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The Editorial on the Research Topic

Neural and Computational Modeling of Movement Control

INTRODUCTION

There exists a gap from experimental data to the understanding of neural control of movements.
This research topic was dedicated to promote computational modeling approach that can facilitate
data interpretation (Niu et al.; Ranjbaran and Galiana; Pearson et al.; Sharif Razavian et al.; Malik
et al.), elucidate control theories (Ueyama; Ota et al.; Takemura et al.), shed light on systemic
mechanisms (Buhrmann and DiPaolo; Pearson et al.; Li et al.), suggest testable hypothesis (Loeb
and Tsianos; Jiang et al.), and aid design of rehabilitation or therapeutic strategies (Zitella et al.).
The 14 articles reflected these different aspects of computational modeling in bridging this gap
between functions of neural circuits and observable behaviors. This research topic demonstrated
that computational modeling is playing a more and more prominent role in sensorimotor control
studies.

EDITORIAL

Our knowledge of the neural mechanisms of movement generation is mostly derived from
experimental data obtained in animals and humans. For a more comprehensive and holistic
understanding of motor control, the ever-mounting experimental information must be integrated
to allow general principles of sensorimotor control to emerge. Progress in this integration has
been stagnant owing to the fragmented nature of many available data sets, usually recorded
from constrained preparations or under very specific behavioral conditions. One mathematical
framework for consolidating data is to fit the data using mathematical equations with optimized,
“best-fit” parameters (e.g., choosing parameters that maximize the data variance accounted for
by the equations). This approach has evolved from a “black-box” type of modeling to building
biologically and neurophysiologically realistic, multi-scale models. The success of the latter
approach hinges on the assumption that the models represent the underlying computations of
neural signal processing in central sensorimotor system.

The modeling approach advocated here is knowledge-based deduction with simulations using
computational models. Simulations must be compared to observable states of the system to validate
the hypothesis advanced (Cordo et al., 2002; Stein et al., 2004; Lan and He), or to propose new
testable hypotheses (Bullock, 1993). Building a multi-scale model of the sensorimotor system from
muscles, proprioceptors to skeletal joints, spinal regulating centers, and central control circuits
exemplifies part of this endeavor (Cheng et al., 2000; Lan et al., 2005; Mileusnic et al., 2006;
Alstermark et al., 2007; Song et al., 2008a,b; Hao et al., 2013; He et al., 2013). The review article by
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Loeb and Tsianos outlined the necessary elements and challenges
in this approach, which is the first step toward integrating a
vast body of experimental data into a general mathematical
framework for simulation.

Experimental mapping of neural circuits, or neural modeling,
provides the essential foundation upon which mathematical
descriptions of the neural system are formulated (Baldissera
et al., 2011; Prochazka and Ellaway, 2012). New technologies,
such as optogenetics (Bernstein and Boyden, 2011; Fenno et al.,
2011), have added out ability to dissect neural circuits in the
brain and spinal cord. Alstermark and Ekerot described their
work in identifying the spino-cerebellar closed-loop circuit via
the brainstem lateral reticular nucleus. Jiang et al. reviewed
the anatomy and physiology of the direct and indirect spino-
cerebellar tracts and illustrated how these pathways, originating
in the spinal cord, may be the neural substrates for the
transmission of internal feedback signals in control models. They
proposed a new, testable hypothesis, that the direct pathway is
primarily involved in rhythmic motor acts such as locomotion,
while the indirect pathway provides the neural substrates for pre-
cerebellar sensorimotor integration required for dexterous limb
movement.

The complexity of a model depends on the specific question
one wishes the model to address. Niu et al. developed a hardware
model of a spinal reflex that demonstrated real-time capability
in simulation. Ranjbaran and Galiana used a context-dependent
model to shed light on potential underlying neural mechanisms
of the vestibulo-ocular reflex. Pearson et al. created a four-
link biomechanical model of a cat hind leg to determine how
mechanical and neural factors contribute to the updating of
working memory of barrier location during locomotion. Sharif
Razavian et al. developed an alternative method to understand
muscle synergy by using a biomechanical model that is associated
with an optimal solution for task control. Malik et al. constructed
a bioinformatic model that incorporated limb biomechanics
embedded with six muscle spindles to predict sensory outputs.

Behaviors are often the outcome of a complicated process of
neural computations in the brain and spinal cord (Shadmehr
and Wise, 2005). Computational models can be of much help
in elucidating the roles of individual neural computations in
movements. Buhrmann and DiPaolo used a simple two-link
model to examine whether peripheral feedback is sufficient to
coordinate multi-joint motion—i.e., the motion in the presence
of intersegmental interaction torques. Their simulation showed
that it is plausible that spinal circuity can control multi-
joint movements even in the absence of internal models of
intersegmental dynamics or learned compensatorymotor signals.
Ranjbaran and Galiana presented a hybrid nonlinear bilateral
model for the horizontal angular vestibulo-ocular reflex (AVOR),
and investigated a viable switching strategy for the timing of
nystagmus. Simulation results replicated experimental data well
in all conditions. Li et al. used a corticospinal, virtual-arm model
to investigate the central coordination of alpha and gamma
controls to muscles and their muscle spindles for movement
generation. Simulation results indicated that simple patterns of
alpha and gamma drives are sufficient to control a range of
movements, and that propriospinal neurons (Alstermark et al.,

2007; Hao et al., 2013) may play an essential role in pre-motor
processing of descending commands for movements.

It has long been presumed in motor neuroscience that
movement generation begins with a motor planning, followed
by a motor execution (Hogan, 1988). How motor planning
and execution are accomplished has been subjected to much
theorizing (Ajemian and Hogan, 2010). Computational models
have been used to address these theoretical questions. Ueyama
proposed a new control scheme, called mini-max feedback
control, in which motor commands are generated by minimizing
the maximal cost to the action resulting from worst-case
uncertainty; this scheme outperformed the popular optimal
feedback control scheme (Todorov and Jordan, 2002) both
in stability and task-goal achievement. Ota et al. also studied
the question of motor optimality. They argued that human
motor planning is suboptimal when the gain associated with
the action is “asymmetric.” Takemura et al. followed up on
the question of motor planning in light of uncertainty by
studying human reach-to-grasp task when the target was
visually occluded, a condition that led to a larger peak
grip aperture when compared with conditions with vision.
To account for the increased grip aperture, they formulated
a model based on the assumption that grip aperture is
controlled to compensate for motor variability and sensory
uncertainty.

An important motivator of computational modeling is the
potential use of this body of knowledge to design new, efficacious
interventions for treating movement disorders (Reinkensmeyer
et al., 2016). This use of computational models is exemplified
in the article by Zitella et al. They employed a computational
model to evaluate the therapeutic potential and side effects of
deep brain stimulation (DBS) of the pedunculopontine tegmental
nucleus (PPTg) in a Parkinsonian monkey. This model predicted
how different DBS stimulation parameters produced different
activations of the nerve fibers surrounding the PPTg.

CONCLUSIONS

This research topic demonstrated that computational modeling
is playing a more and more prominent role in the studies of
postural and movement control. With increasing ability to gather
data from all levels of the neuronal sensorimotor system, there
is a compelling need for novel, creative modeling of new and
existing data sets, because the more systematic means to extract
knowledge and insights about neural computations from these
data is through computational modeling. While models should
be based on experimental data and validated with experimental
evidence (Ajemian and Hogan, 2010), they should also be flexible
to provide a conceptual framework for unifying diverse data
sets, to generate new insights of neural mechanisms, to integrate
new data sets into the general framework, to validate or refute
hypotheses and to suggest new testable hypotheses for future
experimental investigation (Bullock, 1993). It is thus expected
that neural and computational modeling of the sensorimotor
system should create new opportunities for experimentalists
and modelers to collaborate in a joint endeavor to advance
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our understanding of the neural mechanisms for postural and
movement control.
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