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Brain computer interfaces allow users to preform various tasks using only the electrical

activity of the brain. BCI applications often present the user a set of stimuli and record

the corresponding electrical response. The BCI algorithm will then have to decode the

acquired brain response and perform the desired task. In rapid serial visual presentation

(RSVP) tasks, the subject is presentedwith a continuous stream of images containing rare

target images among standard images, while the algorithm has to detect brain activity

associated with target images. In this work, we suggest a multimodal neural network for

RSVP tasks. The network operates on the brain response and on the initiating stimulus

simultaneously, providing more information for the BCI application. We present two

variants of the multimodal network, a supervised model, for the case when the targets

are known in advanced, and a semi-supervised model for when the targets are unknown.

We test the neural networks with a RSVP experiment on satellite imagery carried out with

two subjects. The multimodal networks achieve a significant performance improvement

in classification metrics. We visualize what the networks has learned and discuss the

advantages of using neural network models for BCI applications.

Keywords: EEG, deep learning, BCI, RSVP, single trial, neural network, computer vision

1. INTRODUCTION

Brain-Computer Interfaces (BCI) is a communication method using the brain’s electrical activity to
control a machine to perform tasks. BCI systems have been extensively researched to assist locked-
in patients. However, advances in computing power and algorithms paved way for BCI applications
for healthy users as well. In this case, electroencephalography (EEG) is the preferred method for
recording brain activity. EEG is a noninvasive method, that records data from multiple electrodes
placed on the user’s scalp. EEG devices can record data with high temporal resolution from all
electrodes simultaneously, generating data matrices that represent the ongoing brain activity. In
addition, EEG is mobile and more affordable than other neuroimaging methods, and is thus a
common choice for real-life BCI applications. EEG has been used for a wide variety of tasks, such
as detecting real or imaginary hands movements (Müller-Gerking et al., 1999) and spelling words
(Kaper et al., 2004). One interesting category of BCI applications is the passive BCI (Zander and
Kothe, 2011). This category of applications is intended to augment the human-machine interaction
using the brain’s activity, without the user having to focus on control tasks.

One such passive BCI application is the Rapid Serial Visual Presentation (RSVP) application
(Parra et al., 2007; Bigdely-Shamlo et al., 2008; Alpert et al., 2014). In RSVP tasks, a subject is
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instructed to search and count for target images within a
continuous stream of images, displayed at a fast pace, e.g., at
10Hz. Such applications are useful for classifying large image
sets, where on one hand it is too time consuming to do manual
classification, and on other the hand computer vision (CV)
algorithms do not perform well enough on their own.

BCI applications for healthy subjects, and specifically RSVP
tasks, are required to decode brain activity from a single
recording of EEG. Single trial EEG data typically containmultiple
noise sources, e.g., measurement noise and on-going brain
activity which is irrelevant to the task at hand. Therefore,
most BCI applications use machine learning (ML) algorithms
to learn the task-relevant patterns from the experiment data
(Pfurtscheller et al., 2002; Müller et al., 2003; Felzer and
Freisieben, 2004; Blankertz et al., 2007; Lotte et al., 2007).

In RSVP tasks, the goal of the BCI application is to
automatically identify single trial spatio-temporal brain
responses that are associated with the target image detection, the
P300 event-related potential (ERP). The P300 signal is generated
when a rare target stimulus is detected among non-target stimuli
(Donchin et al., 2002). As its name suggests, the P300 is a positive
potential, with latency around 300 ms after the stimulus onset.
The ERP is usually visible when several targets responses are
averaged, while in a single trial response it is masked by noise
and other brain activity, as seen in Figure 1. In addition, the
amplitude and latency of the P300 have a large variance between
subjects, and within subjects.

RSVP tasks present specific challenges for single trial
classification algorithms, mainly due to the fast presentation of
stimuli which causes an overlap of consecutive brain responses.
Therefore, methods have been constructed specifically for RSVP
applications.

One such method, developed by Bigdely et al. (Bigdely-
Shamlo et al., 2008) for single-trial classification of RSVP
data, uses spatial Independent Component Analysis (ICA) and
Principal Component Analysis (PCA) for features extraction.
This method extracts spatial, temporal, and spectral features,
which are ultimately combined and classified using a Fisher
Linear Discriminant (FLD) classifier. Parra et al. (2007) proposed
a framework for RSVP experiments. The framework uses bi-
linear projections of the EEG data matrix on both temporal and
spatial axes, and can be implemented in various ways. (Gerson
et al., 2006; Luo and Sajda, 2006; Dyrholm et al., 2007; Sajda
et al., 2010). The framework showed success in RSVP tasks
for triaging image databases of natural scenes (Gerson et al.,
2006), aerial images (Parra et al., 2007), and missile detection
in satellite images (Sajda et al., 2010). Alpert et al. (2014)
presented a a two step linear classification algorithm for RSVP
tasks. The Spatially Weighted FLD-PCA (SWFP) algorithm first
learns a spatio-temporal weights matrix that amplifies important
locations for classification in both spatial and temporal domains.
Subsequently, it uses PCA for dimensionality reduction of the
temporal domain, and the final features are classified with a
FLD classifier. The algorithm was tested on a RSVP task, where
the subject was required to detect images of a predefined target
category among five categories (eggs, watches, cars, planes, faces)
at a display rate of 10Hz. Despite the difficulty of the task, the

algorithm achieved classification performance that is suitable for
real life applications.

Many of the BCI algorithms, including those described above,
mainly use linear algorithms. Linear methods are simple and fast
to train due to their linear constraint which makes them more
robust to overfitting. This usually makes linear methods a good
choice when dealing with noisy data, such as single trial EEG. On
the other hand, the linearity limits the features these algorithms
can learn and thus their classification performance is also limited,
when the data is not linearly separable. In contrast, non-linear
methods can model a wide variety of functions and thus can
extract more expressive features, but require careful training to
avoid overfitting.

Neural networks are a nonlinear architecture for feature
extraction and classification which can learn very complex
patterns. Deep, multi-layered, neural networks have achieved
break-through results in various tasks such as image classification
(Krizhevsky et al., 2012), speech processing (Hinton G. et al.,
2012), and action recognition (Ji et al., 2013). These networks
have shown to be able to handle large variability in the data,
which make them appealing for use with EEG. Specifically,
convolutional neural networks (CNNs or ConvNets) (LeCun
et al., 2010) appear to be a good fit for EEG data (Cecotti and
Gräser, 2011; Manor and Geva, 2015).

Our previous work (Manor and Geva, 2015) introduces a
CNN to classify single trial EEG in a RSVP task. The network uses
a spatio-temporal regularizer for EEG that reduces overfitting
and increases performance. The network was compared to
Alpert et al. (2014) using the same data set, showing improved
performance.

One of the advantages of neural networks is that all building
blocks can be chained together and trained simultaneously on
the same objective function. One example of this is building
multimodal networks, where multiple modalities of the same
information are used to learn better feature representations.
In our case of the RSVP task, we have two representations
of the object — an image, i.e., pixels, and an EEG brain
response corresponding to the image. Therefore, using these two
modalities should provide more information to our model and
improve performance of the classification task.

Using computer vision algorithms along with EEG learning
was suggested previously. Sajda et al. (2010) suggests a two-step
system, using computer vision and EEG separately to build a
better classifier. The CV system is built from a low-level feature
extractors based on a dictionary, and a mid/high-level feature
extractors built on specific-domain grammars. The results of this
work show a significant improvement when using the two data
modalities. Kapoor et al. (2008) uses EEG and computer vision
for object categorization, using different types of chosen feature
extractors for each modality, and later combining the features
linearly for a final decision. Pohlmeyer et al. (2011) suggests a
multimodal system for searching images in large datasets. The
system involves an iterative process where EEG is first used to
flag interesting images and the CV step re-ranks the images.

Another multi-modal BCI system was presented in Putze
et al. (2013). Here, the authors present a hybrid EEG and eye
tracking system for localizing events in time and space. The user
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FIGURE 1 | P300 target-response at electrode Pz. The solid blue line shows an averaged response of multiple single trials. The dashed red line shows a single

trial response.

was presented with objects on the screen which were randomly
highlighted, while the system detected when and where is the
highlighted object. The EEG modality was used to localize the
events in time, by using linear EEG features over time windows
before and after each highlighting event, which were classified by
a Support Vector Machine (SVM) classifier. The spatial location
was predicted by the eye tracking system, using the first fixation
after a saccade as the target location. Overall, the system showed
robust performance for multiple subjects and demonstrated the
usefulness of using the two modalities.

We suggest using neural networks for combining computer
vision and EEG data. Neural networks allow a natural
combination of different features without the need of specific
domain knowledge. The modules of the neural network are
generic and thus don’t require any manual feature engineering.
This way, we avoid the need to define specific feature extractors
by learning the features from the training data.

Here we present two variants of a multimodal EEG-Image
neural network. The first neural network model is designed for
RSVP applications where we have a known category of targets in
our image data set. In this case, we can train the entire network
on EEG and image data simultaneously, in a fully supervised
manner. Because we know what the targets look like, we can
obtain training samples of target images and train the network
to detect these specific targets.

The other variant of the multimodal network is for the case
when we don’t know a specific category for the target images or
that the targets are varied and might change during the RSVP
sessions. In this case, it wouldn’t be optimal for the network to
learn what targets look like, since the network will be required

to generalize to unknown target images. Given that the P300
EEG response is agnostic to the type of target that caused the
stimuli (Polich, 2007), we need to generalize the image part
of the network. For this, we train the image modules of the
network as an unsupervised autoencoder (Masci et al., 2011)
only on non-target images. Subsequently, we use the features of
the autoencoder as the image inputs to the multimodal neural
network. Since we don’t train on target images at all, the network
will be robust to changes in the target images, as long as the
non-target images remain similar. By definition, this kind of
architecture will have worse performance than the supervised
network, but real applications can require this kind of robustness.

We evaluate the suggested models in a RSVP experiment with
aerial satellite imagery and compare its performance with each
data modality separately. The trained model is then visualized in
order to understand what the network has learned.

2. MATERIALS AND METHODS

2.1. Subjects
Two subjects (one male, one female; mean age 26) participated in
a RSVP experiment, both were students of the HebrewUniversity
of Jerusalem, with previous training in aerial imagery analysis.
All subjects had normal or corrected to normal vision, with
no known neurological problems, were free of psychoactive
medications at the time of the experiment, and were paid for
their participation. The experiment was approved by the local
ethics committee at the Hebrew university of Jerusalem, with
written informed consent from all subjects in accordance with
the Declaration of Helsinki.
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2.2. Stimuli
The stimuli images were made of a color satellite images at
a resolution of 0.5 m per pixel, covering a total ground of
100 squared kilometers. The satellite image was divided into
images of 400 × 400 pixels with 50% overlap between adjacent
images. Overall there were 9411 unique images. The images were
displayed at the center of a CRT monitor (Viewsonic model g57f,
refresh rate 100Hz, resolution 1024 x 768) on a gray background.
The images were preprocessed to have the same mean luminance
and contrast. About 10% of the samples were targets and the rest
were non-targets. This ensures that the targets are a rare stimulus
among all of the stimuli and a P300 response will be generated
when the subject is presented with a target image. Figure 2
presents samples of the stimuli. The target images contain various
kinds of structures like buildings or roads. The non-target images
do not contain structures but can contain various patterns in the
ground because of plants or other natural items.We evaluated the
separation of the two classes of images by extracting features from
the images using PCA and classifying them using a FLD classifier.
The overall correct classification rate was 65.7% with 57.94% hit
rate and 33.67% false alarm rate. This indicates that classifying
these images require a more capable model, such as the neural
network presented ahead.

2.3. Experimental Procedure
Subjects were seated in a dimly lit, sound attenuated chamber,
supported by a chin, and forehead rest. Subjects were instructed
to search for buildings in the aerial images. The first two sessions
of each subject displayed images at 5Hz, while the other four
sessions displayed images at 10Hz. Eye position was monitored
using an Eyelink 2k/1000 eye tracker (SR research, Kanata, ON,
Canada) at 1000Hz resolution. Presentation was briefly paused
every 120–180 image trials for about thirty seconds to avoid
cognitive overload. Images were randomly displayed between one
to four times in each session. Overall, each session showed about
9000 images.

2.4. EEG Acquisition and Preprocessing
EEG was recorded by an Active 2 system (BioSemi, the
Netherlands) using 64 sintered Ag/AgCl electrodes, at a sampling
rate of 256Hz with an online low-pass filter of 51Hz to prevent
aliasing of high frequencies. Additional electrodes were placed
as follows: two on the mastoid processes, two horizontal EOG
channels positioned at the outer canthi of the left and right eyes
(HEOGL and HEOGR, respectively), two vertical EOG channels,
one below (infraorbital, VEOGI) and one above (supraorbital,
VEOGS) the right eye, and a channel on the tip of the nose.
Electrodes were referenced to the average of the entire electrode
set, excluding the EOG channels. Offline processing included
a band-pass filter of 0.3–20Hz, and computing bipolar vertical
EOG (VEOG) and horizontal EOG channel (HEOG) channels
as the difference between VEOGS and VEOGI for VEOG, and
the difference between HEOGL and HEOGR for HEOG. The
recorded data was segmented to 900 ms segments starting at
each image onset. Therefore, each single trial recording yielded
a data matrix of 900 ms over 64 channels. The data matrices
were downsampled to 64 Hz to reduce computational time, and

each dimension of the matrix was normalized to zero mean
and variance. The resulting matrix consisted of 64 rows of EEG
channels and 64 columns of time samples. We removed the DC
baseline from each channel separately. Large artifacts, e.g., blinks,
were removed by rejecting trials in which the VEOG bipolar
channel exceeded ±100 µV . The images of the stimuli were
downsampled to 50 × 50 pixels before using them as input to
the network.

2.5. Neural Network Architectures
Our neural network model receives as input an image and a
single-trial EEG data matrix, corresponding to the brain response
of the image.We wish to train the network to classify these inputs
into one decision, targets or non-targets. This brings the question
of how to fuse together the inputs to get one classification result.
One option is to train directly on the concatenated image and
EEG data, i.e., input-level fusion. In this case, the first layer of
the network has to learn the correlations between the inputs and
select the appropriate features. However, the relation between the
different modalities can be non-linear, and so it can be hard for
the network to learn these directly (Ngiam et al., 2011). Decision-
level fusion (Atrey et al., 2010) suggests making a decision for
each input separately, and then combine the decisions. The
advantage here is that each decision has the same representation
which makes it easy to combine and add more decisions later
if needed. On the other hand, decision-level fusion doesn’t
use correlations of the features of the different modalities and
therefore might miss important information. The third option,
which we use in this work, is feature-level fusion. In this case, the
network learns features separately for each type of data, and later
joins these features for the final layers. This allows the network
more freedom in transforming each modality of the data before
trying to learn the interactions between them. This also allows the
network to use features from both modalities to reach a decision
when each one of the modalities would not have enough support.
For example, very noise inputs might not be able to be detected
on their own, but each of the inputs can contribute to an overall
successful detection.

2.5.1. Supervised Model

The supervised model addresses the case where the target
category is known in advance, e.g., detecting people in natural
scenes. This allows us to use target images for training since
future target images will have the same type of targets.

It is possible to train separate networks for images and EEG,
and then train another network to combine the results into a final
decision. However, training on both inputs simultaneously will
jointly optimize all features so that they will work better together
for classification. In general, end-to-end training was shown to be
a better choice over separate training steps in a machine learning
pipeline (Hannun et al., 2014; Levine et al., 2015).

As noted earlier, we join the features of the images and EEG
in a deep layer in the network. Our network starts with separate
layers for each input, continues with a layer that concatenates
features from each input and ends with a final classification layer.

The EEG layers of the network follow our network in Manor
and Geva (2015), without the output layer. The input to the
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FIGURE 2 | (A,B) — Sample non-target stimuli. (C,D) — Sample target stimuli.

EEG network is a single trial matrix of 64 electrodes by 64
time samples. The network contains three convolutional layers,
two pooling layers and two fully connected layers. The first
convolutional layer performs a spatial convolution by using
filters of size 64 × 1, learning features which represent a spatial
distribution across the scalp. Since this layer is convolutional,
the weights of the filters are shared across time and it is
insensitive to temporal latencies. The second layer is a max-
pooling layer (LeCun et al., 2010) to reduce dimensionality. The
pooling filters are in size of three samples and with stride of two
samples. Therefore, we reduce the dimensionality, but we still
have overlap to avoid losing information (Le Cun et al., 1990).
The max operation provides a small invariability in the temporal
domain, as long as the samples stay within the same pooling
filter. The following layers are a temporal convolutional layer,
with filter size of about 100 ms, following another max-pooling
layer and another temporal convolutional layer of the same size.
The last two layers of the network are dense, fully-connected

layers, of sizes 2048 and 4096. Figure 3 shows an overview
of the network. Please see Manor and Geva (2015) for more
details.

The image network follows the common architecture for
object recognition (Krizhevsky et al., 2012; LeCun et al., 2010).
We use a convolutional layer with 5 × 5 filters with 2 × 2 pixels
stride, followed by a pooling layer with 3 × 3 filters and the
same stride. The final features layer is a fully connected layer that
outputs 40 features representing the image. Figure 4 depicts the
supervised image network architecture.

Both networks use the ReLU non-linearity (Nair and Hinton,
2010), f(x) = max(0, x), after each convolutional and fully-
connected layer. Dropout (Hinton G.E. et al., 2012) is used on
each fully-connected layer to decrease overfitting.

The features from the above networks are concatenated
into one feature vector, which is then fed into a final
softmax classification layer. Figure 5 depicts an overview of the
combination of the EEG and image features.
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FIGURE 3 | EEG network architecture.

FIGURE 4 | Supervised image network architecture.

The entire network is trained by minimizing the multinomial
logistic regression loss function:

L = −

Nsamples∑

i

log [(1− y(i))h0(x
(i))+ y(i)h1(x

(i))] (1)

where Nsamples is the number of training samples, x(i) is the i

training sample, y(i) is the true label of sample i and hk is the
neural network output unit k.

2.5.2. Semi-Supervised Model

Some RSVP applications has to deal with a wide variety of targets
or even unknown targets, e.g., detecting various items in x-ray
images (Trumbo et al., 2015). In this case, we can’t train on
the target images since this will cause the network to detect
only targets that are present in the training set. To overcome
this limitation, we suggest using an unsupervised autoencoder
model for the images, and later join with the EEG network in
the same method described above. An autoencoder (Masci et al.,
2011) is an unsupervised model that is trained to reconstruct
the input from extracted features. This is similar to PCA, but an
autoencoder can be composed of multiple nonlinear functions,
unlike PCA which is linear.

Our autoencoder model is based on the supervised image
network presented in the previous section. The autoencoder
starts with a convolutional layer with 5 × 5 filters, followed by
a pooling layer with 3 × 3 filters. The final encoding layer is a
fully connected layer with 256 units. The decoding part of the
network is built the same way in reverse order: a fully connected

layer, followed by a reverse max pooling layer (up-sampling),
and a convolutional layer. ReLU non-linearities are used after
each convolutional and fully-connected layer. Figure 6 depicts
the architecture of the autoencoder.

The autoencoder is trained by minimizing the mean squared
error loss function:

L =

Nsamples∑

i

(x(i) − h(i))2 (2)

Note that only the input x and the output h are used to train the
image autoencoder, without using the labels.

When training the multimodal network, we first train the
image autoencoder only on non-target images. This simulates a
real use case where we do not know how the targets will look in
experiments. The autoencoder learns features that models that
non-target images, and even though it doesn’t use labels, it should
output different features for non-target and target images, since
they actually look different in the pixel level. The features that
are output from fully connected layer are used as inputs for
multimodal neural network, instead of the original images.

2.6. Learning Parameters
Both networks use stochastic gradient descent (SGD) for
minimizing the loss function. We use a decaying learning rate
computed by lr = 0.0001 ∗ 0.99n where n is the epoch number.
We also used a constant momentum of 0.9 (Polyak, 1964).

The momentum update V is computed with

V = γV + ηQ (3)

where η is the learning rate, γ is the momentum coefficient and
Q is the gradient of the loss function with respect to the network
parameters. The parametersW are then updated with

W = W − V (4)

The gradient Q is computed with the classical back-propagation
algorithm.

It should be noted that computing the gradient using a
single sample, instead of using a mini-batch, accelerated the
convergence time of the network. The values of the learning
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FIGURE 5 | Overview of the multimodal neural network.

FIGURE 6 | Image autoencoder architecture.

parameters were chosen empirically by cross-validation. The
cross validation was performed on a randomly selected data
set, which was then randomly split into training and validation
sets. Each parameter value was tested on ten runs of the
random training and validation selection process. The values of
the parameters were chosen manually. The whole process was
performed before the actual classification and the parameters
values were held constant for all subsequent runs.

2.7. Class Imbalance
The nature of our experiment causes the data classes to be highly
imbalanced, as only 10% of the samples are targets. Gradient
descent methods do not perform well on unbalanced datasets
because the gradients will follow the majority class. To overcome
this bias, we bootstrapped the targets class to match the size
of the non-targets, only in the training set (Manor and Geva,
2015). Although, this caused some overfitting on the target class,
it provided an overall more balanced classification performance
in our experiments.

3. RESULTS

3.1. Classification Performance
We tested our networks using a random cross-validation
procedure, separately on each session per subject. The dataset

was randomly split into a 80% training set and a 20% test
set repeatedly. The presented results are an average of the
test performance of ten runs on random train/test splits. All
experiments were implemented with Lasagne (Dieleman et al.,
2015) on a NVIDIA GTX 650 GPU.

The supervised network was trained from scratch in each
cross-validation permutation, on the randomly chosen training
set. For the semi-supervised network, we first perform the
random selection of training and test sets. Then, we trained the
auto-encoder only on non-target samples from this training set,
and used the entire training set to train the entire network, with
the autoencoder features used instead of the images.

Classification results are summarized in Table 1 for the

supervised network andTable 2 for the semi-supervised network.

The performance is presented in terms of correctly classified

single trials, hit rate (true positive rate) and false alarm rate

(false positive rate), where positive is the target class. The correct
classification metric is defined as the sum of correct positives
and negatives among all samples, and therefore can show a
distorted view of performance due to the imbalanced classes in
our data set, i.e., if all trials are classified as non-target, we get 90%
correct classification. Therefore, we also compute the Area Under
the Curve (AUC) and balanced accuracy metrics. The balanced

accuracy is defined as
true positive rate + true negative rate

2 and thus is a
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TABLE 1 | Supervised network classification results.

Subject/ Correct Hits False AUC Balanced

Session alarms Accuracy

A-1 90.07 ± 1.1 78.22 ± 4.3 9.17 ± 1.4 0.91 ± 0.02 84.52 ± 4.3

A-2 88.14 ± 2.1 79.86 ± 4.6 11 ± 2.2 0.92 ± 0.03 84.33 ± 4.6

A-3 88.48 ± 2.7 78.48 ± 3.4 10.74 ± 3 0.93 ± 0.01 83.87 ± 3.4

A-4 91.89 ± 2.7 81.26 ± 3.4 7.32 ± 3 0.94 ± 0.02 86.96 ± 3.4

A-5 93.89 ± 2.1 77.7 ± 3 4.99 ± 2.2 0.94 ± 0.02 86.35 ± 3

A-6 90.15 ± 1.6 75.52 ± 3.7 8.6 ± 1.8 0.92 ± 0.02 83.46 ± 3.7

B-1 93.1 ± 1.7 82.32 ± 1.8 6.37 ± 1.4 0.94 ± 0.02 87.97 ± 1.8

B-2 89.96 ± 2.9 77.27 ± 4 8.93 ± 3.2 0.91 ± 0.03 84.17 ± 4

B-3 92.65 ± 1.6 79.56 ± 4.2 6.4 ± 1.8 0.93 ± 0.03 86.57 ± 4.2

B-4 88.09 ± 2.2 76.34 ± 3.4 10.98 ± 2.3 0.9 ± 0.02 82.67 ± 3.4

B-5 90.74 ± 1.3 76.53 ± 5 8.06 ± 1.6 0.92 ± 0.03 84.23 ± 5

B-6 92.86 ± 1.7 77.3 ± 3.2 6.07 ± 1.8 0.92 ± 0.03 85.61 ± 3.2

Mean 90.84 ± 2 78.35 ± 2 8.22 ± 2 0.92 ± 0.01 85.06 ± 1.6

more suitable metric for our case. The standard deviations in the
table and figures are across the repeated cross validation test sets,
except for deviations at the mean row which are across subjects.

The supervised network achieved 0.9–0.94 AUC across
subjects (mean: 0.92; std: 0.01) with balanced accuracy of 83–87%
(mean: 85.06%; std: 1.6%). In comparison, the semi-supervised
network results are lower. This is expected since the semi-
supervised network does not learn the target images and thus
has a more difficult task. The network achieved 0.86–0.91 AUC
(mean: 0.88; std: 0.01) with balanced accuracy of 77–83% (mean:
80.68%; std: 1.1%).

We examine the differences in performance between the two
presentation rates, 5 Hz (sessions 1–2) and 10 Hz (sessions 3–
6). Overall we do not see a significant performance changes. In
the supervised network, the averaged balanced accuracy didn’t
change for subject A (84.42 vs. 85.16%) while for subject B
there was a minor drop (86 vs. 84.77%). In the semi-supervised
network, the averaged balanced accuracy for subject A decreased
from 81.79% for the 5 Hz sessions to 79.41% for the 10 Hz
sessions, while subject B had no change (81 vs. 81.21%).

We compare performance of the multimodal networks and
each of the modalities separately in Figure 7; EegImgNet is the
supervised network and EegImgAeNet is the semi-supervised
network.

The supervised multimodal network is superior than using
each one of them separately. We can see a significant increase
in hits, where the multimodal network improves in+7% over the
image network and+11% over the EEG network, and in balanced
accuracy where the combined network has +4% over the image
network and+9% over the EEG network.

The semi-supervised multimodal network is always better
than the EEG network, showing on average a+3% improvement
in correct classification, +7% in hits, −1% in false alarms, and
+4% in balanced accuracy.

Comparing the EEG and image networks, the images
are almost always superior, except for one session (B-1).
Nevertheless, the fact that the supervised multimodal network
shows an improvement over both modalities means that each

TABLE 2 | Semi-supervised network classification results.

Subject/ Correct Hits False AUC Balanced

Session alarms accuracy

A-1 89.91 ± 0.6 75.28 ± 3.2 8.95 ± 0.8 0.90 ± 0.03 83.16 ± 1.7

A-2 84.59 ± 1.3 76.01 ± 2.5 15.14 ± 1 0.87 ± 0.02 80.43 ± 1.4

A-3 81.64 ± 1 73.61 ± 2 17.65 ± 1.1 0.87 ± 0.02 77.97 ± 1.2

A-4 86.35 ± 1.2 70.58 ± 3.5 12.6 ± 1.3 0.86 ± 0.03 78.98 ± 1.8

A-5 88.16 ± 1.5 71.58 ± 2.6 10.77 ± 1.5 0.89 ± 0.02 80.40 ± 1.7

A-6 84.62 ± 0.9 75.21 ± 1.8 14.65 ± 0.7 0.89 ± 0.03 80.28 ± 0.9

B-1 90.29 ± 1 73.43 ± 2.2 8.57 ± 1 0.87 ± 0.04 82.43 ± 1.3

B-2 84.7 ± 1.3 73.89 ± 4 14.57 ± 1.2 0.86 ± 0.03 79.66 ± 2.4

B-3 87.92 ± 1.7 74.09 ± 5.1 11.07 ± 1.8 0.90 ± 0.02 81.51 ± 2.9

B-4 81.44 ± 1.5 78.09 ± 3.6 18.24 ± 1.6 0.88 ± 0.03 79.92 ± 2

B-5 84.23 ± 1.2 75.04 ± 2.4 15 ± 1.3 0.90 ± 0.03 80.01 ± 1.5

B-6 90 ± 0.9 75.73 ± 3.2 8.96 ± 0.9 0.91 ± 0.03 83.38 ± 1.6

Mean 86.15 ± 3.1 74.38 ± 2.2 13.01 ± 1.4 0.88 ± 0.01 80.68 ± 1.1

TABLE 3 | Kruskal–Wallis test p-values.

Correct Hit rate False alarm AUC Balanced accuracy

1.2e-5 5.4e-8 1.1e-5 2.6e-7 4.9e-8

modality, EEG and images, has its own strength, as indicated by
the strong improvements in the hits metrics.

We used non-parametric tests to to assess the significance of
the changes in the performance metrics between the all networks
simultaneously. Kruskal–Wallis (Kruskal and Wallis, 1952) was
used to determine the differences between all networks on the
various metrics. All p-values were <0.05, as seen in Table 3. We
can account for the multiple tests with Bonferroni correction
(Dunn, 1961), which adjusts p to p =

α

m =
0.05
5 = 0.01. The

results of the Kruskal–Wallis tests are still below the adjusted
p-value.

Wilcoxon signed rank test (Wilcoxon, 1945) was used
to assess the pair-wise changes between the networks.
Table 4 presents the p-values for all tests. For multiple
testing correction, we use Holm-Bonferroni (Holm, 1979)
correction with α = 0.05 and m = 30. After the correction,
the tests determined a significant change when comparing
both multimodal networks with the EEG network on all
metrics. Comparing the supervised multimodal network
with the image network, the test pointed out a significant
change in the hits and balanced accuracy metrics. The semi-
supervised multimodal network was significantly different
than the image network on the correct, hits, and false alarms
metrics.

To verify our choice of a feature-level fusion model,
we compare the results of the supervised network to
another supervised network, where the fusion of the
modalities occurs in the decision-level. Namely, each
modality has its own classifier that outputs a decision,
and another classifier combines both decisions into a final
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FIGURE 7 | Classification performance of four neural networks - EegNet (EEG data only), ImgNet (image data only), EegImgNet (supervised EEG and

image network), EegImgAeNet (semi-supervised EEG and image network). (A) Correct classification across subject. (B) Hit rate (true positive rate). (C) False

alarm rate (false positive rate). (D) Balanced Accuracy.

TABLE 4 | Wilcoxon test p-values (correct / hits / false alarms / AUC / balanced accuracy).

EegNet ImgNet EegImgNet EegImgAeNet

EegNet – 4e-4 / 0.05 / 4e-4 / 0.001 / 0.001 4e-4 / 4e-4 / 4e-4 / 4e-4 / 4e-4 4e-4 / 4e-4 / 4e-4 / 9e-4 / 4e-4

ImgNet – – 0.79 / 4e-4 / 0.26 / 0.01 / 4e-4 4e-4 / 0.006 / 4e-4 / 0.12 / 0.15

EegImgNet – – – 4e-4 / 0.003 / 9e-4 / 4e-4 / 4e-4

one. Table 5 depicts the performance of the decision-
level fusion network. We can see that on average every
metric is lower with decision-level fusion, with the biggest
decrease in hits and balanced accuracy, which dropped
in 4%.

3.2. Features Analysis
We inspect the weights that were learned by the supervised
multimodal network and the features that were extracted. For the
EEG part, although we didn’t restrict the network to learn specific
P300-related features, we still expect to find some resemblance to
the P300 ERP distribution. For the images, we wish to see which
structures were identified as targets.

We start by plotting the weights and features of the first
EEG convolutional layer. The weights of this layer captures only
the spatial values of the electrodes while the convolution is
performed across time. Therefore, the features emitted by this
layer can be thought of as the amplitude of the weights in time.
Figure 8 shows a sample of four weights vectors, plotted on the
scalp, and their corresponding temporal activations.

The scalp plots show high positive activity in frontal
and parietal electrodes. This is inline with the known P300

TABLE 5 | Decision-level fusion supervised network classification results.

Subject/ Correct Hits False AUC Balanced

Session alarms accuracy

A-1 87.62 ± 2.11 76.72 ± 2.01 11.78 ± 2.26 0.9 ± 0.02 82.47 ± 1.65

A-2 86.59 ± 1.14 74.2 ± 2.55 12.24 ± 0.97 0.89 ± 0.03 80.98 ± 1.24

A-3 85.45 ± 2.16 71.43 ± 2.3 13.41 ± 2.53 0.88 ± 0.03 79.01 ± 1.2

A-4 85.07 ± 3.38 77.51 ± 3.86 14.51 ± 3.61 0.91 ± 0.03 81.5 ± 2.35

A-5 91.38 ± 1.56 74.43 ± 3.25 7.49 ± 1.69 0.92 ± 0.03 83.53 ± 1.75

A-6 89.08 ± 1.55 73.42 ± 2.34 9.56 ± 1.8 0.94 ± 0.02 81.77 ± 0.72

B-1 88.87 ± 3.65 77.68 ± 3.96 10.38 ± 3.96 0.92 ± 0.03 83.55 ± 2.89

B-2 87.74 ± 1.51 75.77 ± 4.52 11.31 ± 1.83 0.9 ± 0.05 82.2 ± 2.2

B-3 88.77 ± 2.82 72.86 ± 3.68 10.13 ± 3.11 0.9 ± 0.04 81.47 ± 2.36

B-4 86.83 ± 1.6 74.53 ± 5.93 12.1 ± 1.9 0.92 ± 0.02 81.62 ± 2.86

B-5 87.82 ± 1.99 74.47 ± 2.4 11.09 ± 2.09 0.91 ± 0.03 81.89 ± 1.78

B-6 91.96 ± 1.19 73.84 ± 3.12 6.85 ± 1.2 0.9 ± 0.03 83.48 ± 1.83

Mean 88.1 ± 2.09 74.74 ± 1.88 10.9 ± 2.22 0.91 ± 0.02 81.96 ± 1.28

distribution on the scalp (Polich, 2007). In addition, we
see that the maps are mostly active around 300–500ms,
which is also as expected. Figure S4 in the Supplementary
Material shows additional maps from both subjects, where we
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FIGURE 8 | Weights of the first convolutional layer in the EEG network. All samples show high activity around Pz which is typical to P300 ERPs. All scalp plots

were generated using EEGLAB (Delorme and Makeig, 2004).

can see additional spatial patterns that were learned by the
network.

The presented weights show us a partial picture of what the
network has learned since we do not see the affect of the deeper
layers of the network. Therefore, we use a gradient-based method
(Simonyan et al., 2013) to generate saliency maps of a given
input sample. The maps are generated from back-propagating
gradients via the entire network, yielding a complete image of
what the network has detected in the inputs. We can only use
it for the supervised multimodal network since it is fully trained
with one loss function, unlike the semi-supervised network.

Figure 9 shows the visualization of a sample input. The input
image is a target image with multiple buildings and roads.
The image saliency map shows that the network detected three
buildings in the image and the horizontal road. The EEG saliency
map is shown below, where we see a temporal plot for each
channel plotted on the scalp. We can see here that the network
detected positive activity in parietal and central channels such
as Pz and Cz. Frontal channels such as Fz also have a similar
positive activity but later in time. We show the visualizations
of additional samples in the Supplemental Data Section, in
Figures S1–S3.

4. DISCUSSION

BCI applications make heavy use of machine learning to
learn and decode brain activity robustly. BCI applications for

healthy users are designed to assist users with high throughput
tasks by taking advantage of computer algorithms and the
brain processing power. Specifically, RSVP applications assist
users in scanning large image datasets for a set of target
images. These type of applications have visually or auditory
stimuli and rely on the user to process them while the BCI
application is used to quickly identify the corresponding signals
in the user’s brain. However, with recent advancements in
computer vision, we are inclined to use the computer for
processing the stimuli in addition to handling the EEG signal.
Here, we present two multimodal neural networks that uses
the recorded EEG and the image stimulus simultaneously to
improve performance in this task. The first network is a
fully supervised model, that is trained simultaneously on EEG
and image inputs. The network learns to detect the target-
related response in the EEG while also learning how the
targets look like in the images. We see that in comparison
to the separate EEG or image networks, the supervised
multimodal has a much better classification performance
across subjects and metrics. When comparing the separate
image and EEG networks, we see that the image network
has on average better performance than the EEG network.
This might indicate that the images in question were “too
easy" for the network, and our next experiment should use
harder targets in order to emphasize the strength of the EEG
features. We also asses our choice of feature-level fusion of
the two modalities with decision-level fusion for the supervised
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FIGURE 9 | Visualization for a Sample Input. (A) The input image. (B) Image saliency map. (C) EEG saliency map scalp plot.

network. The results demonstrate that feature-level fusion is
beneficial.

The supervised multimodal network learns to detect the P300
ERP in the data, which is in general agnostic to the actual type
of the target image since it is elicited when the brain detects a
rare stimulus. The images, however, contain specific targets, e.g.,
structures and buildings. Therefore, if the target images change,
we need to retrain our network on a new training set. Another
case could be that the targets are unknown at the training

stage or might change once we deploy our BCI application to
production. For this use case, we introduce a semi-supervised
multimodal neural network. Here, we train the network in two
steps. First, we train an unsupervised autoencoder on non-target
images alone. The model learns how to reconstruct the images
from the features, and therefore produces features that represent
critical information about the image. After this, we train the
multimodal neural network by giving it EEG data as one input,
and the image features extracted by the autoencoder as a second
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input. In this training step, we use both target and non-target
images, but since the autoencoder is already trained here, then
the entire network does not learn any features from the target
images.

The performance of the semi-supervised model is lower than
the supervised model and image network. This is expected since
the network that sees the target images have more information
for classification. Still, the semi-supervised model surpasses the
EEG network on every metric across all sessions. This points out
that even if the network didn’t see the targets, it can still produce
meaningful features that can differentiate non-target images and
other images that it wasn’t trained on. This is an interesting result
that can be useful in many RSVP applications.

Multimodal algorithms for EEG have been proposed before
(Sajda et al., 2010), using classical computer vision algorithms
together with advanced ML algorithms for EEG processing. The
advantage of this approach is that it requires little training
data since the features are manually engineered by the choice
of algorithms. However, this mechanism might fail when the
images get more complex and the targets are harder to detect.
Here we use a deep neural network to learn features from a
training set, a method proven to succeed in difficult object
recognition competitions (Krizhevsky et al., 2012). Although it
requires training data to learn from, it reduces the amount of
design complexity since we do not need to select image-specific
algorithms for feature extraction. Therefore, we can easily adapt
our model to new, more difficult, images. In addition, since we
use similar architectures for the EEG and image networks, we

can train them simultaneously and have a performance gain by
allowing the two sub-networks to influence each other in the
training process.

Recent advancements in machine learning have brought
automatic recognition capabilities to real world performance
in various domains such as images, speech, and text. BCI
applications should use these new algorithms in order to combine
information from the brain and from the stimuli presented.
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