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How visual information is encoded in spikes of retinal ganglion cells (RGCs) is essential

in visual neuroscience. In the present study, we investigated the coding properties of

mouse RGCs with dual-peak patterns with respect to visual stimulus intervals. We first

analyzed the response properties, and observed that the latencies and spike counts

of the two response peaks in the dual-peak pattern exhibited systematic changes with

the preceding light-OFF interval. We then applied linear discriminant analysis (LDA) to

assess the relative contributions of response characteristics of both peaks in information

coding regarding the preceding stimulus interval. It was found that for each peak, the

discrimination results were far better than chance level based on either latency or spike

count, and were further improved by using the combination of the two parameters.

Furthermore, the best discrimination results were obtained when latencies and spike

counts of both peaks were considered in combination. In addition, the correct rate for

stimulation discrimination was higher when RGC population activity was considered as

compare to single neuron’s activity, and the correct rate was increased with the group

size. These results suggest that rate coding, temporal coding, and population coding

are all involved in encoding the different stimulus-interval patterns, and the two response

peaks in the dual-peak pattern carry complementary information about stimulus interval.

Keywords: retinal ganglion cell, dual-peak response, response latency, spike count, linear discriminant analysis,

information coding, stimulus interval

INTRODUCTION

Visual information is transmitted to the brain by spike trains of retinal ganglion cells (RGCs)
(Masland, 2001). How spike trains from RGCs represent the visual world is one of the central issues
in the field of visual neuroscience. It has long been assumed that information about visual stimuli is
carried by the time-varying firing rates of RGCs according to the work of Lord Adrian (Adrian and
Zotterman, 1926). However, in recent years, the importance of spike patterns for neural coding has
been receiving increasing attention (Berry et al., 1997; Lesica and Stanley, 2004; Greschner et al.,
2006; Gong et al., 2010). Several previous studies showed that different RGCs exhibited different
spike patterns in response to the same stimulation, and may employ different coding strategies
and play different roles in information transmission (Xu et al., 2005; Gollisch and Meister, 2008).
Among the RGCs, some respond rapidly at stimulus onset with relatively high firing rate (“brisk”),
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while others respond with relatively longer latency and lower
rate (“sluggish”) (Cleland and Levick, 1974). Brisk cells transmit
information at higher rates but with similar efficiency as
compared to sluggish cells (Koch et al., 2004, 2006).

In response to spatially homogeneous light flashes, a particular
pattern termed “dual-peak” response has been observed. The
dual-peak response consists of two response components: a
transient component occurring within a short interval (50–
100ms) relative to the stimulus onset, and another following
component occurring tens to hundreds of milliseconds after
the initial one, thus resulting in two peaks in the peri-stimulus
time histogram (PSTH) (Soucy et al., 1998; Segev et al., 2006;
Thiel et al., 2006; Zhou et al., 2007; Yan et al., 2016), possible
generating mechanism for this particular pattern was also
suggested (Yan et al., 2016). However the coding properties of
dual-peak pattern, particularly the contribution of the second
peak to stimulus information coding, still remained largely
unknown.

Stimulus identification is an important function of the
nervous system, and at the meantime, stimulus discrimination
performance also provides an approach for analyzing neuronal
coding properties (Kenyon et al., 2004; Pillow et al., 2005;
Schwartz et al., 2012). The relative importances of various
response parameters to the neural coding can be assessed
by comparing their contributions in stimulus discrimination
(Fernandez et al., 2000; Greschner et al., 2006). Response latency
and firing rate are basic characteristics of RGC response, and
are suggested to efficiently transmit information about stimulus
features, such as stimulus wavelength, luminance, contrast,
motion speed, and direction, etc. (Fernandez et al., 2000;
Greschner et al., 2006; Thiel et al., 2007; Risner et al., 2010).
Meanwhile, RGC population activity patterns can also vary
according to stimulation properties including spatial patterns,
luminance, motion direction, etc., and are also suggested to carry
visual information (Ackert et al., 2006; Jing et al., 2010; Xiao et al.,
2013).

Stimulus duration or interval is an important feature of visual
stimulation. In the present study, dual-peak responses were
observed from RGCs’ ON responses. Since, the properties of
ON responses were modulated by preceding light-OFF intervals
(Xiao et al., 2014b), we focused on the stimulus-interval-
dependent ON-response changes and information coding in
RGCs with dual-peak patterns, using full-field flashes with
different light-OFF intervals. The response latencies and firing
rates of the two components in the dual-peak pattern were
measured respectively, and they all exhibited systematic changes
with the preceding light-OFF interval. Light-OFF interval was
then identified based on different RGC response characteristics
extracted from both single cells and RGC groups, using linear
discriminant analysis (LDA). It was found that stimulus-interval
patterns were better discriminated when the characteristics of
both response peaks were considered for single cell and across
the population. In addition, RGC groups performed better in
visual discrimination than single cells, and the correct rate was
positively correlated with group size. These results added to
previous findings that both peaks in dual-peak pattern were
involved in light intensity coding (Thiel et al., 2006), and suggest

that they might carry stimulation information complementary to
each other.

MATERIALS AND METHODS

Retina Preparation and
Electrophysiological Recording
Experiments were performed on isolated retinas of adult
C57BL/6 mice (2–3 months). Mice were dark-adapted for 30min
prior to the experiment, and sacrificed under dim red light
by cervical dislocation. The retina was isolated in oxygenated
(95% O2 and 5% CO2) Ringer’s solution containing (in mM):
124.0 NaCl, 2.5 KCl, 1.3 NaH2PO4, 2.0 CaCl2, 2.0 MgCl2, 22.0
glucose, and 26.0 NaHCO3.A small piece of retina (about 3 ×

3mm2) was cut and attached to a nitrocellulose filter (0.22µm
pore size, White GSWP, Millipore Corporation, Bedford, MA,
USA), with photoreceptor side contacting the filter paper. The
mounted retina was then placed on a piece of multi-electrode
array (MEA, Multi Channel Systems MCS GmbH, Reutlingen,
Germany) with the ganglion cell layer contacting the electrodes,
and was continuously perfused with oxygenated Ringer’s solution
at 34–37◦C.

The activities of neurons were recorded by the MEA which
was connected to a recording system (MEA-System, Multi
Channel System MCS GmbH). The MEA consisted of 60
electrodes (10µm in diameter) arranged in an 8 × 8 matrix
(leaving the four corners void). The horizontal and vertical tip-
to-tip distances between adjacent electrodes were 100µm. The
raw electrode data were amplified through a 60-channel amplifier
(single-ended, amplification 1200 ×, amplifier input impedance
> 1010 �, output impedance 330 �). Signals from the selected
channels were sampled at a rate of 20 kHz (MC_Rack, Multi
Channel System MCS GmbH) and stored in a computer. Timing
signals of visual stimuli were also recorded and stored in the
computer.

Spikes from individual neurons were sorted based on principal
component analysis (PCA) (Zhang et al., 2004), as well as
the spike-sorting unit in the commercial software OfflineSorter
(Plexon Inc., Dallas, Texas, USA). In order to get accurate data for
spike train analysis, only single-neuron events clarified by both
spike-sorting methods mentioned above were used for further
analyses (Li et al., 2012).

All described procedures were reviewed and approved by
Institutional Animal Care and Use Committee at Shanghai Jiao
Tong University.

Stimulation Protocols
Light stimulus was generated from a computer monitor (Vision
Master Pro 450, Iiyama, Japan) and was focused to an area of
0.9 × 0.9mm2 when projected onto the retina via a lens system.
Before stimulation protocols were applied, full-field sustained
dim white light (0.19 cd/m2) was given for 30 s to adjust RGCs’
sensitivities to similar levels (Liu et al., 2007).

The stimulation protocol contained repetitive full-field 1-
s light-ON (0.38 cd/m2) stimuli separated by different light-
OFF intervals (0.0 cd/m2). Totally 50 trials were displayed, with
each trial containing three full-field 1-s light-ON stimuli led by
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randomized light-OFF intervals of 1, 5, and 9 s (1-s OFF/1-s ON,
5-s OFF/1-s ON, 9-s OFF/1-s ON). The arrangement of different
light-OFF intervals was randomized in each trial to minimize the
effect of adaptation.

Identification Criterion of Dual-Peak
Response
Identification criterion of dual-peak response was set following
the method introduced by Zhou et al. (2007). First, the PSTH
(bin= 5ms) of RGC’s response to full-field flashes was calculated
and smoothed by a non-parametric regression method Bayesian
Adaptive Regression Splines (BARS) (Figure 1A, black curve)
(Dimatteo et al., 2001; Kass et al., 2003). In the PSTH, if the firing
rate of the first peak (F1) descends quickly and reaches a minimal
level (Fv, Fv < 20% F1), and a second peak rises again with peak
level higher than the valley value (F2 >150% Fv, or F2 > 5Hz
when Fv= 0), a dual-peak response can be identified.

For an identified dual-peak response, the time when the
trough (Lv) appeared in the PSTH was regarded as the boundary
of the two response components. Every spike in each trial was
assigned to a certain response peak, according to such identified
boundary (Figure 1B). To investigate the stimulus-interval-
dependent response changes of dual-peak RGCs, the PSTH was
calculated separately for 1, 5, and 9-s/1-s (OFF/ON) stimulus
patterns based on corresponding responses, and the boundary for
each stimulus pattern was then identified separately.

Linear Discriminant Analysis
Linear discriminant analysis (LDA) was applied to assess the
ability of discriminating stimulus patterns based on different
response features (Fernandez et al., 2000; Greschner et al.,
2006). The basic principle of LDA method is to determine a
set of linear equations performing a projection of features that
minimize the within-class variance and maximize the between-
class variance, and thus separate two or more classes (Jain et al.,
2000; Cunningham and Yu, 2014).

Suppose there are C classes in a data set Xji (i = 1, . . . , Mj;
j= 1, . . . , C). Xji consists of features which can be used to identify
the C classes. In the LDA calculation, each feature vector is first
normalized to the range of [0, 1] using unity-based normalization
before analysis (for each feature, the maximum value among all
classes is set to 1, and the minimum value is set to 0) (Fard
and Sadeghzadeh, 2016). Then the optimal projection direction is
determined by calculating the eigenvectors of E = S−1

w Sb, where
Sw, Sb are within-class scatter matrix and between-class scatter
matrix, respectively (Dudoit et al., 2002; Kumar and Ravikanth,
2009):

Sw =

C
∑

j = 1

Mj
∑

i = 1

(xji − µj)(xji − µj)
T
,µj =

1

Mj

Mj
∑

i = 1

xji (1)

Sb =

C
∑

j = 1

Mj(µj − µ)(µj − µ)T,µ =
1

C

C
∑

j = 1

µj (2)

E = S−1
w Sb (3)

FIGURE 1 | Identification criterion of dual-peak response. PSTH (A, bin

size = 5ms) and raster plot (B) of an example RGC with dual-peak pattern are

shown. Black fitting curve superimposed on the PSTH was generated by the

BARS method. F1, F2 are the peak firing rates of the first and the second

peak, respectively, and Fv is the firing rate at the trough. L1, L2, Lv indicate the

time gap between the stimulus onset and F1, F2, Fv, respectively. The trace

above the PSTH illustrates the time course of the light stimulation.

The C-1 eigenvectors of matrix E corresponding to the C - 1
largest eigenvalues build up the new projection space, denoted
by Wopt . The original data are projected onto Wopt by the linear
transformation:

Z = WT
optX (4)

Zji (i = 1, . . . , Mj; j = 1, . . . , C) denotes the projected data.
Suppose a test sample with projected value ztest , the distance
between the test sample and each class is defined as the average
Euclidean distance from the test sample to each training sample
in the class:

Dj =
1

Mj

Mj
∑

i = 1

√

(ztest − zji)(ztest − zji)T, j = 1, ...,C (5)

The test sample is then assigned to the class with the shortest
distance (min(Dj)).

In our present study, there were three stimulus-interval
patterns to be identified. The procedure of classifying stimulus-
pattern-dependent neuronal responses consisted of the following
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steps: (1) Determining the response features: For each stimulus
pattern, the responses from half of the 50 trials were randomly
selected as training data, and the remaining 25 responses were
used as test data. The PSTH was then calculated based on the
75 training responses (25 repeats ∗ 3 patterns) (Figure A1 in
Appendix). The time when the trough appeared in the PSTH
was regarded as the boundary of the two response components.
First and second component in each training and test response
were separated by the identified boundary. From each individual
presentation of the light stimuli, the number of spikes and the
timing of the first spike relative to the stimulus onset from each
response peak were extracted for each cell and employed as the
discriminant variables. (2) Calculation of correct classification
rate. Following Equations (1–5), each test response was assigned
to an estimated stimulus pattern. The estimated result was then
compared with the actual stimulus, and the ratio of correct
classification was calculated. In our analysis, the classification
procedures (1) and (2) described above were independently
repeated 10 times, and the final correct classification rate was the
averaged ratio obtained over 10 times of training.

Figure 2 shows an actual example of LDA applied to our data.
The scatter plot of latency and spike count from one response
peak of an example RGC with dual-peak pattern has been shown.
Red triangles indicate latency and spike count during 1-s/1-s
(OFF/ON) stimulus pattern (25 trials); blue triangles indicate
latency and spike count during 9-s/1-s (OFF/ON) stimulus
pattern (25 trials). The optimal projection line (the black line)
was (0.696, –0.74). The red and blue asterisks are the projections
of red and blue triangles to the black line, respectively. It is shown
that most of the training responses in the two classes can be
well-separated.

In cases where only one discriminant variable (latency or
spike count) was used (Figure 5), the eigenvector calculated by
the above procedures was 1 (no data projection), then the test
response was actually assigned to the class with the shortest
distance (min(Dj)):

Dj =
1

Mj

Mj
∑

i=1

√

(ztest − zji)2, j = 1, ...C (6)

When classification was based on more than one cell (Figure 7),
linear combinations of the responses features of individual cells
were determined. For instance, for the classification based on
latency and spike count from both response peaks of the seven-
cell group, the optimal linear combinations of 4× 7 discriminant
variables were determined.

LDA was performed using Matlab (version 7.0.0, The
MathWorks, Inc., Natick, MA, USA).

RESULTS

The RGCs studied here responded to light-ON stimuli with two
components: one transient component and another following
component occurring shortly after the initial one, resulting in two
peaks in the PSTH (Figure 1). The second component could be
either transient or sustained (Zhou et al., 2007; Yan et al., 2016).

FIGURE 2 | The separation of two response classes by LDA. The scatter

plot shows the latency and spike count from one response peak of an

example RGC with dual-peak pattern. Red triangles indicate latency and spike

count during 1-s/1-s (OFF/ON) stimulus pattern (25 trials), and blue triangles

indicate latency and spike count during 9-s/1-s (OFF/ON) stimulus pattern (25

trials). The black line indicates the optimal projection direction determined by

LDA. The red asterisks are the projections of red triangles to the black line, and

the blue asterisks are the projections of blue triangles.

Our experiments were performed on 3 mouse retinas, totally
45 RGCs with ON responses were recorded (including both ON
RGCs and ON-OFF RGCs), among which 18 (40%) exhibited
dual-peak patterns (5, 6, and 7 cells from retinas #1, #2, and
#3, respectively). The receptive fields of these 18 RGCs were also
calculated (data not shown). The averagemajor andminor axes of
the receptive field center (1 SD of Gaussian) was 121.2± 2.9µm,
100.8± 2.2µm, respectively (Mean± SEM, N = 18).

Response Characteristics of Dual-Peak
RGCs during Exposure to Light-ON Stimuli
Led by Different Light-OFF Intervals
Response latency and spike count are most common indices
to characterize neuronal response (Gollisch and Meister, 2008;
Risner et al., 2010; Xiao et al., 2014b). In our present study,
response latency was defined as the timing of the first spike
relative to the stimulus onset (Gollisch and Meister, 2008). Spike
count was defines as the number of spikes in one trial. For
dual-peak RGCs, following identification of two response peaks
(Materials and Methods), latency and spike count for each peak
were measured respectively.

Typical ON responses of an RGC with dual-peak pattern
elicited by light-ON stimuli led by various preceding light-OFF
intervals (1, 5, 9 s) are plotted in Figure 3. Figure 3A shows
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FIGURE 3 | Responses of an example RGC with dual-peak pattern elicited by light-ON stimuli led by different light-OFF intervals (1, 5, 9 s). (A) The firing

activities of the cell in one trial. The occurrence of each spike is represented by a vertical line. (B–D) Raster plot (top panel) and PSTH (bottom panel, bin size = 5ms)

of the cell’s responses during 1, 5, and 9-s/1-s (OFF/ON) stimulus patterns, respectively. The traces above the raster plots in (A–D) illustrate the time course of the

light stimulation. (E,F) The average response latencies (E) and spike counts (F) for the first and second peak of the example RGC, respectively. N = 50 trials. Data are

presented as mean ± SEM. *p < 0.05, paired t-test.
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the firing activities in one trial, with the occurrence of each
spike being represented by a vertical line. Figures 3B–D show
the cell’s responses during 1, 5, and 9-s/1-s (OFF/ON) stimulus
patterns (50 trials), respectively. This example RGC shows dual-
peak patterns in exposure to all the three stimulation patterns,
suggesting that the emergence of this particular pattern is
independent on the stimulus-interval pattern. Average response
latencies and spike counts of the two peaks of this example
neuron are shown in Figures 3E,F. The response latencies of
the first and second peak were shortened significantly when
light-OFF interval was increased (Figure 3E, paired t-test, p <

0.05), while spike counts of both peaks tended to be increased
significantly (Figure 3F, paired t-test, p < 0.05). This was
consistent with previous findings in bullfrog retina (Xiao et al.,
2014a,b).

Statistical results from 18 RGCs in three retinas show that
the latencies for both peaks had small but significant differences
among different preceding light-OFF interval groups (Figure 4A,
paired t-test, p < 0.05), with the longest latency for 1-s/1-s
(OFF/ON) stimulus pattern, and shortest for 9-s/1-s stimulus
pattern. Meanwhile, spike counts for both peaks were also
significantly increased with longer preceding light-OFF intervals
(Figure 4B, paired t-test, p < 0.05). The response variabilities
of the first and second peak were correlated with the changes
of stimuli, suggesting that both peaks might carry information
about the stimuli.

Stimulus Identification
To test whether the two peaks in the dual-peak response pattern
cooperate to carry stimulus information, we applied LDAmethod
to compare the light-OFF-interval discrimination results based
on different features of the RGC responses.

For the pattern discrimination, the following response
features from each presentation of the light stimuli were extracted
for each cell as discriminant variables: (1) the response latency

of the first peak (T1); (2) the number of spikes in the first peak
(R1); (3) the response latency of the second peak (T2); (4) the
number of spikes in the second peak (R2); (5) the total number of
spikes in the response (Rtotal). Then these response features could
be used by LDAmethod individually or in linear combinations to
discriminate different stimulus-interval patterns that elicited the
responses.

Figure 5 presents the classification results for the three retinas
recorded (retina #1, #2, and #3), in which the fractions of
correctly identified stimuli for each cell based on its response
features are plotted. The cell label with an asterisk aside indicates
this is an ON-OFF RGC.

The results show that for each cell, the stimulus discrimination
based on either latency (T1) or spike count (R1) of the
first peak was effective, which allowed stimulus discrimination
above the chance level (0.33). By combining T1 and R1 (T1
+ R1), the stimulus classification performance was improved,
suggesting that stimulus information was carried by both
response latency and spike count. Similar to that of the first
peak, both the response latency and spike count of the second
peak contributed to the information coding. The correct rate of
stimulus discrimination was above the chance level while either
latency (T2) or spike count (R2) of the second peak was used, and
the performance was further improved by using the combination
of T2 and R2 (T2 + R2). The best prediction result was obtained
for each cell when the response parameters specified for both
peaks were taken into account (T1+ R1+ T2+ R2).

The statistical results of correct rates based on each selected
feature are exhibited in Figure 6 (N = 18 cells from three
retinas). Data were presented as mean ± SEM. The comparison
was performed using one-way ANOVA with post hoc Student-
Newman-Keuls (SNK) test. For the first peak, the mean correct
rate based on the combination of T1 and R1 [C(T1 + R1)] was
significantly larger as compared to that of T1 [C(T1)] and R1
[C(R1)] (Figure 6, ANOVA, p < 0.05). Similar results were

FIGURE 4 | (A,B) Statistical results of response latencies (A) and spike counts (B) for both the first peak and second peak during 1, 5, and 9-s/1-s (OFF/ON) stimulus

patterns. N = 18 RGCs from three retinas. Data are presented as mean ± SEM. *p < 0.05, paired t-test.
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FIGURE 5 | Correct rates for stimulus pattern discrimination based on single neuron’s activity features in (A) retina #1 (five cells, #1–5); (B) retina #2

(six cells, #1–6); (C) retina #3 (seven cells, #1–7). The cell label with an asterisk aside indicates this is an ON-OFF RGC. The encoding of dual-peak patterns in ON

and ON-OFF RGCs exhibited consistent properties.

observed for the second peak that C(T2 + R2) was significantly
larger than C(T2) and C(R2) (Figure 6, ANOVA, p < 0.05). The
mean value for C(T1+ R1+ T2+ R2) was the largest, exhibiting
significant differences with all the other parameters (Figure 6,
ANOVA, p < 0.05).

We further investigated discrimination performance for
group of RGCs. The relationship between discrimination
performance and RGC group size was exhibited in Figure 7. For
retina #1 in which 5 RGCs were recorded, five 1-cell groups, ten
2-cell groups, ten 3-cell groups, five 4-cell groups, and one 5-
cell group could be obtained. The average correct rates based on
different response features for each group size were compared
as shown in Figure 7A. The results exhibited that when the
group size was fixed, the correct rate for stimulation identification

using combined parameters was higher than that using single
parameter [(T1 + R1) vs. T1 or R1; (T2 + R2) vs. T2 or R2],
and the best prediction result was obtained using (T1 + R1
+ T2 + R2). This was similar to that observed from single
cell. Meanwhile, for any selected response features, either being
used individually (T1, R1, T2, R2) or in combinations (T1 +

R1, T2 + R2, T1 + R1 + T2 + R2), RGC groups exhibited a
higher correct rate of pattern discrimination than single RGCs. In
addition, the correct rate of RGC group was positively correlated
with group size. Though not many RGCs were included in a
neuronal group which was due to the limited number of dual-
peak cells recorded in one retina, the increase in correct rate
of pattern discrimination was obvious. Thus the population
activity of RGC group improved neurons’ capacity for specific
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FIGURE 6 | The comparison of correct rates based on single neuron’s activity features. N = 18 RGCs from three retinas. Data are presented as mean ±

SEM, with the values being indicated in the bar. *p < 0.05, one-way ANOVA followed by post hoc SNK test. NS: not significant.

pattern identification. This is consistent with the notion that RGC
population activity improves coding efficiency (Fernandez et al.,
2000; Schwartz et al., 2012).

Similar results were obtained from the other two
retinas (retinas #2 and #3), in which 6 and 7 RGCs with
dual-peak patterns were record respectively, as shown in
Figures 7B,C.

DISCUSSION

In the present study, the response features and coding properties
of RGCs with dual-peak patterns during exposure to different
stimulus-interval patterns were investigated. Our results suggest
that the properties of both peaks in the RGCs’ light-ON responses
can be modulated by different preceding light-OFF intervals
(Figure 4). Stimulus discrimination results derived by LDA
method demonstrated that both response peaks contributed to
stimulus-interval coding, and better discrimination performance
was obtained when the response parameters of both peaks were
taken into account (Figure 5). These results suggest that both
peaks were involved in retinal information coding, and they
might carry information complementary to each other.

In a previous study, it was reported that the two peaks in the
dual-peak pattern were involved in light intensity discrimination,
and the generation of dual-peak pattern was independent on
flash intensity and contrast (Thiel et al., 2006). The present
study further observed that RGCs showed dual-peak responses
during exposure to light-ON stimuli led by different light-OFF
intervals, suggesting that the emergence of this particular pattern
was also independent on the preceding light-OFF interval.
Thus the occurrence of dual-peak response might be stimulus
independent, with its properties modulated by different stimulus
parameters. According to one of our previous works, the dual-
peak response might originate from the convergence of two
pathways related to the short-latency response and long-latency
response respectively (Yan et al., 2016).

The Reliable Encoding of Stimulus-Interval
Pattern by Changes in the RGC Response
Visual stimulation contains many important features, such as
stimulus intensity, contrast, and duration, etc. Previous studies
showed that both peaks in dual-peak pattern contributed to
light intensity coding (Thiel et al., 2006). In the present
study, we focused on the stimulus-interval-dependent response
changes and information coding for dual-peak cells. Here only
the encoding of different preceding light-OFF intervals was
investigated, because the dual-peak responses recorded were
mostly ON responses, observed in ON RGCs and light-ON part
of ON-OFFRGCs (Soucy et al., 1998; Yan et al., 2016). In previous
study, it has been reported that the latency and firing rate of ON
responses were modulated by preceding light-OFF intervals, but
independent on the following light-ON durations (Xiao et al.,
2014b). The interval was set within the range of seconds. In
natural environments and our daily life, many stimuli last for
the order of second, for example, the visual distress signal (SOS)
consists of three short, three long, and three short flashes of light,
with the long flashes lasting for seconds. The red beacons at the
rear of a train also flash in seconds to signal an oncoming train.

Meanwhile, RGCs’ responses also depend on many other
parameters of stimulus, such as intensity, contrast and spatial
structure and so on. In the present study, all stimulus parameters,
except the preceding interval, were kept constant during
experiment. In this way, the changes of RGC responses were
only stimulus-interval related, and the reliable encoding of
the preceding interval can be guaranteed. However whether
the changes of other stimulus parameters would influence the
interval-related response changes remains an interesting topic
and needs further investigation.

Rate Coding, Temporal Coding, and
Population Coding
Whether neurons use a rate code or a temporal code has been
a classic concern in visual neuroscience. It has been a long
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FIGURE 7 | Correct rates for stimulus pattern discrimination based on population neuron’s activity features. Correct rate was plotted against RGC group

size recorded in (A) retina #1; (B) retina #2; (C) retina #3. Data are presented as mean ± SEM. The numbers above the lines indicate the number of groups in each

group size.

time that the importance of rate coding prevails. However,
increasing evidence has shown that the temporal properties (such
as response latency, special temporal pattern, and inter-spike
interval) of the neuronal firing activity also contain information
(Berry et al., 1997; Lesica and Stanley, 2004; Greschner et al.,
2006; Gollisch and Meister, 2008; Kretschmer et al., 2012; Xiao
et al., 2014b), demonstrating the importance of temporal coding
for neural information. Besides, RGCs do not fire independently,
an ensemble of RGCs can work in concerted ways to encode
information more reliably and efficiently (Pillow et al., 2008; Jing
et al., 2010; Li and Liang, 2013).

In our present study, temporal coding and rate coding were
partly (but not fully) redundant to each other, given that the
correct rate of stimulation pattern discrimination when response
features (first spike timing and spike count) were considered
in combination C(T + R) was smaller than the sum of correct
rate C(T) and C(R). This might be due to that the changes
of latency and firing rate were correlated, i.e., an increased
latency was normally accompanied by a decreased firing rate, and
vice versa. Negative correlation between latency and firing rate
was also a common observation throughout the visual system,
which was reported to be related to the strength of stimuli
(Maunsell et al., 1999; Reich et al., 2001; Risner et al., 2010; Xiao
et al., 2014a,b). Thus it is presumable that there might be some
common mechanism contributing to the changes of latency and
firing rate (Cleland and Enroth-Cugell, 1970; Lennie, 1981). In
the present study, the changes of latency and firing rate might
due to the changes of sensitivity of RGCs which were modulated
by different preceding light-OFF intervals.

However, latency and spike count were not fully dependent
on each other, therefore, the combination of these two aspects
brought a small (5∼10% percent of increase) but significant
enhancement in stimulus identification performance (Figure 6).
And, the increase was explainable: reliable discrimination of
different stimulus patterns depends on the reliable stimulus-
response relationship. Due to the noise in the RGC’s response, the

stimulus-related changes of single parameter might sometimes be
contaminated, leading to inaccurate stimulus identification. Since
latency and firing rate both exhibited stimulus-related changes,
the combination of the two parameters might provide a more
reliable stimulus-response relationship, thus performing better
in stimulus identification. These results are well consistent with
previous findings (Fernandez et al., 2000).

Besides, it was also observed that the coding performance of a
neuron group was related to the number of neurons in the group.
The classification performance was improved while the group
size was increased, which means that more reliable information
about the stimulus features could be deduced from spatio-
temporal response patterns of retinal ganglion cell population
(Schwartz et al., 2012). These results demonstrate that the
three suggested types of neural information coding (rate coding,
temporal coding, and population coding) are all involved in
encoding the different stimulus-duration patterns.

The Firing Activities in the Two Response
Peaks Cooperate in Information Coding
Discrimination results show that estimation performance was
improved when response features of two response peaks were
considered in combination (T1 + R1 + T2 + R2) as compared
to that when response features of a single peak (T1 + R1
or T2 + R2) were considered. Discrimination of stimulus
patterns depends on the reliable differences in the responses
elicited by different stimulations. Since response features of
both peaks exhibited stimulus-related changes, thus taking both
peaks into consideration would better reveal the differences in
the neural responses, which then lead to better performance in
discrimination.

On the other hand, although the two response peaks cooperate
to improved stimulus identification, the information carried by
the two peaks are redundant, which could be simply obtained
from the result that C(T1+ R1+ T2+ R2) was smaller than the
sum of correct rate C(T1 + R1) and C(T2 + R2). Redundancy
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introduced by population code has been widely investigated,
and has been thought of as a way to improve the reliability
in information transmission (Puchalla et al., 2005). Here we
report the improvement in the stimulus discrimination brought
by the temporal pattern of RGC responses, in the presence of
redundancy. Redundancy compromises efficiency, with more
spikes being used to represent the same information (Puchalla
et al., 2005), therefore, how retina trades off redundancy and
efficiency still remains an interesting topic to explore (Tkačik
et al., 2010; Doi et al., 2012; Palmer et al., 2015).

From a recent work in our lab, it was found that the two
response peaks in the dual-peak pattern may originate from
two different pathways related to brisk response and sluggish
response respectively (Yan et al., 2016). Our present study added
to the point by showing that taking dual-peak pattern as two
discrete spike events instead of as a single event led to better
discrimination performance: C(T1 + R1 + T2 + R2) > C(T1
+ Rtotal) (data not shown). It has been identified that, brisk cells
and sluggish cells serve different functions in perception. Brisk

cells are highly sensitive to stimulus contrast, while sluggish cells
are quite selective for particular features, including local edge,
motion direction (Troy and Shou, 2002; Dhingra et al., 2003).
So could it possible that the two peaks in dual-peak response
may also encode different information about the stimulus,
and work in different stimulus conditions, this needs further
investigation.
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APPENDIX

FIGURE A1 | Separation of first and second response component. (A) PSTH (top panel, bin size = 5ms) and raster (bottom panel) of an example RGC with

dual-peak pattern are shown. PSTH was calculated from whole 150 (50 trials * 3 patterns) response sequences. Dotted line marks the trough in the PSTH. (B) PSTH

(top panel, bin size = 5ms) and raster (bottom panel) of the same RGC as in (A). PSTH was calculated from 75 (25 trials * 3 patterns) randomly selected training

response sequences. The trough appeared in the PSTH was regarded as the boundary (dotted line). The traces above the PSTH plots in (A,B) illustrate the time

course of the light stimulation.
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