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Stroke, resulting in focal structural damage, induces changes in brain function at

both local and global levels. Following stroke, cerebral networks present structural,

and functional reorganization to compensate for the dysfunctioning provoked by the

lesion itself and its remote effects. As some recent studies underlined the role of the

contralesional hemisphere during recovery, we studied its role in the reorganization of

brain function of stroke patients using resting state fMRI and graph theory. We explored

this reorganization using the “hub disruption index” (κ ), a global index sensitive to the

reorganization of nodes within the graph. For a given graph metric, κ of a subject

corresponds to the slope of the linear regression model between the mean local network

measures of a reference group, and the difference between that reference and the

subject under study. In order to translate the use of κ in clinical context, a prerequisite

to achieve meaningful results is to investigate the reliability of this index. In a preliminary

part, we studied the reliability of κ by computing the intraclass correlation coefficient

in a cohort of 100 subjects from the Human Connectome Project. Then, we measured

intra-hemispheric κ index in the contralesional hemisphere of 20 subacute stroke patients

compared to 20 age-matched healthy controls. Finally, due to the small number of

patients, we tested the robustness of our results repeating the experiment 1000 times by

bootstrapping on the Human Connectome Project database. Statistical analysis showed

a significant reduction of κ for the contralesional hemisphere of right stroke patients

compared to healthy controls. Similar results were observed for the right contralesional

hemisphere of left stroke patients. We showed that κ, is more reliable than global

graph metrics and more sensitive to detect differences between groups of patients as

compared to healthy controls. Using new graph metrics as κ allows us to show that

stroke induces a network-wide pattern of reorganization in the contralesional hemisphere

whatever the side of the lesion. Graphmodeling combinedwithmeasure of reorganization

at the level of large-scale networks can become a useful tool in clinic.

Keywords: graph theory, resting state fMRI, stroke, intra-hemispheric connectivity, hub disruption index,
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1. INTRODUCTION

In numerous neurological conditions, the adult central nervous
system retains an impressive capacity to recover and adapt
following injury. Such so-called spontaneous recovery occurs
after spinal cord injury, traumatic brain injury, and stroke.
Therefore, a basic understanding of themechanisms that underlie
spontaneous recovery of function is the initial step in the
development of modulatory therapies that may improve recovery
rates and endpoints (Nudo, 2013). In acute stroke, it has been
shown that initial damage disrupts communication in distributed
brain networks. This initial disorganization is followed by a
dynamic reorganization at subacute and chronic stage that may
determine the level of post-stroke recovery (Carter et al., 2012).
Not only disorganization in structural connectivity has been
reported and related to outcome of patients (Moulton et al.,
2015) but also functional reorganization in the motor network
of both ipsilesional and contralesional hemispheres (Loubinoux
et al., 2003; Jaillard et al., 2005; Gerloff et al., 2006; Favre et al.,
2014) to compensate for the lesion itself and for remote effects
(see Grefkes and Fink, 2014 for a review). The role of the
contralesional hemisphere in the recovery process after stroke is
supported by several studies using task fMRI paradigms (Gerloff
et al., 2006; Lotze et al., 2006; Riecker et al., 2010; Rehme et al.,
2011; Teki et al., 2013; Grefkes and Fink, 2014) but it has
not been studied before as an independent network (without
taking into account the interhemispheric connectivity) of the
brain. It is thus of clinical interest to study the reorganization
of the contralesional hemisphere in stroke patients by means of
functional connectivity fMRI at rest.

In the recent years, there has been a great amount of work
developing new investigation methods of the brain connectivity
based on fMRI. Among those, the graph theoretical approach
seems particularly useful in the context of pathology since it
underlines the role of key communicating regions (hubs) in the
graph. Since there was no graph metric aiming at capturing this
type of reorganization after brain damage, the Hub Disruption
Index (κ) was introduced in Achard et al. (2012) to capture it.
κ index summarizes graph metric changes at the nodal level in
a single value. It is thus a global index capturing changes at the
nodal level. For a given graph metric, κ is computed as the slope
of the linear regression model between the mean nodal metric
value of a reference group and the differential nodal metric value
between a given subject (patient or control) and that reference
(see Figure 1 for a graphical explanation). If the subject’s nodal
values are close to those of the reference group (Figure 1C),
the κ will be close to 0. Contrary, if the subject’s nodal values
are different from those of the reference group (Figure 1D),
with reduced values in nodes with high metric values in the
reference group, the κ will be negative. Once the reference group
is computed, the κ can be calculated for each control and each
patient individually and statistical tests can be applied to compare
the differences between groups.

According to Bullmore and Sporns (2009), hubs are crucial
nodes for an efficient communication in the network and are
identified as nodes with high degree or high centrality values. In
this paper, we computed κ using metrics that directly relate to

hubs: node degree, betweenness centrality and global efficiency;
and also in metrics that explore the neighborhood of the node,
such as, local efficiency and clustering coefficient.

The aim of this paper is to quantify the impact of the
lesion on the brain network reorganization of the contralesional
hemisphere in severe stroke patients at subacute stage. For this
purpose, κ index is a perfect tool to assess such reorganization
by comparing nodal metrics between healthy volunteers and
patients. In order to translate the use of κ in clinical context,
an essential requirement to achieve meaningful results is to
investigate the reliability of this index. For this purpose, we used
the intraclass correlation coefficient (ICC), as it was previously
assessed in several studies working with brain graphs reliability in
rs-fMRI (Schwarz andMcGonigle, 2011;Wang et al., 2011; Braun
et al., 2012; Guo et al., 2012; Liang et al., 2012; Cao et al., 2014).

This paper is divided into three parts: in the first part, we
assessed the reliability of κ , over different graph metrics, by
computing the ICC in a cohort of 100 healthy subjects using
the database from the Human Connectome Project (HCP)1. We
calculated the ICCs and their p-values, applying bootstrap and
permutation techniques to check for the influence of the number
of subjects and of the number of edges (cost) in brain graphs.
We also explored whether there is a laterality effect by testing
the graphs of the intra-hemispheric connectivity from the left
and from the right hemispheres in healthy control subjects using
the HCP dataset. In the second part of the paper, we used the κ

index to study the reorganization that occurs in the contralesional
hemisphere of 20 severe subacute stroke patients. Finally, in the
third part, we tested the robustness of the results obtained in
this clinical study by randomly choosing 20 subjects as “patients”
and 20 subjects as “controls” from the HCP database, computing
the difference in κ between them and replicating 1000 times this
procedure.

2. MATERIALS AND METHODS

2.1. Databases
The dataset used to assess the reliability of the κ index was
selected from a large sample of rs-fMRI dataset publicly released
as part of the Human Connectome Project (HCP), WU-Minn
Consortium. The sample includes 100 subjects: 99 young healthy
adults from 20 to 35 years old (54 females) and 1 healthy adult
older than 35. Each subject underwent two rs-fMRI acquisitions
on different days. Subjects were instructed to keep their eyes open
and to let their mind wander while fixating a cross-hair projected
on a dark background (Smith et al., 2013).

The clinical study, HERMES (PHRC2010) was the ancillary
MRI study of a stem cells clinical trial, ISIS2. Patients were studied
using fMRI at inclusion time (5 weeks post-stroke), received
standard medical care, and admitted to a stroke rehabilitation
center. The main inclusion criteria were: (1) right or left carotid
ischemic stroke in the prior 14 days confirmed by MRI, (2)
persistent moderate to severe movement deficits at one month

1http://www.humanconnectome.org/
2https://clinicaltrials.gov/ct2/show/NCT00875654?term=ISIS+stroke+stem+

cells&rank=1
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FIGURE 1 | Estimation of κ . The nodal network topology (here, node degree) of an individual subject in relation to the normative network topology of the healthy

control group (A) for one healthy volunteer and (B) for one stroke patient. To construct the hub disruption index κ for the degree, we subtract the healthy group mean

nodal degree from the degree of the corresponding node in an individual subject before plotting this individual difference against the healthy group mean. κ is the

slope of the regression line computed on this scatter plot. This transformation means that the data for an individual healthy volunteer (C) will be scattered around a

horizontal line (κ ∼ 0), whereas the data for a patient in a stroke (D) will be scattered around a negatively sloping line (κ < 0).

post stroke (NIHSS > 7 and < 24), (3) optimal medical
treatment (antithrombotic, antihypertensive, statins) (4) clinical
status compatible with participating in the hospital rehabilitation
program, and (5) willingness to participate. Patients with a
previous history of neurological disease with a consequent
movement deficit, claustrophobia, or psychiatric disease were
excluded. Details are provided in the study website. Three out of
the 31 enrolled patients were excluded: one for claustrophobia,
one for refusal to continue, and one for psychiatric disease. Data
from six patients were further rejected due to large motions
(more than 12% of fMRI volumes rejected), and two of them had
lesions in both hemispheres. Thus, the final sample comprised
the 20 remaining patients, whose demographic characteristics
are given in Table 1. The 20 patients were matched for age and
gender with 20 healthy controls.

2.2. Neuroimaging Data Acquisition
The data of Human Connectome Project were collected on
the 3T Siemens Connectome Skyra MRI scanner with a 32-
channel head coil. All functional images were acquired with eyes

open with relaxed fixation on a projected bright cross-hair on a
dark background, using a multiband gradient-echo EPI imaging
sequence with the following parameters: 2 mm isotropic voxels,
72 axial slices, TR = 720 ms, TE = 33.1 ms, flip angle = 52◦,
field of view = 208 × 180 mm2, matrix size = 104 × 90, and
a multiband factor of 8. 1200 images were acquired in a scan
duration of 14 min and 24 s. For more detailed parameters,
see (Smith et al., 2013). Two high resolution structural images T1-
weighted (T1w) and T2-weighted (T2w) were further collected.
They were acquired with a 3D MPRAGE sequence and a 3D T2-
SPACE sequence, respectively. The main MR parameters for the
T1w image were: TR = 2.4 s, TE = 2.14 ms, TI = 1000 ms, flip
angle= 8◦, field of view= 224×224 mm2, and 0.7 mm isotropic
voxels and for the T2w: TR = 3.2 s, TE = 565 ms, flip angle =
variable, field of view = 224 × 224 mm2 ,and 0.7 mm isotropic
voxels; rs-fMRI data were acquired in four runs of approximately
15 min each, two runs in one session and two in another session.

In the case of the HERMES study, the MRI data of the
patients and controls were acquired at a 3T (Achieva 3T TX,
Philips, NL) at the IRMaGe MRI facility (Grenoble, France). The
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TABLE 1 | Demographics of stroke group.

Lesion # Age Gender

(M/F)

NIHSS Lesion vol (ml)

Right 9 49± 11 [27–63] 7/2 12± 1 [9–14] 71± 72 [09–241]

Left 11 56± 9 [38–67] 7/4 13± 6 [7–23] 95± 59 [33–220]

Mean, SD, and range for age, clinical score NIHSS and lesion volume are given.

resting-state functional images were acquired using a gradient-
echo EPI imaging sequence with the following parameters: in
plane 3 mm isotropic voxels, 36 axial slices of 3.5 mm thick, gap
= 0.25 mm TR = 2000 ms, TE = 30 ms, flip angle = 75◦, field
of view= 192× 192 mm2. Four-hundred volumes were acquired
for a total scan duration of 13 min and 20 s, with eyes open with
relaxed fixation on a projected white cross-hair on a dark gray
background.

2.3. Preprocessing Pipelines
We have used two different preprocessing pipelines, one for each
of the database used in this experiment.

2.3.1. HCP Data
T1w and T2w were corrected for bias field and distortions,
coregistered together and registered to the MNI152 atlas using
linear and non-linear registration functions. After registration to
the atlas image, we segmented the individual T1w to obtain a gray
matter (GM) probability map that was later used to extract the
time series to compute the graphs. Functional data were corrected
for distortions and subject motion. They were registered to the
individual structural image and further to the MNI152 atlas
space, using the transforms applied to the structural image. All of
these preceding transforms were concatenated, together with the
structural-to-MNI non-linear warp field, so that a single resulting
warp (per time point) was applied to the original time series to
achieve a single resampling intoMNI space. Finally, the 4D image
was normalized to a global mean, the bias field was removed
and non-brain voxels were masked out. For more details of the
preprocessing pipeline, see Glasser et al. (2013).

2.3.2. HERMES Study
Functional data were realigned and slice time corrected.
Structural images were first coregistered to the mean EPI and
segmented to obtain the GM probability map, that was elastic
registered (using DARTEL Ashburner, 2007 in SPM12) onto the
ICBM152 template. Resulting deformation field was then applied
to the EPI and GM data to be later used to extract the time series
to compute the graphs.

2.4. Time Series Extraction and Graphs
Computation
2.4.1. Time Series Extraction
The structural brain images were parcellated according to a
modified version of the classical Anatomic-Automatic Labeling
(AAL) (Tzourio-Mazoyer et al., 2002) composed of 89 regions
(see Supplementary Material for more information). For the
computation of the intra-hemispheric graphs, each hemisphere

was divided in 44 regions, and the vermis of the cerebellum
was removed from the parcellation template. Inter-hemispheric
graphs were only computed to assess the reliability of κ in the
whole brain. In this case, the complete parcellation scheme was
used for the computation of the graphs.

In each parcel, regional mean time series were estimated by
averaging, at each time point, the fMRI voxel values weighted
by the GM probability of these voxels. This weighting limits
the contamination of the time-series by white matter signals
and cerebrospinal fluids. Residual head motion were eventually
removed by regressing out motion parameters and outliers
detected using the ART toolbox3.

2.4.2. Wavelets Decomposition
Wavelet transforms perform a time-scale decomposition that
partitions the total energy of a signal over a set of compactly
supported basis functions, each of them uniquely scaled in
frequency and located in time (Achard et al., 2006). We applied
the maximal overlap discrete wavelet transform (MODWT) to
each regional mean time series and estimated the pairwise inter-
regional correlations at each of the wavelet scales.

The wavelet decomposition is dependent on the repetition
time (TR) of the rs-fMRI acquisition protocol. The databases
used in this experiment have different TR. In the HCP database
the TR = 0.72 s, while in the HERMES database the TR =
2.00 s, providing a maximum frequency f = 1/(2TR) of f
= 0.69 Hz and f = 0.25 Hz, respectively. Each time a dyadic
wavelet frequency band is obtained, the frequency is divided
by 2. The relevant information for rs-fMRI data is then mainly
contained within the scale 4, for HCP data, that represents the
frequency interval 0.043 − 0.087 Hz, and within the scale 3, for
HERMES data, that represents the frequency interval 0.032 −

0.065 Hz. This choice was guided by the fact that, for resting-state
fMRI data, frequencies below 0.1 Hz contain the most relevant
information (Biswal et al., 1995).

2.4.3. Graph Computation
All pairs of correlations between regions are further pooled
for each of the subjects into a correlation matrix. To compute
the graph, we first extracted the minimum spanning tree
based on the absolute correlation matrix to keep the graph
fully connected (Prim, 1957; Alexander-Bloch et al., 2010).
The remaining absolute values of correlation matrices were
thresholded to create an adjacency matrix that defines, for each
hemisphere of each subject, an unweighted and undirected graph
G = [aij]1≤i,j≤N , whereN is the number of nodes in G and where
aij = 0 or 1 for all the 1 ≤ i, j ≤ N. A threshold R was computed
to produce a fixed number of edgesM. This way the comparison
between the extracted graphs is easier. Graphs are computed for
different costs, which is defined as the ratio between the number
of selected edges among all possible edges in the graph. More
detailed information can be found in Achard et al. (2006).

In order to study the contralesional reorganization of the
brain after stroke, graphs were computed for each hemisphere
separately (intra-hemispheric graphs), only in the contralesional
hemisphere in patients and in both, left and right hemispheres

3https://www.nitrc.org/projects/artifact_detect/
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(independently) in controls. In the case of the inter-hemispheric
graphs (when we assess the reliability of κ in controls), graphs
were computed for the whole brain.

2.5. Graph Metrics
Each graph metric gives a particular description of the topology
of a graph. They can be computed at different levels, providing
information at the global level (global metrics), about clusters
inside the graph (intermediate metrics) or about each particular
node (nodal metrics). Some metrics, such as local efficiency (Eli )
or clustering coefficient (Ci), rely on the connectivity properties
in the neighborhood of a node; while other metrics, such as
global efficiency (Egi ) and betweenness centrality (Bi), describe
the influence of a particular node in the propagation of the
information along the whole network.

The simplest graph metric is the degree of a node i, Di. It
corresponds to the number of links that connect the node with
the rest of nodes in the graph

Di =
∑

j∈N

aij.

Global efficiency measures how the information in the network
is propagated. It is defined as the inverse of the harmonic mean
of the minimum path length Lij between a node i and the
rest of nodes in the graph (Latora and Marchiori, 2001). It is
computed as

Egi =
1

N − 1

∑

j∈N,j 6= i

1

Lij
.

The number of shortest paths going through a node i is known as
betweenness centrality (Bi) (Freeman, 1977; Brandes, 2001)

Bi =
∑

i 6= j 6=k

ρjk(i)

ρjk
,

where ρjk is the number of shortest paths between nodes j and k,
and ρjk(i) is the number of shortest paths between nodes j and k
that pass through i.

We have also tested the local efficiency (Eli ). It is a measure
of information transfer in the immediate neighborhood of each
node (Latora and Marchiori, 2001). It is computed as follows:

Eli =
1

NGi (NGi − 1)

∑

j,k∈Gi

1

Ljk
,

where Gi is a subgraph of G extracted from the set of nodes that
are the nearest neighbours of node i.

Finally, we tested the clustering coefficient (Ci) (Watts and
Strogatz, 1998) which is a measure of the degree to which nodes
in a graph tend to cluster together:

Ci =
1

N

∑

i∈N

2ti

Di(Di − 1)
,

where ti is the number of triangles around a node i, defined as
ti =

1
2

∑
i6=j 6=k aijajkaik (Watts and Strogatz, 1998).

To extract the network parameters, we used brainwaver and
igraph R libraries, tools that are freely available on CRAN4,5.

2.6. Hub Disruption Index (κ) Computation
The hub disruption index (κ) was first introduced by Achard et al.
(2012). It is a metric that evaluate the nodal network topology
of a subject in relation to a referential network topology (i.e.,
the normative network topology of a healthy control group). It
can be used to compare the behavior of the network of a single
subject (healthy or patient) with respect to a referential network
topology, but also to compare the differences between two groups
with respect to a referential network topology.

Consider the case of a single healthy volunteer compared
to the healthy control group (Figure 1A). Choosing one graph
metric at the nodal level, for example the node degree in this
figure, we plot the value of each node of the individual volunteer
against the average degree for the same nodes of the healthy
control group, taken as a reference. We can observe that the
points fall approximately on a positive slope line of the type
y = x. This means that the nodes’ value of a healthy volunteer
is similar to the average value of the same nodes from the group
of controls. Contrary, if we proceed similarly with a stroke patient
(Figure 1B), we observe that the slope line is not around the
y = x line. This means that the degree of any particular node
in a stroke patient is not well-predicted by the average degree
of the same node in a group of healthy controls. To compute
κ , we proceed as follows: we subtract the healthy group mean
nodal degree (or any other nodal metric) of the same node in
an individual volunteer before we plot that difference against the
healthy control group mean. In this case, for a healthy volunteer
(Figure 1C), the data will be scattered around an horizontal line
(κ ∼ 0) and for an individual patient (Figure 1D) around a
negatively slope line (κ < 0).

2.7. Reliability of κ with Intraclass
Correlation Coefficient
The intraclass correlation coefficient (ICC) is an index that
compares the variability of a metric during different sessions of
the same subject to the total variation across all sessions and all
subjects. It is based on the comparison of the within-subject and
between-subject variability.

Following Shrout and Fleiss (1979), we applied a one-way
random effect model, noted ICC (1,1), defined as:

ICC =
sb − sw

sb + (k− 1)sw
(1)

where sb is the variance between subjects, sw is the variance within
subjects and k is the number of sessions per subject. ICC is
close to 1 when the reliability is high, and close to 0 when the
reliability is low. It may take negative values when the variance
within subjects is larger than between subjects, but this is due

4http://cran.r-project.org/web/packages/brainwaver/index.html
5http://cran.r-project.org/web/packages/igraph/index.html
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to statistical errors given a particular data set and should be
considered as a non-reliable estimation.

2.8. Reliability of κ in Controls
The κ index is proposed as a measure to capture network
disorganization in individuals or groups as compared to a
reference group. The assessment of its reliability in controls is
a complementary step because if it is found as a reliable index,
it will increase the chance of finding differences between groups,
even if it does not assure that differences between groups will be
found (Shirer et al., 2015).

We used HCP database to assess the reproducibility of κ in
control subjects calculated over the five metrics explained above,
for costs ranging between 10 and 75%. We used the mean of
session 1 as reference to compute κ for each subject’s session 1
and the mean of session 2 as reference for the κ of session 2. The
between and within subjects variances were computed and ICC
values for κ were derived following the formulae above. This was
done for the whole group of 100 subjects and for subgroups of 20,
40, and 60 subjects applying bootstrap sampling.

For each subgroup size, to provide uncertainty and p-values
on ICC, we randomly permuted the sessions between subjects.
For that purpose, we used Simctest (Gandy, 2009). It is an open-
ended sequential algorithm to compute the p-value of a test using
Monte Carlo simulation. It guarantees that the resampling risk,
the probability of a different decision than the one based on the
theoretical p-value, is uniformly bounded by an arbitrarily small
constant. A more detailed description can be found in Termenon
et al. (2016).

In a complementary experiment, we also tested whether the
intra-hemispheric κ index could be different between the right
and the left hemispheres. Intra-hemispheric κ was computed
among all the nodes of a single hemisphere. Then, we compared
the intra-hemispheric κ of the left vs. the right hemisphere
using as reference the mean between left and right metric
values for each session of HCP database independently. We also
tested across sessions the reliability of the left intra-hemispheric
connectivity and of the right intra-hemispheric connectivity,
separately. As reference, we used the mean between both sessions
of the left hemisphere and the mean between both sessions of
the right hemisphere, respectively. To evaluate the significance of
these differences, statistical tests were performed using Wilcoxon
rank-sum test (p < 0.05).

In case of no laterality effect in the intra-hemispheric
connectivity in controls, we consider that the contralesional
intra-hemispheric connectivity in stroke could be pooled
together, independently of the side of the lesion.

2.9. Comparison of κ in Patients and
Controls
Using the HERMES dataset, we studied the differences between
controls and patients at different costs by computing the κ index
for the five graph metrics introduced above.

We performed two types of analysis: in the first one, we
pooled all the patients (n = 20), whatever the side of the lesion,
and compared the κ of the contralesional hemisphere against
the mean of left and right hemispheres in controls, without
taking into account the inter-hemispheric connectivity. In the

second analysis, we explored each sub-group of stroke patients
according to the side of the lesion (n = 9 and n = 11 for
right and left side lesions, respectively). Therefore, we compared
9 left contralesional hemispheres against 20 left hemispheres
of controls and 11 right contralesional hemispheres against 20
right hemispheres of controls. In both analysis, to evaluate
the significance of these differences, non-parametric tests were
performed using Wilcoxon rank-sum test (p < 0.05).

2.10. Robustness of κ Results in Patients
For rigorous purpose, we replicated the experiment explained
above on healthy subjects from the HCP database using bootstrap
techniques. Due to the small number of patients and controls,
20 in each group, we wanted to check whether the statistically
significant differences obtained when comparing both groups
were reproducible in a group of healthy controls of the same size.

For each bootstrap iteration, we randomly selected 20 subjects
which played the role of reference group and another 20 subjects
that played the role of test group. As in the previous section,
we performed two different analysis: in the first one, for the
reference group, we computed the mean between left and right
hemispheres (same way we did with the HERMES study); for
the test group, we selected 9 left hemispheres and 11 right
hemispheres and pooled them together in the same group. In the
second analysis, we selected 11 right hemispheres (that played the
role of the 11 right contralesional hemispheres of stroke patients)
and compared them to 20 right hemispheres (corresponding to
the 20 controls) and similarly, we selected 9 left hemispheres
that were compared to 20 left hemispheres. For each of the 1000
bootstrap iterations corresponding to a selection of two groups,
we computed the 5 mean graph metrics, the κ related to each
metric and the z-value of the differences between groups.

2.11. Cortical Surface Rendering
Cortical surface representations of the distribution of the mean
differences between healthy controls’ and stroke patients’ groups
was done with Caret v5.64 software (Van Essen et al., 2001).
The significance of the group differences in the above mentioned
graphmetrics at each region were tested usingWilcoxon test with
a false positive correction p < (1/N) = 0.023 (as in Lynall et al.,
2010), where N is the number of regions, in our case 44 in each
hemisphere.

3. RESULTS

3.1. Reliability of κ in Controls
To test the reliability of κ , we computed the ICC on subgroups
of 20, 40, 60, and 100 subjects. We applied permutations and
bootstrap techniques to assess the p-values of the obtained ICC.
In Figure 2, we show the ICCs and their p-values of κD with
respect to cost, for the different subgroups’ sizes. We considered
separately the left intra-hemispheric connectivity (LEFT), the
right intra-hemispheric connectivity (RIGHT) and the whole
brain connectivity including both intra- and inter-hemispheric
connections (ALL).

In the case of intra-hemispheric connectivity, for a cost equal
to or above 20%, we observed an ICC value that is roughly
independent of the cost, with an uncertainty on the ICC that

Frontiers in Computational Neuroscience | www.frontiersin.org 6 August 2016 | Volume 10 | Article 84

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Termenon et al. Hub Disruption Index in Stroke

FIGURE 2 | Reliability results for κ degree (κD) in terms of number of subjects as a function of the cost from 10 to 75%, in steps of 2.5%. Results are

given for subgroups of 20, 40, 60, and finally, 100 subjects using the database of the HCP project. First column, p-values of ICC (y-axis) as a function of ICC values

(x-axis) for different number of subjects. Second column, values of ICC (y-axis) as a function of the cost (x-axis) for different number of subjects. Third column, ICC

associated p-values (y-axis) as a function of the cost (x-axis) for different number of subjects. LEFT refers to the graph built from the left intra-hemispheric

connections, RIGHT for the right intra-hemispheric connections. ALL refers to the graph built from connections of the whole brain. In addition, we found that κD is

more reliable than classical metrics. We observed similar behaviors with other metrics (compare Figure S1 and Figure S2 in Supplementary Material).

depends on the number of subjects (it is reduced with an
increasing number of subjects). Below 17.5% cost, the graph is
too sparse and the κD index was not reliable. When considering
connections from all the brain, we achieved higher reliability
than when considering only intra-hemispheric connections for
costs below 40%. When the cost is high, it means that the graph
is highly connected, and thus the between and within variance
differences can be reduced. We have to underline here that these
ICC values are also dependent on the acquisition duration, as was
shown in Birn et al. (2013); Termenon et al. (2016).

Similar results were found with the other graph metrics we
tested: global efficiency (Figure S1 in Supplementary Material),
betweenness centrality, clustering, and local efficiency. For the

sake of comparison, under the same experimental conditions
(same database, graph methodology, permutation, and bootstrap
sampling), the ICC(Eg) was lower considering the whole brain
(ranging between 0.30 at 20% cost and 0.40 at 40% cost) and also,
the intra-hemispheric connectivity (Figure S2 in Supplementary
Material). These results show that κEg is more reliable than the
average Eg metric obtained by averaging all the nodes.

3.1.1. Comparison of κ Per Hemisphere in Controls
The differences between left and right intra-hemispheric
connections using the 100 subjects of the HCP are shown
in Figure S3 of Supplementary Material. We compared the
intra-hemispheric connectivity of left and right hemispheres
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FIGURE 3 | Group differences between mean intra-hemispheric connectivity in controls and contralesional hemispheric connectivity in stroke patients

according to classical graph metrics (left column) and κ index (right column). Metrics (y-axis) correspond to global efficiency (mean Eg and κEg , respectively),

local efficiency (El and κEl ), betweenness centrality (B and κB), clustering coefficient (C, and κC) and node degree (κD). Cost (x-axis) ranges from 5 to 30%. Error bars

indicate standard deviation and significant differences (Wilcoxon, p < 0.05) are indicated with asterisk (*) (* < 0.05; ** < 0.01; *** < 0.001). Using κ, we found huge

significant differences between the two groups while with classical graph metrics, differences were difficult to observe.
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FIGURE 4 | κD hub disruption of functional networks in stroke patients contralesional hemisphere, computed at a 20.0% cost. (A) Boxplots of the

individually estimated hub disruption indices for the healthy volunteer group and the stroke patient group. On the left, healthy volunteer group left hemisphere and

stroke contralesional left hemisphere; on the right, healthy volunteer group right hemisphere and stroke contralesional right hemisphere. Significant differences

(Wilcoxon, p < 0.05) are indicated with asterisk (*) (* < 0.05; ** < 0.01; *** < 0.001). (B) On the left, results of the healthy volunteer group left hemisphere and the

stroke group with left contralesional hemisphere, where κ = −0.27; on the right, results of the healthy volunteer group right hemisphere and the stroke group with

right contralesional hemisphere, where κ = −0.36. (C) Cortical surface representation of the difference in mean D between both groups; red denotes increased D, on

average, in patients compared with healthy volunteers; blue denotes abnormally decreased D in stroke patients. (D) nodes that demonstrated significant

between-group difference in nodal D; Wilcoxon test, p < 0.023; red denotes significantly increased D and blue denotes significantly decreased D in the patients on

average.
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for each session independently (upper row). To compute the
κD, we used the mean between left and right hemispheres as
reference, considering only the intra-hemispheric connections
(inter-hemispheric connections were excluded). We found no
significant differences between the left and the right intra-
hemispheric connectivity, neither in the first session nor in the
second session.

In the second comparison (lower row of Figure S3 in
Supplementary Material), we studied if there were differences
across sessions for each hemisphere, independently. For each
session, we compared the intra-hemispheric connectivity of the
left hemisphere, using as reference the mean between sessions
of the left intra-hemispheric connectivity. Same procedure was
applied for the right hemisphere. We found no effect of the
sessions on the intra-hemispheric connectivity, nor for the left
hemisphere neither for the right hemisphere.

The lack of laterality effect in the intra-hemispheric
connectivity supports the view that contralesional intra-
hemispheric connectivity, independently of the hemispheric
location of the stroke lesion, could be pooled together. This
motivates the fact that, in the study on stroke patients, we pooled
together the data of patients with right-sided and left-sided
lesions. We also eventually performed the statistics in separated
sub-groups.

Similar results were obtained with the other tested graph
metrics: κEg , κEl , κB and κC.

3.2. Hub Disruption Index κ in Patients
We performed two different experiments. First, as we did not find
any significant difference between left and right hemispheres in
controls, we pooled the left and right contralesional hemispheres
of stroke patients into a single group and compared them against
the mean between left and right hemispheres of the controls.
The results for graph metrics and κ are shown in Figure 3.
Second, we analyzed each hemisphere independently in patients
and controls. Results are shown in Figure 4 for κD and in Figures
S4–S7 of the Supplementary Material for the other tested graph
metrics.

3.2.1. κ in Patients vs. Controls
In the right column of Figure 3, we show the comparison
among the κ values of Eg , El, B, C, and D between the
mean controls’ left and right intra-hemispheric connectivity
and patients’ contralesional hemispheric connectivity, for costs
ranging between 5 and 30%. We found that κ index was
significantly reduced in patients as compared to controls for κEg ,
κEl and κD at all costs and for κB at costs above 10%. In the case of
κC, we found a significant reduction in patients only with a graph
density corresponding to costs above 20 or below 10%.

Taken together, the results obtained with κEg , κD, and
κB indicate that a global reorganization is occurring in the
contralesional hemisphere of patients. The results related to
κEl and κC suggest also a reorganization using metrics at the
neighborhood level.

The comparison of the intra-hemispheric connectivity
between patients and controls using the classical graph metrics
are shown in the left column of the Figure 3. Global efficiency

(Eg), local efficiency (El), betweenness centrality (B), and
clustering (C) are displayed in the left column for cost values
ranging between 5 and 30%. The only significant difference
between both groups was found for Eg at 25 and 30% costs
(Wilcoxon test, p < 0.05).

3.2.2. κ Per Hemispheric Lesion Side
In order to explore whether our results could differ between
left-sided and right-sided lesions, we computed the differences
of κ between controls and patients at 20% cost, comparing
left control hemispheres against left contralesional patients
hemispheres (nine subjects) and right controls hemispheres
against right contralesional patients hemispheres (11 subjects).
In Figure 4A, we show the values of κD estimated for all the
subjects, while in Figure 4B we plot the mean D of each node
in the control group against the difference between groups in
mean D of each node. We found a κD = −0.27 for the right-
sided lesioned patients and κD = −0.36 for the left-sided
lesioned patients. The cortical surface representation of the mean
D differences between stroke patients and controls is shown
in Figure 4C, where red denotes increased D, on average, in
patients compared to controls while blue denotes abnormally
decreased D in stroke patients. Finally, in Figure 4D, we show
the brain regions that demonstrated significant between group
differences in D, corrected for multiple comparison applying
Wilcoxon test (p < 1/N) as indicated in Section 2.11. In right-
sided stroke lesion, we found that the occipital cortex, which
was high-D region in the normal brain networks, became a
low-D region in the stroke brain networks. When the lesion
is on the left side, we found the same trend in the lingual
gyrus.

Similar results were obtained in the case of κEg (see Figure
S4), where κEg = −0.35 for the right-sided lesioned patients and
κEg = −0.37 for the left-sided lesioned patients. We observed
that calcarine area, cuneus and lingual gyrus, which were high-Eg
regions in the normal brain networks, became low-Eg regions in
the stroke brain networks (in both, left and right hemispheres),
and also occipital lobe in left hemisphere; whereas the parietal
inferior gyrus, which was low-Eg region in the normal group
became high-Eg region in the patient group. Same analysis was
performed on each subgroup of patients with κEl , κB, and κC.
The corresponding results are displayed in the Supplementary
Material in Figures S5–S7, respectively.

3.3. Robustness of the Patients’ Results
We are concerned that the sample of patients is small, even
smaller if we separate the patients into two subgroups, left and
right sided lesions. In order to test if the significant differences
found between patients and controls are robust, we performed a
repeated bootstrap sampling from the HCP data.

We randomly selected 20 subjects that simulated the healthy
controls, 11 subjects that played the role of left-sided lesion
patients, and nine more subjects as right-sided lesion patients.
For each random selection, we computed the κ of each subject
and the z-values (Wilcoxon test) of the comparison of κ values
between the control and patient groups for each graph metric.
We repeated the same procedure 1000 times. The p-value was
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computed counting how many times the z-values were lower
than the one we obtained with our true control and patient
groups.

Two different experiments were performed: first, pooling left
and right contralesional hemispheres (to test the results obtained
in Figure 3 but only at 20% cost) and second, comparing left
contralesional hemisphere in patients to left hemisphere in
controls and right contralesional hemisphere in patients to right
hemisphere in controls (to test the results obtained in Figure 4

and Figures S4–S7). Results are shown in Figure 5. With the
limitation that our on-site data are not acquired in the same
conditions than the HCP data, the bootstrap sampling tend to
show that the results obtained on κEg (left, p = 0.019; right, p
= 0.005; pooling left and right, p = 0.003), κEl (left, p = 0.016;
right, p = 0.013; pooling left and right, p = 0.012) in the three
cases and κD (left, p = 0.111; right, p = 0.011; pooling left and
right, p = 0.006) in the left-sided lesion subgroup and pulling
both sides lesions are significant. With κB, there is only a trend
of significance (left, p = 0.072; right, p = 0.075; pooling left and
right, p= 0.096), while with κC (left, p= 0.073; right, p= 0.236;
pooling left and right, p = 0.041), results are significant when
pooling both sides lesions in the same group, and not significant
dividing the patients into subgroups.

4. DISCUSSION

In this study, we explored the “hub disruption index” (κ) that
aims at capturing brains’ networks reorganization in order to
propose it as a new tool for clinical investigation of brain lesions.

4.1. Characteristics of κ : Reliability, Group
Discriminability
We first showed that κ is more reliable than global graph
metrics in healthy subjects. We then applied it to explore
the reorganization of the brains’ contralesional hemispheric
networks in the post-acute stage of severe stroke patients.
We found significantly lower κ-values in the contralesional
hemispheres of the patients’ brain networks indicating the
presence of reorganization in the contralesional hemisphere, a
result that was not found when using classical graph metrics.
Through this clinical example, we showed here that κ is
more reliable than graph metrics and more sensitive to detect
differences between groups of patients as compared to healthy
controls.

κ index can be computed on different graph metrics. As
shown in Figure 3, some κ metrics present higher group
discriminability, as assessed by the significance of the group
differences. κ appears to be more sensitive when computed
on degree, global efficiency, and local efficiency. These results
confirm those found with these classical metrics (Guo et al.,
2012).

4.2. Sample Size and Group
Discriminability with κ

The ICC reliability relates to the variance of the measures.
ICC is commonly classified into different categories (Cicchetti,

1994; Sampat et al., 2006): less than 0.4 indicates low reliability,
0.4 to 0.6 indicates fair reliability, 0.6 to 0.75 indicates good
reliability, and greater than 0.75 indicates excellent reliability.
However, there are several limitations of ICC approaches, as
described byMüller and Büttner (1994). ICC estimationmay vary
according to the estimation method leading to different versions
of ICCs and ICCs are dependent on the range of the measuring
scale. Consequently, it has been recommended to calculate
confidence intervals or p-values in addition to ICCs (Shrout and
Fleiss, 1979).

Here, with a group of 20 subjects or higher, we showed that we
can achieve reliable κ estimation for the whole brain connectivity
analysis (p ∼ 0.05) even if the ICC values are not very high.
For the intra-hemispheric connectivity, κ estimation presents
less reliability and thus a larger variance. As a consequence,
in this case, the discriminability between two groups is more
difficult to achieve, but when differences between groups are large
enough, even small groups can be sufficient to detect the effect.
This situation could be compared to the Student t-test: when
the difference between two Gaussian curves is sufficient, this
difference can be statistically significant even with large variance
in the Gaussian curve and with a low number of degrees of
freedom.

In this paper, the difference in κ between each sub-group
and controls is so large that despite the small sample size, we
could observe significant differences between both groups. In a
recent study, the discriminability between groups was considered
a criterion as important as the reliability for the purpose of
translation to clinical studies and it was used in the evaluation
of different connectivity methods, namely ROI-based analysis
and ICA based analysis (Shirer et al., 2015). Here, we showed
that graph based κ index is both reliable and has the ability to
discriminate between groups.

4.3. κ as a Measure of Brain Network
Reorganization
Since κ , for a given individual, is computed by linear regression
of all nodal metric differences between this individual and
the mean nodal metric computed on a group of controls (see
Figure 1), the larger the differences between nodal metrics,
the larger the κ . This index is thus specially sensitive to
the combination of underconnected and overconnected brain
regions, a situation that occurs in different neurological and
psychiatric brain disorders in comparison to a control group.
The significantly disconnected regions were found mainly in the
occipital lobes and overconnected regions were in the superior
parietal cortex. This pattern presents some similarities with the
one found in the post-anoxic comatose patients (Achard et al.,
2012). However, it should be noticed that resting state data
were acquired with eyes open in controls, and that patients
with severe subacute stroke were not all capable to keep their
eyes opened during the whole session. Reorganization of the
functional network in the eye-opened state compared to the
eye-closed state has been reported in previous works, with
decreased or increased efficiency at the nodes related to the
default mode network and the visual network (Xu et al., 2014).
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FIGURE 5 | Analysis of the robustness of the significant differences between controls and stroke patients using the HCP database. 1000 bootstrap

sampling iterations were performed. In each iteration, 40 subjects were randomly selected (20 subjects as healthy controls, 11 subjects as left-sided lesion patients,

and 9 subjects as right-sided lesion patients), their respective κ index and the z-values (Wilcoxon test) of the comparison of κ between the control and patient groups

for each graph metric were computed. Histograms with the bootstrap sampling of κEg , κEl , κD, κB, and κC at 20% cost are shown. First column, replication of left

lesioned stroke; middle column, of right-sided lesion stroke; last column, pooling left and right-sided lesion groups, and compared against the mean between left and

right hemispheres in controls. The red star corresponds to the true z-value obtained from the comparison of κ between patients and controls.
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Therefore, a question that remains to be addressed is how eye
closure may have influenced the changes observed in the brain
network.

4.4. Potential Clinical Interest of κ

The clinical interest of κ has been shown in different pathological
conditions such as in disorders of consciousness (Achard et al.,
2012), in epilepsy (Ridley et al., 2015), or in neuromyelytis
optica (Hemmert et al., 2013). In comatose patients, we found
that the brain connectivity was profoundly modified with
both disconnected and overconnected nodes. κ was indeed
deeply reduced in these patients as compared to healthy
subjects (Achard et al., 2012).

At our knowledge, this is the first time that a global change
of connectivity is observed within the contralesional hemisphere
in stroke. In a computational model of focal brain lesions,
Alstott et al. (2009) found that lesions produced specific patterns
of altered functional connectivity among distant regions of
cortex, often affecting both cortical hemispheres. In the clinical
situation of reversible single hemisphere sedation, currently
known as “Wada test,” that mimics single hemispheric lesions,
large topological modifications affecting in particular the hubs of
the networks were found with EEG investigation (Douw et al.,
2009).

In many other brain disorders thought to be subtended
by hubs lesions (Crossley et al., 2014), such as Alzheimer
disease (Buckner et al., 2009), we argue here that this κ metric
deserves to be used. However the relationship between κ and
behavioral clinical scores remains to be explored to assess
whether κ could be used as a surrogate biomarker.

4.5. Remaining Issues about κ

Fewmethodological issues remain in the exploration of networks
reorganization with κ . First, the variance within the reference
group is not taken into account in the computation of κ .
Second, the work done here was performed using the template
AAL (Tzourio-Mazoyer et al., 2002) but few studies are using
finer parcellation schemes with more reliable results (Termenon
et al., 2016). Thus, the influence of the parcellation template
needs to be explored in order to be able to choose the template
providing the highest reliability together with a high group
discriminability.

An other issue relates to the scan duration. Here, we
considered the total scan duration available, corresponding to
14’24”. However, this duration is long and tiring for patients and
a lot of clinical studies are acquired with shorter scan duration.
It would thus be of interest to study the reliability of κ with
respect to the scan duration. It is likely that κ presents a higher
reliability as the scan duration increases, as shown in our previous
study with the Human Connectome Project (Termenon et al.,
2016).

The most challenging issue about κ is to interpret this metric
in the context of brain networks. This could be addressed using
different experiments on physiological parameters in animal
models, for example. Such studies are out of the scope of this
paper.
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