrix A also enables us to focus on
more specific information. In particular, the diagonal term {aii}
corresponds to the loopback probability of state i, that is, the

probability to stay in state i from t to t+ 1. Its magnitude reflects
the temporal stability of the DFC state or DFC configuration
i. A brief look at the diagonal of A thus enables the number
and nature (correlated or uncorrelated resting-state network
involved) of steady DFC configurations to be rapidly identified.
Similarly, the presence of high transition probabilities {aij} on
a column j in A is symptomatic of a DFC state, in this case
state j, with a high probability to be reached. We therefore used
the average of the terms of this column,

∑

j aij to quantify this
probability.

The N-dimensional decoded state sequence X̂ gives access
to the symbolic transcription, expressed as a visited states-
time sequence, of what is observed, in our case the correlation
over time of one RSN with other RSNs. By preserving time
information, the sequence X̂ enables analysis to be focused on
specific temporal windows of the fMRI exam. Such sequences can
also be the starting point for simple or advanced analyses that
enrich the DFC description. These analyses can be performed on
a single sequence X̂, becoming specific of X̂, or performed on
a set {X̂} of decoded state sequences, in relation to a subject, a
particular RSN, a group of subjects, or whatever the user wishes
to target. It is thus possible to perform simple statistics that
highlight the most common states, the ones never reached, the
time spent in each state or the number of transitions. Advanced
analyses, outside the scope of this paper and based on pattern
recognition or data mining techniques, can also be envisaged to
detect, for example, reproducible patterns of DFC.

3. RESULTS

3.1. Distances between Controls and DLB
Patients
Table 1 shows the results of the two-sample t-tests for each of
the seven RSNs, for Tgen = 150 and Tgen = 300 observations
generated (see Equation 6). The occipito-parieto-frontal network
(OPFN), the medial occipital network (MON) and the right
fronto-parietal network (RFPN) presented a highly significant
difference (p < 0.01) in DFC between patients and controls, for
both Tgen. (see Table S2 for the results for the complementary
study with the frontal and central networks).

3.2. Product HMM Analysis Tools
We present selected product HMM results obtained for the
OPFN, MON, and RFPN. They illustrate how to obtain deeper
insight into the DFC difference observed between DLB patients
and controls for these three RSNs.

3.2.1. Transition Matrices
For all participants (patients and controls), a close examination
of the transition matrices of these networks shows that the states
with the highest probability to be reached are those with the
OPN, the OPFN, and/or the MON in a “correlated” state (“+1”).
A comparison of the DLB patients’ transition matrices with
the healthy subjects’ transition matrices significantly revealed
that states with MON and RFPN in a “correlated” state were
more probably reached for healthy subjects than for patients
(p = 0.044 < 0.05).
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Other typical product HMM output results are presented in
Figure 4A, for a patient, and for the MON. The transition matrix
A allowed us to isolate three states with the highest probability
to be reached. These are, from left to right, the {opfn-RFPN-
LFPN-OPN-dmn-bg}, the {OPFN-rfpn-lfpn-OPN-dmn-bg} and
the {OPFN-rfpn-LFPN-OPN-DMN-bg} (with “correlated” states
in upper case letters and “anti-correlated” states in lower case).
The spatial maps of the “correlated” RSNs (in red) and the
“anti-correlated” RSNs (in blue) with the MON (in yellow) are
displayed in Figure 4B.

3.2.2. Decoded State Sequences
From the decoded state sequences X̂OPFN, X̂MON, and X̂RFPN, no
difference was observed in the state change statistics. Twenty-two
state changes and 18 distinct states were observed on average

for each session of 6 min. On average, 3 to 4 states per subject,
replicated at different times, presented a “long” state occupancy
duration i.e., greater than one time-point). These states varied
across subjects, even if we noticed that themost visited state (long
and replicated) for X̂OPFN and for X̂MON was the same for both
patients and controls, namely the state {OPFN/MON-rfpn-lfpn-
OPN-DMN-bg}, (with “correlated” states in upper case letters
and “anti-correlated” states in lower case). The mean of the state
occupancy duration was 14 s for both DLB patients and controls
(see Figure S3).

Figure 4C shows a typical example of targeted information
that can be derived at the subject level from a decoded
state sequence: the distribution of three selected states, with
their duration, along the time axis of the session. The three
highlighted states are {opfn-RFPN-LFON-OPN-dmn-bg},

TABLE 1 | p-value of the t-tests for each RSN and number of generated observations.

len. gen.

RSN
OPFN MON RFPN LFPN OPN DMN BG

150 1.10−4 1.10−9 1.10−3 0.324 0.266 0.200 0.870

300 1.10−5 1.10−10 1.10−5 0.026 0.400 0.049 0.794

h 1 1 1 0 0 0 0

h = 1 indicates significant difference between DFC models of patients vs. controls (p < 0.01). DMN, Default Mode Network; LFPN, Left Fronto-Parietal Network; RFPN, Right

Fronto-Parietal Network; OPFN, Occipito-Parieto-Frontal Network; OPN, Occipital Posterior Network; MON, Medial Occipital Network; BG, Basal ganglia.

FIGURE 4 | Outputs of the product HMM for patient #1: (A) transition matrix A; (B) the 3 states with highest probabilities (coordinates in z axis are in

white); (C) distribution of these 3 states reported on the CCMON. On this figure, the MON is the reference RSN (in yellow on the RSN maps). (DMN, Default

Mode Network; LFPN, Left Fronto-Parietal Network; RFPN, Right Fronto-Parietal Network; OPFN, Occipito-Parieto-Frontal Network; OPN, Occipital Posterior

Network; MON, Medial Occipital Network; BG, Basal ganglia.)
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{OPFN-rfpn-lfpn-OPN-dmn-bg}, and {OPFN-rfpn-LFPN-
OPN-DMN-bg}. Figure S2 presents the decoded state sequences
X̂k of each pair of interactions. Figure S4 zooms in on the first 30
s of the observation and decoded sequences that are presented
Figure 4C.

3.2.3. Combining Product HMM Results
Based on the transition matrices of the MON, a relationship
between this visual network and the attentional network RFPN
was first underlined in Section 3.2.1. The following analysis shows
how combining different product HMM results can provide
extra information about specific RSN interactions. Focusing on
interactions between the MON and the attentional networks
(RFPN, LFPN) indeed showed that the sequences are significantly
more occupied by states with “correlated LFPN,” “anti-correlated
RFPN” (whatever the correlation state, “−1” or “+1,” of the
other RSNs) for patients than for controls (p = 0.021 < 0.05,
Kruskal–Wallis non-parametric test). The mean occupation rate
in a sequence by these states was 40% for patients against 22%
for controls.

4. DISCUSSION

4.1. DLB Characterization
Compared to healthy elderly controls, patients with DLB showed
changes in the dynamic interaction between the MON and the
other networks, so did the OPFN and the RFPN. According
to previous studies, the MON concerns visual processing
(Beckmann et al., 2005), the OPFN underlies visuo-attentional
and visuo-constructive processing (Fox et al., 2006), and the
RFPN relates to executive control of attention (Seeley et al., 2007;
Markett et al., 2014). Since patients with DLB suffer mainly from
attentional (Ferman et al., 2006; Johns et al., 2009; Ferman et al.,
2013; Yoon et al., 2015) and visual (Ferman et al., 2006, 2013)
impairments, the changes of DFC of these three networks are
therefore consistent with the cognitive profile of DLB. They are
also consistent with previous MRI studies on brain perfusion
(Lobotesis et al., 2001; Colloby et al., 2002) and metabolism
(Kantarci et al., 2012), which have reported a decrease of neural
activity in the occipital cortex and frontal and parietal areas.
Despite the occipital cortex having been suggested as the main
deficit in DLB, static functional connectivity (Lowther et al.,
2014; Peraza et al., 2014) failed to reveal any difference in visual
networks, in contrast to our dynamic functional connectivity
analysis. In addition, results from the transition matrix revealed
that states involving “correlated” MON and RFPN, whatever
the other networks, are significantly less likely to be reached
in patients than in controls. This suggests a lack of specific
interaction between right top-down attentional and bottom-up
visual processes. On a similar note, focusing on the occupancy
rate of states involving “correlated” MON and LFPN and “anti-
correlated” RFPN highlighted a significant increase for DLB
patients compared to controls. A similar trend for these states was
observed when the OPFN is taken as the reference RSN instead
of the MON. Taken together, all these results of DFC suggest that,
in DLB, the visual networks and particularly the MON might
interact less with the RFPN than with the LFPN. Such a result

could reflect a compensatory phenomenon for the deficit of right
attentional and visual interaction.

Whereas previously identified differences concerned the
global dynamics, they are not apparent from the number of
transitions, the average duration in a state or the number of
visited states. These measurements still provide information
about variability of functional connectivity during an fMRI
session. Thus, on average, only 18 distinct states were visited
among the 64 theoretically observable, during a session of 6 min,
with an average stability in a state of 14 s. Still, one might raise the
question of the influence of age on this DFC characterization.

In addition, the presented method is performed at subject
level. This allows the DFC study to be to individualized and
can be useful for individual monitoring purposes. For instance,
Figure 4 illustrates this possibility with patient 1. Unsurprisingly,
the states reached with the highest probabilities are those with
the MON, the OPFN, and the OPN, the three visual networks,
working together. Examining each decoded sequence, X̂k, related
to the PHMMMON, we noticed that the LFPN and the RFPN
seemed to appear mostly in opposite timing (see Figure S2), with
quasi-synchronous changes of state. This might be interpreted
from the perspective of inter-hemispheric valence (Banich, 1998)
and informs us on the dissociation of these two networks that
are, however, very related from an functional connectivity point
of view. Now that specific RSNs (OPFN, MON, RFPN) have
shown their interest in DFC for DLB studies, a PHMM-based
model, built on a chosen network for each DLB patient, can be
considered as a new application for specific DFC characterization
of a resting-state network.

4.2. Product HMM Modeling and Analysis
of DFC
All the presented results show the capabilities of product HMM
to model and analyze multiple processes interacting in time, such
as the DFC between networks observed by resting-state fMRI.
They also demonstrate how it is possible to capture by statistical
learning, spatial and temporal relationships between RSNs within
a probabilistic state graph. Finally, they illustrate the range of
analysis tools that are immediately available within the product
HMM framework i.e., to compare distinct DFC from their model,
or to further characterize them from their state transition matrix
or from their decoded state sequence.

From a modeling perspective, we chose a multi-dimensional
HMM to represent the processes of the RSNs and thus we defined
the states as vectors of sub-states. Our study, although providing
tools to differentiate DLB patients from healthy controls, was
also designed to present a method to explore DFC. To this end,
the states are built on the RSNs present during the session, and
prior to the DFC analysis. A large state space is thus constructed
and accounts for all possiblemultidimensional connectivity states
between RSNs, even if most of them are not, or cannot be,
observed within the limited time windows of an resting-state
fMRI session. This leads to a high number of states compared
to the one defined directly on the DFC observations as DFC
analysis methods based on state clustering (Allen et al., 2014;
Eavani et al., 2013; Ma et al., 2014). While it is true that a large
state space can lead to a certain redundancy due to close spatial
profiles (functional connectivity maps of states) between states,
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this allows the emergence of finer connectivity configurations,
including states with short duration and low occurrence. Note
that these close spatial profiles can be a posteriori gathered
to restrict the analysis to some chosen states if one wants to
target some RSNs (an illustration can be found in Figure S2
where similar color tones have been applied to highlight specific
interactions). This allows a better understanding while ensuring
that a larger number of RSNs had been taken into account during
the modeling step.

Still from a modeling perspective, the proposed approach
remains simple yet efficient. It is of low complexity, and presents
some limitations. It is simple regarding the state sub-space Sk

since we did not consider a decorrelated situation between two
RSNs, as might be done with a “0” state in addition to the
“−1” and “+1.” A direct consequence of this modeling extension
would be a transition matrix A of dimension 3K × 3K . The
introduction of such a neutral state also raises the question of
the threshold above and below which we consider, respectively,
the correlated and uncorrelated state. DFC modeling is not well
known and a question rises as to whether or not the DFC
is modulated by a central executive. Exploiting a hierarchical
structure would enable modeling different levels and length
scales that might be present in the brain DFC. Our approach
also relies on a compromise between the state space cardinality
and the available amount of data. First, we only capture what
may be seen throughout the duration of the fMRI session.
On the other hand, the parameter space grows exponentially
with the number of hidden processes, leading us to limit the
approach to the joint analysis of a subset of RSNs. Although
our results finally showed that only a few states were achieved
with regard to the possibilities (about 18 distinct states observed
within the 64 defined and 103 time-points), too many states
would have meant that the parameter estimation step would
not have been robust. Possible solutions to these issues could
be to reduce the number of conditional dependencies between
states, as proposed in coupled Markov models, another variant of
multi-dimensional HMM, or to extensively use parameter tying
in order to limit drastically the total number of parameters to be
learned.

From an analytic perspective, the product HMM tools are
numerous. The transition matrix provides information on the
most likely transitions, on the state with the highest probability
to be reached or on the stability of states, expressed in terms of
probability with the values of the diagonals {aii}. The decoded
state sequence brings information at different scales of analysis
: at a global scale when considering X̂, at a lower scale when
looking for specific interactions with X̂k. On one hand, X̂ gives
us access to the number of state changes, the most reproduced
states, the average duration in a state and especially the temporal
distribution of the states in the session. This latter aspect is of
particular interest if one seeks to interpret certain functional
connectivity states only present at the beginning or at the end
of the session as, for example, in resting-state studies, or in
task-based fMRI. On the other hand, the X̂k focuses on a
particular interaction. For instance, the ratio between the number
of “correlated” and “anti-correlated” states offers information
about the relationship between two specific RSNs.

Product HMM, of course, do not and will not reveal all
the aspects of DFC. However, we believe that such advanced
graph theoretical approaches open the door to complementary
analysis techniques, of a higher level and working on top of
product HMM, such as data mining, structural analysis, pattern
recognition, chronic extraction, and/or temporal reasoning.
These techniques, coupled with product HMM, should help us to
answer typical questions in DFC analysis, such as: which RSNs,
at what time and for what duration enter in correlation? Does the
DFC pattern selected by the user exist, and if so, is it reproducible,
and to what extent? Does any significant DFC pattern emerge
across this pool of fMRI data? More broadly, these techniques
applied to product HMM outputs should reveal not only DFC
patterns but also “DFC grammars” subject-, group-, or disease-
specific in relation, for this latter aspect, with the concept of
biomarker.

CONCLUSION

We presented a novel graph theoretical approach for the
modeling and analysis of brain dynamic functional connectivity.
The approach is based on product HMM, an instance of
dynamic Bayesian network able to learn temporal dependencies
between interacting processes. From the DFC modeling of a
pool of RSNs, the product HMM framework was illustrated in
differentiating patients with DLB from healthy elderly subjects.
The comparison of distances between DFC models pointed
out three RSNs serving the cognitive functions that are known
to be impaired in DLB: mainly visual processing but also
attentional and executive functions. Whereas static functional
connectivity did not reveal any difference in visual networks
in DLB, product HMM-based analysis of DFC succeeded in
highlighting such occipital functional dysconnectivity. Novel
statistical tools for further analysis of DFC were also presented
within the product HMM framework. Their output results,
even if some are difficult to interpret today, demonstrated the
relevance of graph-based DFC modeling for the analysis and
characterization of neurodegenerative diseases such as DLB.
Also, they allow us to envisage in the near future the coupling
of product HMM/DBN with data mining techniques and/or
structural analysis techniques of a higher level to reveal DFC
patterns or DFC “grammars” in relation to the concept of
biomarker.
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