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Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency

adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and

depression (STD) at the synapse level. These dynamical features typically cover a broad

range of time scales and exhibit large diversity in different brain regions. It remains unclear

what is the computational benefit for the brain to have such variability in short-term

dynamics. In this study, we propose that the brain can exploit such dynamical features

to implement multiple seemingly contradictory computations in a single neural circuit. To

demonstrate this idea, we use continuous attractor neural network (CANN) as a working

model and include STF, SFA and STD with increasing time constants in its dynamics.

Three computational tasks are considered, which are persistent activity, adaptation, and

anticipative tracking. These tasks require conflicting neural mechanisms, and hence

cannot be implemented by a single dynamical feature or any combination with similar

time constants. However, with properly coordinated STF, SFA and STD, we show that

the network is able to implement the three computational tasks concurrently. We hope

this study will shed light on the understanding of how the brain orchestrates its rich

dynamics at various levels to realize diverse cognitive functions.

Keywords: continuous attractor neural networks, short-term plasticity, spike frequency adaptation, persistent

activity, adaptation, anticipative tracking

1. INTRODUCTION

The brain performs computations by updating its internal states in response to external inputs.
Neurons, synapses, and circuits are the fundamental units for implementing brain functions. At
the synapse level, neurons interact with each other to enhance or depress their responses. At the
single neuron level, a neuron integrates synaptic inputs and generates spikes if its membrane
potential crosses a threshold. At the network level, the topology of neuronal connection pattern
shapes the overall population activity. Taken together, the dynamics of individual neurons, the
efficacy of synapses, and the network structure jointly determine the dynamical behavior of a neural
system in response to external inputs which consequently determine/restrict the computations a
neural system can perform. Thus, understanding the dynamical properties of neural systems and
their roles in neural computations is at the core of using mathematical models to elucidate brain
functions (Herz et al., 2006).

Experimental data has revealed that neural systems display rich dynamical behaviors. For
instance, at the single neuron level, in addition to voltage-gated sodium and potassium currents
for generating action potentials, a neuron also initiates slow calcium-activated potassium currents,
and the latter suppress neuronal responses to a prolonged stimulation, a property called spike-
frequency adaptation (SFA) (Gutkin and Zeldenrust, 2014). At the synapse level, rather than being
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a constant, the efficacy of a synapse exhibits temporal changes
depending on the firing history of the pre-synaptic neuron, a
property called short-term plasticity (STP) (Markram et al., 1998;
Dittman et al., 2000; Abbott and Regehr, 2004). At the network
level, experience-dependent long-term plasticity of synapses
reshapes the connectivity of a network, creating new memory
states in the system (Bliss and Collingridge, 1993). These rich
dynamical features of neural networks form the basis for the
brain to carry out various computational tasks.

Building up a neural network model and elucidating how the
network dynamics reproduces experimental data is a common
practice in computational neuroscience research. However,
conventional modeling studies often focus on exploring how
a single neural computation is realized by certain dynamical
features of a neural circuit, albeit that in reality the same neural
circuit is often engaged in many computational tasks. This is
not a trivial issue, since the dynamical features needed for
implementing different computations may be contradictory to
each other, casting doubt on the feasibility of the model in
practice. For instance, persistent activity and adaptation are two
such computational tasks requiring seemingly conflicting neural
dynamics. Persistent activity, referring to the phenomenon that
neurons keep firing after removing the stimulation, is widely
regarded as the neural substrate of short-term memory (Amit,
1989; note that here our definition of persist activity refers to
the general phenomenon of sustained neuronal response after the
stimulation is removed, and it is not limited to workingmemory).
Adaptation, referring to the phenomenon that neuronal firing
rates attenuate over time in response to an invariant stimulation,
is generally believed to encompass a strategy for neural systems
utilizing resources efficiently (Laughlin, 1989; Wark et al., 2007).
To achieve persistent activity, it essentially requires a positive
feedback loop in neuronal interaction which retains neural
activity in the absence of external drive (Wang, 2001; Carter
and Wang, 2007); whereas, to achieve adaptation, it requires a
negative feedback loop which suppresses neural activity in the
presence of external drive (Abbott et al., 1997). Thus, to achieve
both persistent activity and adaptation in a single neural circuit,
conflicting requirements on positive and negative feedbacks need
to be properly reconciled.

In this work, we propose that the brain exploits different
time scales of different dynamical features to accommodate
contradictory computational requirements in a single neural
circuit. To demonstrate this idea, we employ continuous attractor
neural networks (CANNs) as the working model. CANNs are
recurrent networks that can hold a family of stationary states due
to their translation-invariant property, and they have been widely
used as a canonic model to describe the encoding of continuous
variables, such as orientation (Ben-Yishai et al., 1995), moving
direction (Georgopoulos et al., 1993), head direction (Zhang,
1996), and spatial location of objects (Samsonovich and
McNaughton, 1997), in neural systems. They have also been
used as models to study working memory and navigation
behaviors of animals (Taube, 2007). Recent experimental data has
shown that CANNs capture some fundamental features of neural
information representation (Mante et al., 2013; Ponce-Alvarez
et al., 2013; Wimmer et al., 2014), suggesting that CANNs serve

as a good mathematic model to investigate the general principles
of neural computation (Wu et al., 2016). Based on CANNs, we
investigate how coordination of SFA in the neuronal dynamics
and STP in the synapse dynamics [which is further divided into
short-term facilitation (STF) and short-term depression (STD)]
enables a CANN to implement three different tasks, which are
persistent activity, adaptation, and anticipative tracking.

In the literature, a large volume of theoretical studies has
revealed that when short-term dynamics, such as STD, STF,
or SFA, are included in a CANN, new interesting dynamical
behaviors emerge, such as population spike, adaptive response,
spontaneous traveling wave, and anticipative tracking, and that
these new dynamical properties lead to new computational
powers of a network (see e.g., Kilpatrick and Bressloff, 2009;
York and Rossum, 2009; Ermentrout et al., 2010; Kilpatrick
and Bressloff, 2010a,b; Itskov et al., 2011; Bressloff, 2012; Fung
et al., 2012; Miller, 2013; Miller and Katz, 2013; Tsodyks and
Wu, 2013; Fung and Amari, 2015 and references therein).
The study of Renart et al. (2003) also showed that activity-
dependent homeostatic scaling of synaptic strengths helps a
CANN with heterogeneity in synapses to hold persistent activity
reliably. The study of Barak and Tsodyks (2007) investigated
systematically how different combinations of STD and STP result
in qualitatively different traces of a network reaching to persistent
activity, which suggests that the varied network responses
mediated by STP can encode time-dependent stimuli. Compared
to those previous studies, the contribution of the present study is
mainly a demonstration that coordination of multiple short-term
dynamics with different time scales can enable a single neural
circuit to implement contradictory computational tasks.

2. MATERIALS AND METHODS

We employ two-dimensional CANNs as our working model to
demonstrate the effects of different dynamical features. Consider
that neurons are uniformly distributed in a two-dimensional
space (x, y) with x, y ∈ (−∞,∞). Denote U(x, t) to be the
synaptic input to the neuron at the position x = (x, y), and r(x, t)
the neuronal firing rate. The dynamics of the network is given by,

τ
∂U(x, t)

∂t
= −U(x, t)+ ρ

∫ ∞

−∞

∫ ∞

−∞

J(x, x′)f (x′, t)p(x′, t)

r(x′, t)dx′

− V(x, t)+ g(x, t)Iext(x, t), (1)

where τ denotes the synaptic time constant, which is typically
in the order of 1 − 2 ms. ρ denotes the neuronal density. The
variables f (x, t) and p(x, t) denote the STF and STD effects,
respectively. J(x, x′) is the interaction strength between the
neurons at x and x′, which is set to be

J(x, x′) =
J0

2πa2
exp

[

−
(x− x′)2 + (y− y′)2

2a2

]

, (2)

where the parameter a controls the range of neuronal interaction.
Note that J(x, x′) denotes translation-invariant in the space, in
terms of that it is a function of (x− x′), rather than x.

Frontiers in Computational Neuroscience | www.frontiersin.org 2 September 2016 | Volume 10 | Article 96

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Mi et al. A Dynamical System with Multiple Time Scales

The firing rate of a neuron is determined by its received
synaptic input according to

r(x, t) =
[U(x, t)]2+

1+ kρ
∫ ∞

−∞

∫ ∞

−∞
[U(x′, t)]2+dx

′
, (3)

where [.]+ is the rectifying function. The firing rate first increases
with the synaptic input and then saturates gradually due to
normalization by the total network activity. The latter can be
realized by shunting inhibition, with the parameter k denoting
inhibition strength (Hao et al., 2009; Zhang et al., 2013).

The network model exhibits a number of short-term
dynamical features.

Short-Term Facilitation in Recurrent
Connection
The variable f (x, t) on the right-hand side of Equation (1)
represents STF in recurrent interactions, whose dynamic is given
by

τf
∂f (x, t)

∂t
= fmin − f (x, t)+ α

[

1− f (x, t)
]

r(x, t), (4)

where τf is the time scale of STF and the parameter α controls
the amplitude of the STF effect. The variable f (x, t) increases with
neuronal firing rate, whose minimum value is fmin and maximum
value is 1.

Short-Term Depression in Recurrent
Connection
The variable p(x, t) on the right-hand side of Equation (1)
represents STD in recurrent interactions, whose dynamic is given
by

τd
∂p(x, t)

∂t
= 1− p(x, t)− βf (x, t)p(x, t)r(x, t), (5)

where τd is the time scale of STD and the parameter β controls the
amplitude of the STD effect. The variable p(x, t) decreases with
neuronal firing rate, whose minimum value is 0 and maximum
value is 1.

Short-Term Depression in Feedforward
Connection
The variable g(x, t) on the right-hand side of Equation (1)
represents STD in feedforward connections to the neuron. Its
product with the raw external input, g(x, t)Iext(x, t), gives the
diminished feedforward synaptic current to the neuron. Its
dynamic is given by

τg
∂g(x, t)

∂t
= 1− g(x, t)− ηg(x, t)Iext(x, t), (6)

where τg is the time scale of STD and the parameter η controls
the amplitude of the STD effect. The variable g(x, t) decreases
with external input Iext(x, t), whose minimum value is 0 and
maximum value is 1.

Spike Frequency Adaptation at Single
Neuron
The current V(x, t) on the right-hand side of Equation (1)
represents the effect of SFA, whose dynamic is given by

τv
∂V(x, t)

∂t
= −V(x, t)+m[U(x, t)]+, (7)

where τv is the time scale of SFA and the parameterm controls the
amplitude of the SFA effect. The solution of the above equation
gives V(x, t) = m

∫ t
−∞

exp
[

−(t − t′)/τv
]

U(x, t′)dt′/τv,
implying that V(x, t) is determined by the averaged neural
activity over a period of τv. The higher the neural activity, the
larger is the negative feedback.

The External Input
The external input used in the present study is given by

Iext(x, t) = Aamp exp

[

−
(x− vextt cos θ)

2 + (y− vextt sin θ)2

4a2

]

,

(8)
where Aamp is the input strength, vext the speed of moving input
and θ the moving direction. For studying persistent activity, we
apply a transient input to the network, which is obtained by
setting Aamp > 0 for a short-time interval and vext = 0. For
studying adaptation, we apply a sustained input to the network,
which is obtained by setting Aamp to be a positive constant and
vext = 0. For studying anticipative tracking, we apply a moving
input to the network, which is obtained by setting Aamp to be a
positive constant and vext 6= 0.

3. RESULTS

3.1. Network Dynamics with Individual
Dynamical Features
To start, we first review the effect of each individual dynamical
feature on the network dynamics. It can be checked that
without these dynamical features (by setting α = β =

m = η = 0), a CANN can hold a continuous family of
Gaussian-shape stationary states (called bumps) in the absence
of external drive (Iext = 0), when the global inhibition strength
k is below a critical value kc ≡ ρ(J0fmin)

2/(32πa2) (Fung
et al., 2010). These stationary states are written as U(x, t) =

Au exp [−(x− q)2/(4a2)], where the peak position of the bump
q = (qx, qy) is a free parameter.

3.1.1. The Effect of STF
In response to an external input, the effect of STF is to enlarge
the interaction between neurons temporally, which enhances the
positive feedback loop between neurons, and hence STF provides
a mechanism to retain neural activity after removing the input.
Figure 1A presents the phase diagram of a CANN with only STF
included, which shows that STF enlarges the parameter regime
for the network to hold active bump states.

3.1.2. The Effect of STD
The effect of STD is to depress the interaction between neurons
temporally. For recurrent connections, STD weakens the positive
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FIGURE 1 | Network dynamics with individual features. (A) The phase

diagram of a CANN with only STF included. The graph shows the stationary

states of the network with the varying STF strength α and the global inhibition

strength k. kc is the critical inhibition strength below which a CANN without

STF can hold bump states. STF allows the regime of bump states to expand

to k > kc. (B) The phase diagram of a CANN with only SFA included. The

network can hold traveling waves if the strength of SFA satisfies m > τ/τv. (C)

The tracking performance of a CANN with SFA. An external moving input given

by Equation (8) is applied to the network, Aamp = 0.1. S is the separation

between the network bump and the external input when tracking reaches to a

stationary process. Svext > 0 implies anticipative tracking. The parameters

(k,m) = (0.01,2.5) at the point M in (B), where the network holds traveling

waves, is used. vint denotes the speed of the traveling wave the network can

hold without relying on external drive. Anticipation occurs when vext < vint. (D)

The plateau decay of a CANN with SFA when the network is marginally

unstable. The parameters (k,m) = (0.0249,0.5) at the point N close to the

boundary in (B) is used. The lifetime of the plateau increases with the time

scale τv of SFA. The simulations were done with a 2D CANN having 100× 100

neurons uniformly distributed in the space (−π, π ] with the periodic condition.

Other parameters are J0 = 0.05, a = 0.5, τ = 1 ms.

feedback loop between neurons and hence has the effect
of suppressing STF-triggered neural activity. For feedforward
connections, STD reduces the synaptic input to a neuron and
hence has the effect of suppressing the neuronal response to a
prolonged stimulation. STD and SFA have similar effects on the
CANN dynamics, except that the former operates at the synapse
level and the latter at the neuron level. For simplicity, we only
present the result for SFA (see below). The result for STD can be
straightforwardly deduced.

3.1.3. The Effect of SFA
SFA induces an activity-dependent negative current to a neuron,
which serves as a self-inhibition mechanism to suppress the
neuronal response if a neuron has experienced prolonged firing.
The phase diagram of a CANN with only SFA is presented in
Figure 1B. Note that SFA induces a new form of stationary state,
called traveling wave state (Ben-Yishai et al., 1997; York and
Rossum, 2009; Bressloff, 2012; Tsodyks and Wu, 2013). In such a
state, the network holds a spontaneously moving bump without
relying on external drive. This spontaneous moving activity may
be related to the traveling wave phenomenon widely observed in
experiments (Wu et al., 2008). This dynamical property is also
intuitively understandable. Suppose that a bump is initiated at
a position. Due to SFA, those neurons which are most active
are desensitized by the strongest negative feedback, and their
activities will be suppressed consequently. With competition

from neighboring neurons which are less affected by SFA, the
bump tends to shift to the neighborhood; and at the new location,
SFA starts to suppress neuronal responses again. Thus, the bump
will keep propagating in the network like a traveling wave.
Interestingly, when a CANN is within the parameter regime
having a traveling wave solution, the network response to an
external moving input will lead the input’s instant position, if the
speed of the moving input is smaller than that of the traveling
wave the network can hold in the absence of external drive (Mi
et al., 2014). This result is shown in Figure 1C, and the detailed
mathematical analysis is presented in Appendix (Supplementary
Material). Overall, the effect of SFA is to induce mobility to
the network state, such that the network can track a moving
input anticipatively. An illustration of this anticipative tracking
behavior is presented in Figure 1A, and the computational role
of anticipative tracking is discussed in Section 3.2.3.

In the parameter regime close to the boundary between active
and silent states (e.g., the point N in Figure 1B), the network
dynamics displays another interesting phenomenon, called the
plateau decay behavior (see Figure 1D), that is, starting from an
initial active state, the network activity will decay very slowly
in the time scale of SFA, followed by a rapid fall. The detailed
analysis of this plateau decay behavior is presented in the
Appendix (Supplementary Material), and its computational role
is discussed in Section 4.1. Apparently, since the effect of STD is
to induce negative feedback modulation similar to that of SFA,
STD can also generate the plateau decay behavior if its amplitude
is properly chosen (Fung et al., 2012).

3.2. Network Dynamics with Combined
Short-Term Dynamical Features
We now come to study how combined dynamical features
with different time scales endow a CANN with the capacity of
implementing three contradictory computational tasks, which
are: (1) retaining persistent neural firing for a considerable
amount of time after removing the stimulation, (2) generating
adaptive neural responses to a prolonged invariant stimulation,
and (3) tracking an external moving input anticipatively.

As described above, the effects of STF and STD or SFA on
the network dynamics are opposite to each other. If we simply
combine them together with the same time scale, a CANN is
unable to implement three computational tasks concurrently.
However, by assigning different time scales for them, a CANN
may be able to achieve this goal. For instance, by setting the time
constants τf ≪ τd (note other parameters, such as the neuronal
connection strengths J(x, x′), also need to be set properly, see
e.g., the analysis in Barak and Tsodyks, 2007), a network can, on
one hand, enhance the interaction between neurons in a shorter
time scale τf necessary for generating persistent activity, and, on
the other hand, reduce the interaction in a larger time scale τd
necessary for adaptation and closing-down neural activity. The
effects of STD and SFA on the network dynamics are similar,
which essentially produce negative feedback modulation, but by
including both of them with different time scales, a CANN is able
to exploit multiple computational properties associated with the
negative feedback modulation.
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Below we show that if the time scales of different dynamical
features satisfy the condition,

τ ≪ τf ≪ τv ≪ τd ≪ τg, (9)

the CANN is able to implement the above three contradictory
computational tasks. It is known that there exist large diversities
for STP and SFA in different cortical regions and for different
neuron types. The parameters we consider here tend to
hold in the sensory cortex where the synapses are STD-
dominating (Wang et al., 2006; Gutkin and Zeldenrust, 2014).

3.2.1. Persistent Activity
Persistent activity refers to the fact that neurons keep firing after
removing the external drive, a property widely regarded as the
neural substrate of short-term memory (Amit, 1989). With the
condition Equation (9), our network model can reproduce this
phenomenon.

The results are presented in Figure 2. Figure 2A displays the
phase diagram of the network with varying STD and inhibition
strengths, which shows that the network holds persistent activity
of finite lifetimes over a range of parameters around the boundary
where the network is marginally unstable. In response to a
transient input, the network first generates a strong response due
to facilitation of the interaction between neurons via STF. If the
stimulation duration is long enough, up to the order of τf , the
neuronal recurrent connections will be sufficiently facilitated to
retain neural activity without relying on external drive; otherwise,
the neural activity fades away rapidly (Figure 2B). As time goes
on, the negative feedback modulation via both SFA and STD
begins to dominate and eventually suppresses the neural activity.
We require that the amplitudes of SFA and STD satisfy two
requirements: (1) the amplitude of SFA alone, which dominates
on the time scale of τv (τf ≪ τv≪ τd), is not adequate to suppress
the neural activity, so that persistent activity lasts over the
time scale τv. This condition is also required for implementing
anticipative tracking introduced below. (2) The amplitude of
STD, which dominates on the time scale of τd (τd ≫ τv), is in
the parameter regime where the network is marginally unstable
(Figure 2A), so that the network activity decays very slowly like a
plateau on the time scale of τd and then falls rapidly (Figure 2B).
We interpret this plateau decay as persistent activity of a finite
lifetime. The plateau decay behavior is analyzed for SFA as shown
in Figure 1D and with details given in Appendix (Supplementary
Material). Since SFA and STD have similar effects on the network
dynamics, it is understandable that STD also holds this property.

Note that we here consider a mechanism using STD to realize
short-termmemory in a network, and the duration of this kind of
short-term memory is in the time scale of STD (Figure 2B). This
mechanism has the advantage that it does not require an extra
operation to turn-off the network activity (Gutkin et al., 2001).
Apparently, there exist other types of short-term memory with
different time scales in the brain, such as working memory in the
prefrontal cortex whose duration lasts from seconds to minutes.
These different types of short-termmemory may recruit different
mechanisms to hold and turn-off neuronal persistent activities.

FIGURE 2 | Persistent activity of the network in response to a transient

input. The input is given by Equation (8). (A) The phase diagram of the

network with varying STD strength β and inhibition strength k. The network

can hold persistent activity of finite lifetimes over a range of parameter values

around the boundary. The lifetime of persistent activity, Tlife, is measured by the

length of the decaying plateau. (B) The lifetime of persistent activity with the

varying time scale of STD τd . β = 100. k = 0.12. The network holds persistent

activity if the stimulation duration is long enough in the order of τf ; otherwise

the network response fades away rapidly as indicated by the black curve.

Other parameters are: a = 0.5, J0 = 0.5, fmin = 0.1, α = 20, , m = 2.5τ/τv,

η = 40, τ = 1ms, τf = 10ms, τv = 80ms, τg = 3500ms, Aamp = 0.15.

3.2.2. Adaptation
Adaptation refers to the phenomenon that neurons dynamically
adjust their response properties in accordance with the statistics
of the external inputs. It has been widely suggested that
adaptation encompasses a strategy for a neural system to
utilize its resources (such as spikes) efficiently to encode
input information (Laughlin, 1989; Wark et al., 2007). In
luminance adaptation, in which the visual system adapts to a
sustained stimulation of constant luminance, neuronal responses
exhibit a stereo-typed temporal characteristic: at the onset of
the stimulation, neuronal responses increase dramatically; and
afterwards, neuronal responses attenuate gradually down to a
level close to background activity (Boynton and Whitten, 1970).
With the condition Equation (9), our model can reproduce this
phenomenon.

The results are presented in Figure 3. At the onset of
the stimulation, the network first generates a strong transient
response due to facilitation of neuronal interaction via STF.
As time goes on, SFA and STD in recurrent connections begin
to dominate, which suppress neuronal responses. Furthermore,
STD in feedforward connections takes effect on the time scale
of τg , which depresses the feedforward inputs to neurons. The
overall effect is that neuronal responses attenuate over time,
although the external input remains invariant, and eventually the
network activity reaches to a level close to background activity.
Compared to the case of persistent activity, STD in feedforward
connections plays a crucial role in adaptation which diminishes
the feedforward current to a neuron for large external inputs.
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FIGURE 3 | Adaptation of the network in response to a constant input.

The input is given by Equation (8). The duration of adaptation, measured from

the onset of stimulation to the moment the network activity fades away, is

determined by the time scale of STD in feedforward connection, τg. Other

parameters are the same as Figure 2.

3.2.3. Anticipative Tracking
Anticipative tracking refers to the phenomenon that a neural
system smoothly tracks the changing of a moving stimulus in a
manner that the neural representation leads the actual position
of the stimulus. This phenomenon has been widely observed in
retinal neurons (Leonardo andMeister, 2013), and head direction
(HD) neurons when animals are navigating in space (Taube,
2007). For instance, in anterior dorsal thalamic nuclei of rodent,
it was found that the head-direction encoded by HD neurons led
the actual instant direction of the rat head by around 20 ms, i.e.,
the neural representation pointed to the angle the rat head would
turn into 20 ms later (Blair et al., 1997). Similarly, anticipation
occurs when our eyes smoothly pursuit moving objects (Heinen
and Liu, 1997). Anticipative tracking is fundamental for the
brain to process motion information, since transmission delays
of neural signals are significant and need to be compensated, e.g.,
the delay for neural signal transmitted from retina to V1 takes
about 50 ∼ 80 ms (Nowak et al., 1995). With the condition
Equation (9), our model can reproduce this phenomenon.

The results are presented in Figure 4. The parameter values
are the same as for implementing persistent activity and
adaptation. For a transient or a static input, since STD has
the longest time scale τd, its effect will eventually dominate
the network dynamics and suppress neural activity as described
above. However, for a moving input, once the network bump
moves away on the time scale of τv (τv ≪ τd) to track the
input, the effect of depressed synapses at the old location can be
neglected, thus, the network dynamics can be largely understood
as if the CANN only includes SFA; and the latter is analyzed
in Figures 1B,C. We therefore set the amplitude of SFA in
the parameter range where the network holds traveling waves
and is able to achieve anticipative tracking. Figure 4A displays
an example of anticipative tracking of the network. Figure 4B
presents the condition for anticipative tracking. Note that when
the speed of the moving input is too small, no tracking occurs,
since STD suppresses the neural activity before it starts to move.

4. DISCUSSION

Neural systems display rich short-term dynamics at all levels,
from neurons to synapses and to circuits. These dynamical

FIGURE 4 | Tracking performance of the network. The moving input is

given by Equation (8). (A) An example of anticipative tracking of the network.

vext = 0.8/s. For the illustration purpose, the 2D bump is projected on the

normal of the moving direction, and the external input strength is scaled up by

twofold. (B) The condition for anticipative tracking. Anticipation occurs when

Svext > 0, where S is the separation between the network bump and the

external input. When the speed is too small, S = 0 implies no tracking at all;

and when the speed is too large, Svext < 0 implies lagging. Other parameters

are the same as Figure 2.

features cover a broad range of time scales and exhibit large
diversity in different cortical regions. For instances, the time
constants of SFA for different neuron types and in different areas
expand from tens to thousands of milliseconds (Benda and Herz,
2003); the time constants of STP cover a similar range but the
relative sizes between STF and STD vary in different cortical
areas, e.g., STF is dominating and has a longer time constant
in the prefrontal cortex; whereas, STD is dominating and has a
longer time constant in the sensory cortex (Wang et al., 2006). It
remains largely unclear what the purpose for the brain is to hold
such variabilities in dynamical features and their time scales.

In the present study, we argue that one benefit for having
multiple dynamical features with varied time scales is that
the brain can fully exploit the advantages of these features
to implement what are otherwise contradictory computational
tasks. To demonstrate this idea, we consider STF, SFA, and
STD with increasing time constants in the dynamics of a
CANN, and show that the network is able to implement three
seemingly contradictory computations, which are persistent
activity, adaptation and anticipative tracking. Simply stated, the
role of STF is to hold persistent activity in the absence of external
drive, the role of SFA is to support anticipative tracking for a
moving input, and the role of STD is to eventually suppress
neural activity for a static or transient input. Notably, the time
constants of SFA and STD can be swapped with each other, since
SFA and STD have similar effects on the network dynamics.
Nevertheless, we need to include both of them, or only one
of them (either SFA or STD) but with multiple time scales,
since a single negative feedback modulation with a constant time
scale is unable to achieve both anticipative tracking and plateau
decay concurrently. The implementation of each individual
computational task based on a single or combined dynamical
features has been studied previously (e.g., Barak and Tsodyks,
2007; Fung et al., 2012). Here, our main contribution is a
demonstration that contradictory computational tasks can be
realized concurrently in a single neural circuit if different short-
term dynamics are combined properly.

In the present study, we have considered STP and SFA with
multiple time scales. Alternatively, a neural system may have
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other mechanisms to realize short-term dynamics of varied time
scales. For instance, the work of (Goldman, 2009) considered
heterogeneities in synapse strengthes and neuronal connections
among neuronal groups, such that different groups have different
time constants in response to a transient external input, and
a read-out neuron can integrate the responses of different
neuronal groups over time to achieve persistent firing. It will
be interesting to explore whether such a mechanism can also
implement the three computational tasks considered in this study
concurrently.

Finally, we should point out that we have not found direct
experimental evidence confirming that a single cortical region
realizes three computational tasks considered in this study.
However, based on the known experimental data, we expect
that this is very likely to be true. For instance, the primary
visual cortex V1 may realize these three computations. It
is known that in the sensory cortex, neuronal synapses are
STD-dominating, fitting the parameter condition Equation (9),
and that neurons in V1 exhibit adaptive behaviors, have
the capacity to track a moving stimulus anticipatively (Xu
et al., 2012), and can hold long-lasting residual activities
in response to a transient stimulation (Jancke et al., 2004).
Further experimental studies are needed to validate our
hypothesis. Nevertheless, we hope that this study can shed
light on our understanding of how the brain orchestrates its

rich dynamics at various levels to realize diverse cognitive
functions.
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