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Deep neural networks (DNNs) provide useful models of visual representational

transformations. We present a method that enables a DNN (student) to learn from

the internal representational spaces of a reference model (teacher), which could be

another DNN or, in the future, a biological brain. Representational spaces of the

student and the teacher are characterized by representational distance matrices (RDMs).

We propose representational distance learning (RDL), a stochastic gradient descent

method that drives the RDMs of the student to approximate the RDMs of the teacher.

We demonstrate that RDL is competitive with other transfer learning techniques for

two publicly available benchmark computer vision datasets (MNIST and CIFAR-100),

while allowing for architectural differences between student and teacher. By pulling

the student’s RDMs toward those of the teacher, RDL significantly improved visual

classification performance when compared to baseline networks that did not use transfer

learning. In the future, RDL may enable combined supervised training of deep neural

networks using task constraints (e.g., images and category labels) and constraints

from brain-activity measurements, so as to build models that replicate the internal

representational spaces of biological brains.

Keywords: neural networks, transfer learning, distance matrices, visual perception, computational neuroscience

1. INTRODUCTION

Deep neural networks (DNNs) have recently been highly successful for machine perception,
particularly in the areas of computer vision using convolutional neural networks (CNNs)
(Krizhevsky et al., 2012) and speech recognition using recurrent neural networks (RNNs) (Deng
et al., 2013). The success of these methods depends on their ability to learn good, hierarchical
representations for these tasks (Bengio, 2012). DNNs have not only been useful in achieving
engineering goals, but also as models of computations in biological brains. Several studies have
shown that DNNs trained only to perform object recognition learn representations that are similar
to those found in the human ventral stream (Khaligh-Razavi and Kriegeskorte, 2014; Yamins
et al., 2014; Güçlü and van Gerven, 2015). The models benefit from task training, which helps
determine the large number of parameters and bring the domain knowledge required for feats of
intelligence such as object recognition into the models. This is in contrast to the earlier approach
in visual computational neuroscience of using nonlinear systems identification techniques to set
the parameters exclusively on the basis of measured neural responses to large sets of stimuli
(Naselaris et al., 2011). The latter approach is challenging for deep neural networks, because the
high cost of brain-activity measurement limits the amount of data that can be acquired (Yamins
and DiCarlo, 2016). Ultimately, task-based constraints will have to be combined with constraints
from brain-activity measurements to model information processing in biological brains.
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Here we propose a method that enables the training of
DNNs with combined constraints on the desired outputs and
the internal representations. We demonstrate the method by
using another neural net model as the reference system whose
internal representations the DNN is to emulate. One method
for doing so would be to have a layer in a DNN linearly
predict individual measured responses (e.g., fMRI voxels or
neurons), and backpropagate the error derivatives from the linear
measured-response predictors into the DNN. However, the linear
measurement predictionmodel has a large number of parameters
(nunits × nresponses). An alternative approach is to constrain
the DNN to replicate the representational distance matrices
(RDMs) estimated from brain responses. In this paper, we take
a step in that direction by considering the problem of training
a DNN (student) to model the sequence of representational
transformations in another artificial system (teacher), a CNN
trained on different data.

Our technique falls in the class of transfer learning methods.
In the deep learning literature, several such techniques have
been proposed both for pulling a DNN’s internal representations
toward the task target and for transferring knowledge from a
teacher DNN to a student DNN. We begin by briefly considering
the previous approaches used to accomplish these goals.

1.1. Auxiliary Classifiers: Pulling Internal
Representations Toward the Desired
Output
Recently, it has been investigated how the error signal reaching an
internal layer through backpropagation can be complemented by
auxiliary error functions. These more directly constrain internal
representations using auxiliary optimization goals. A variety of
methods using auxiliary error functions to pull representations
toward the desired output have been proposed.

Weston et al. (2012) proposed semi-supervised embeddings to
augment the error from the output layer. A reference embedding
of the inputs was used to guide representational learning. The
embedding constraint was implemented in different ways: inside
the network as a layer, as part of the output layer, or as an
auxiliary error function that directly affected a particular hidden
layer. Weston et al. discussed a variety of embedding methods
that could be used, including multidimensional scaling (MDS)
(Kruskal, 1964) and Laplacian Eigenmaps (Belkin and Niyogi,
2003). The addition of these semi-supervised error functions led
to increased accuracy compared to DNNs trained using output
layer backpropagation alone.

Lee et al. (2014) also showed that auxiliary error functions
improve DNN representational learning. Instead of using semi-
supervisedmethods, they performed classification with a softmax
or L2SVM readout at a given intermediate hidden layer.
The softmax layer allowed the output of a network to be
treated as a probability distribution by performing normalized
exponentiation on the previous layer’s activations (yi =

exi/
∑

j e
xj ). The error of the intermediate-level readout was then

backpropagated to earlier layers to drive intermediate layers
directly toward the target output. The gradients from these
classifiers were linearly combined with the gradients from the

output layer classifier. This technique resulted in improved
accuracies for several datasets.

A challenge in training very deep networks is the problem
of vanishing gradients. Layers far from the output may receive
only a weak learning signal via conventional backpropagation.
Auxiliary error functions were successfully applied to these very
deep networks by Szegedy et al. (2015) to inject a complementary
learning signal at internal layers by constraining representations
to better discriminate between classes. This was implemented
in a very large CNN which won the ILSVRC14 classification
competition (Russakovsky et al., 2014). In this DNN, two
auxiliary networks were used to directly backpropagate from two
intermediate layers back through the main network. Similar to
the method used in Lee et al. (2014), the parameters for the layers
in the main network directly connected to auxiliary networks
were updated using a linear combination of the backpropagated
gradients from later layers and the auxiliary network.

Wang et al. (2015) investigated the effectiveness of auxiliary
error functions in very large CNNs and their optimal placement.
They selected where to place these auxiliary functions
by measuring the average magnitude of the conventional
backpropagation error signal at each layer. Auxiliary networks,
similar to those used in Szegedy et al. (2015), were placed after
layers with vanishing gradients. These networks consisted of
a convolutional layer followed by three fully connected layers
and a softmax classifier. As in Lee et al. (2014) and Szegedy
et al. (2015), the auxiliary gradients were linearly combined to
update the model parameters. Adding these supervised auxiliary
error functions led to an improved accuracy for two very large
datasets, ILSVRC12 (Russakovsky et al., 2014) and MIT Places
(Zhou et al., 2014).

1.2. Transfer Learning: Pulling the
Representations of a Student Toward
Those of a Teacher
Enabling a student network to learn from a teacher is useful for
a number of tasks, for instance model compression (also known
as knowledge distillation) and transfer learning (Bengio, 2012).
The goal in either case is to use the representational knowledge
learned by a teacher neural network to improve the performance
of a student network (Bucilua et al., 2006; Ba and Caruana, 2014;
Hinton et al., 2015). For model compression, the teacher is a
larger or more complex network with higher performance than
the student. For knowledge transfer, the representations learned
by the teacher network are used to improve the training of a
student network on a different tasks or using different data.
Several techniques have been proposed for performing these
methods.

One technique for model compression is to have the student
learn the output representation of the teacher for a given training
input. For classification, the neurons before the softmax layer
can be constrained to have the same values as the teacher using
mean squared error (MSE) as done in Bucilua et al. (2006); Ba
and Caruana (2014). Alternatively, the output of the softmax
layer can be constrained to represent the same, or similar, output
distribution as the teacher. This can be done by minimizing the

Frontiers in Computational Neuroscience | www.frontiersin.org 2 December 2016 | Volume 10 | Article 131

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


McClure and Kriegeskorte Representational Distance Learning

cross-entropy between the output distributions of the teacher and
student networks for the training inputs (Hinton et al., 2015).
However, these techniques assume that the student is learning the
same task as the teacher.

Knowledge from different networks can also be transferred
at internal layers. Romero et al. (2014) proposed a method for
transferring the knowledge of a wide and shallow teacher to
a thin and deep student, called FitNet. Pre-trained a network
by constraining an intermediate layer of the student network
to have representations that could linearly predict “hints” from
the teacher network (i.e., activation patterns at a corresponding
layer in the teacher network). After this, the network was fine-
tuined using the technique proposed in Hinton et al. (2015). The
FitNet method was shown to improve the students classification
accuracy.

Another prominent technique for performing transfer
learning is to initialize the weights of the student network to
those of the teacher. The network is then trained on a different
task or using different data. This can lead to improved network
performance (Yosinski et al., 2014). However, this requires
that the teacher and student have the same, or very similar,
architectures, which may not be desirable, especially if the
teacher is a biological neural network.

In this paper, we introduce an auxiliary error function
that enables a student network to learn from the internal
representational spaces of a teacher that has a similar or
different architecture. The method constrains the student’s
representational distances in a set of layers to approximate those
of the teacher. The student can thus learn the computational
transformations discovered by the teacher, leading to improved
representational learning during training.

2. METHODS

Our method, representational distance learning (RDL), enables
DNNs to learn from the representations of other models to
improve performance. As in Lee et al. (2014), Szegedy et al.
(2015), andWang et al. (2015), we utilize auxiliary error functions
to train internal layers directly in conjunction with the error
from the output layer found via backpropagation. We propose
an error function that maximizes the similarity between the
representational spaces of a student DNN and that of a teacher
model.

2.1. Representational Distance Matrices
In order to compare the representational spaces of models, a
method must be used to describe them. As discussed in Weston
et al. (2012), a representational space can be characterized by the
pairwise distances between representations. This idea has been
used in several methods such as MDS, which seeks to reduce
the dimensionality of data while minimizing the error between
the pairwise distance matrix of the original data and the reduced
dimensionality data (Kruskal, 1964).

Kriegeskorte et al. (2008) proposed using the matrix of
pairwise dissimilarities between representations of different
inputs, which they called representational distance, or
dissimilarity, matrices (RDMs), to compare computational

models and neurological data. More recently, Khaligh-Razavi
and Kriegeskorte (2014) used this technique to analyze several
computer vision models, including the CNN proposed in
Krizhevsky et al. (2012), and neurological data. Any distance
function could be used to compute the pairwise dissimilarities,
for instance the Euclidean or correlation distances. An RDM for
a DNN can be defined by:

RDM(X; fm)i, j = d(fm(xi;Wm), fm(xj;Wm)) (1)

where X is a set of n inputs (e.g., a mini-batch or a subset of a
mini-batch), fm is the neuron activations at layerm, xi, and xj are
single inputs,Wm is the weights of the neural network up to layer
m, and some distance, or dissimilarity, measure d.

In addition to characterizing the information present in a
particular layer of a DNN, RDMs can be used to visualize
the representational space of a layer in a DNN (Figure 1).
information captured by internal layers in a DNN is challenging.
Zeiler and Fergus (2014) proposed a method for visualizing
the input features which active internal neurons at varying
layers using deconvolutional neural networks. Yosinski et al.
(2015) also proposed methods for visualizing the activations
of a DNNs for a given input. However, these methods do not
show the categorical information of each representational layer.
Visualizing the similarity of labeled inputs at layers of interest, via
an RDM, allow clusters inherent to the learned representational
transformations to be viewed.

2.2. Representational Distance Learning
RDL uses an auxiliary error functions that maximizes the
similarity between the RDMs of a student and the RDMs of
a teacher at several layers. This is motivated by the idea that
RDMs, or distance matrices in general, can characterize the
representational space of a model. DNNs seek to learn a set of
hierarchical representations. For classification, this culminates
in finding a representational space where different classes are
separable. RDL allows aDNN to learn from the representations of
a different, potentially better, model by maximizing the similarity
between the RDMs of the DNN being trained and the target
model at several layers. Unlike in Bucilua et al. (2006), Ba and
Caruana (2014), and Hinton et al. (2015). RDL not only directly
trains the output representation, but also the representations
of hidden layers. As discussed in Bengio (2012), however, large
datasets can prohibit the use of pairwise techniques, since the
number of comparisons grows quadratically with dataset size.
To address this, our technique only uses a random subset of all
pairwise distances for each parameter update. This allows the
speed of our method to be constrained by the subset size and not
the overall number of training examples, which is usually several
orders of magnitude larger.

In order to maximize the similarity between the RDM of
a DNN layer being trained and a target RDM, we propose
minimizing the mean squared error between the two RDMs. This
corresponds to making all possible pairwise distances as similar
as possible:

Eaux(X; fm;Tm)=
2

n(n− 1)

∑

(i, j)|i< j

(RDM(X; fm)i, j−Tm, i, j)
2 (2)
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FIGURE 1 | Example representational distance matrices (RDMs) of the output layer of convolutional neural networks (CNNs) for 10 random images of

each class from MNIST (left) and CIFAR-10 (right) made using the RSA toolbox (Nili et al., 2014).

TABLE 1 | The convolutional neural network (CNN) architecture used for

MNIST.

Layer Kernel Number of Stride Non- Other

size features linearity

Conv-1 5 × 5 32 1 ReLU −

MaxPool-1 3 × 3 32 3 Max −

Conv-2 5 × 5 64 1 ReLU −

MaxPool-2 2 × 2 64 2 Max −

FC 1500 200 − ReLU Dropout (p = 0.5)

Linear 200 10 − − −

where X is a set of n inputs (e.g., a mini-batch or a subset of a
mini-batch), fm is the neuron activations at layer m, and Tm, i, j is
the distance between the teacher’s representations of input xi and
input xj at layer m. The function d used to calculate the RDMs
(Equation 1) could be any dissimilarity or distance function, but
we chose to use the mean squared error (MSE). This results in
the average auxiliary error with respect to neuron k of fm, fm, k,
for input xi and the weights of the neural network up to layer m,
Wm, being defined as:

∂Eaux(xi;X; fm;Tm)

∂fm, k
=

8

n(n− 1)

∑

j|j 6= i

(RDM(X; fm)i, j − Tm, i, j)(fm, k|
xi
xj
) (3)

where fm, k|
xi
xj = fm, k(xi;Wm)− fm, k(xj;Wm).

However, calculating the error for every pairwise distance can
be computational expensive, so we estimate the error using a
random subset, P, of the pairwise distances for each update of

TABLE 2 | The McNemar exact test p-values for the tested CNNs trained

on MNIST.

Baseline Teacher Finetuning Deep Hints RDL

supervision

Baseline — 0.38 0.00 ↑ 0.11 0.34 0.01 ↑

Teacher 0.38 — 0.01 ↑ 0.66 0.89 0.20

Finetuning 0.00← 0.01← — 0.14 0.04← 0.63

Deep 0.11 0.66 0.14 — 0.64 0.39

Supervision

Hints 0.34 0.89 0.04 ↑ 0.64 — 0.17

RDL 0.01← 0.20 0.63 0.39 0.17 —

Arrows indicate a significant difference (p < 0.05, uncorr.) and point to the better model.

a network’s parameters. This leads to the auxiliary error gradient
being approximated by:

∂Eaux(xi;X; fm;Tm)

∂fm, k
≈

8

|XP||Pxi |

∑

(i, j)∈Pxi

(RDM(X; fm)i, j − Tm, i, j)(fm, k|
xi
xj
) (4)

where XP is the set of all images contained in P, Pxi is the set of
all pairs, (i, j), in P that include input xi and another input, xj. If
an image is not sampled, its auxiliary error is zero.

The total error of fm, k for input xi is calculated by taking a
linear combination of the auxiliary error at layerm and the error
from backpropagation of the output error function and any later
auxiliary functions. These terms are combined using weighting
hyper parameter α, similar to the method discussed in Lee et al.
(2014), Szegedy et al. (2015), and Wang et al. (2015). In RDL,
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α is the weight of the RDL error in the overall error function.
Subsequently, the error gradient at a layer with an auxiliary error
function is defined as:

∂Etotal(xi; yi;X; fm;Tm)

∂fm, k
=

∂Ebackprop(xi; yi; fm)

∂fm, k
+ α

∂Eaux(xi;X; fm;Tm)

∂fm, k
(5)

This error is then used to calculate the error of earlier layers
in the DNN using backpropagation. As discussed by Lee et al.
(2014) and Wang et al. (2015), the value of α was decayed
as training progressed. Throughout training, α was updated
following αt+ 1 = α0

∗(1 − t/tmax) where t is the epoch number
and tmax is the total number of epochs. By using this decay rule,
the auxiliary error function initially helps drive the parameters to
good values while allowing the DNN to converge predominantly
using the output error by the end of training.

3. RESULTS

To evaluate the effectiveness of RDL, we perform two
experiments using four different datasets, MNIST, InfiMNIST,
CIFAR-10, and CIFAR-100. For each experiment, we transferred
the knowledge of a teacher network trained on a separate dataset
to a student network with the a similar architecture using: (1)
finetuning after directly copying the weights of the teacher,
(2) pre-training an internal layer of the student to linearly
predict a corresponding layer in the teacher using “hints,” and
(3) using RDL. We compared the results to two non-transfer
learning networks, a network only constrained at the output
layer using the target labels and a deeply supervised network,
which constrained both the output layer and internal layers using
the target labels. We implemented all of these methods using
Torch (Collobert et al., 2011). These experiments show that
the knowledge stored in the weights of a teacher network can
be transferred to a student network using the representational
distances learned by a teacher trained on a related task.

3.1. MNIST
MNIST is a dataset of 28× 28 images of handwritten digits from
10 classes, 0 through 9 (LeCun et al., 1998). The dataset contains
60,000 training images and 10,000 test images. A 10,000 image
subset of the training data was used as a validation set for hyper-
parameter tuning. No pre-processing or data augmentation was
applied. InfiMNIST is a dataset that extends the MNIST dataset
using pseudo-random deformations and translations (Loosli
et al., 2007). The first 10,000 non-MNIST InfiMNIST examples
were used as a validation set and the next 120,000 examples were
used as a training set for the teacher network. Each tested network
had the same architecture (Table 1), excluding any auxiliary error
functions. The deeply supervised network had linear auxiliary
softmax classifiers placed after the max pooling layers and α

was decayed using αt+ 1 = α∗t 0.1
∗(1 − t/tmax), as proposed

in Lee et al. (2014). For the finetuning network, the weights

TABLE 3 | Test errors for MNIST trained convolutional neural networks

(CNNs) and the CIFAR-100 trained “Network in Network” (NiN) models.

Method Error (%)

MNIST

Baseline CNN 0.63

Teacher 0.56

Teacher with finetuning 0.48

Student with deep supervision 0.55

Student with hints 0.56

Student with RDL 0.49

CIFAR-100

Baseline NiN 30.68

Teacher with finetuning 38.75

Student with deep supervision 29.46

Student with hints 29.37

Student with RDL 28.77

The performance of the teacher for the CIFAR-100 classification is not shown, since it

was trained on CIFAR-10 and, therefore, predicted across 10 not 100 classes, making it

unable to perform the CIFAR-100 task.

FIGURE 2 | The change in the train and test errors through time as the tested convolutional neural networks (CNNs) are trained on MNIST.
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were initialized as the weights of the teacher network instead of
being randomly initialized. After this, the network was trained
normally. The RDL network had auxiliary error functions after
both max pooling layers and the fully connected layer. 5% (500)
of the image pairs per mini-batch were used to calculate the RDL

auxiliary errors. A momentum of 0.9 and a mini-batch size of 100
were used for all networks trained on MNIST and InfiMNIST.

In addition to the classification error (Figure 2 and Table 3),
we used the McNemar exact test (Edwards, 1948) to evaluate
whether a network was significantly more accurate in classifying

FIGURE 3 | Representational distance matrices (RDMs) using the Euclidean distance for the first and second convolutional layers as well as the fully

connected (FC) and softmax layers of the CNN tested methods, the raw pixel data, and the target labels for 10 random class exemplars from MNIST.

FIGURE 4 | 2-D multi-dimensional scaling (MDS) visualization of the distances between the representational distance matrices (RDMs) for selected

layers of the MNIST trained networks. RDMs were generated for each model using 20 bootstrapped samples of 100 images from the test set. For each sampled

image set, the correlation distance between the RDMs of the different networks were calculated. These values were then averaged to generate the MDS plot.
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a random image from the distribution from which the images in
the training and test sets were drawn. The results (Table 2) show
that the finetuning and RDL methods both signifantly improve
accuracy compared to the baseline CNN. They are, however, not
significantly different, showing the ability of RDL to indirectly
transfer the knowledge of the teacher network. The finetuned
network is also significantly better than the teacher and the “hint”
network, unlike RDL. This is because RDL actively constrains
the student network to imitate the teacher, while finetuning only
affects initialization.

In order to further compare the trained networks, RDMs were
generated for each fully trained model. Figure 3 shows RDMs for
100 random test images, 10 from each class. This visualization
emphasizes the class clustering as inputs are transformed from
pixel space to label space. Some classes are already clustered in
pixel space. For instance, 1, 7, and 9 s each have large blocks along
the diagonal portion of the pixel RDM. However, by looking at
the rows and columns we can see that these classes are difficult
to separate from one another. After the first convolutional layer,

TABLE 4 | The “Network in Network” (NiN) architecture with

batch-normalization (BN) (Ioffe and Szegedy, 2015) used for CIFAR-100.

Layer Kernel Number of Stride Non- Other

size features linearity

Conv-1 5 × 5 192 1 ReLU BN

MLPConv-1-1 1 × 1 160 1 ReLU BN

MLPConv-1-2 1 × 1 96 1 ReLU BN

MaxPool 3 × 3 96 2 Max −

Conv-2 5 × 5 192 1 ReLU BN, Dropout (p = 0.5)

MLPConv-2-1 1 × 1 192 1 ReLU BN

MLPConv-2-2 1 × 1 192 1 ReLU BN

AveragePool-1 3 × 3 192 2 − −

Conv-3 5 × 5 192 1 ReLU BN, Dropout (p = 0.5)

MLPConv-3-1 1 × 1 192 1 ReLU BN

MLPConv-3-2 1 × 1 100 1 ReLU BN

AveragePool-2 8 × 8 100 − − −

class clustering increases, especially for the baseline CNN. After
the second convolutional layer, class clustering increases for
every model and other class relationships become apparent. For
instance, 3 and 5 s are becoming increasingly different from other
classes, but are still similar to each other. Also, 1s remain similar
to many other classes. The fully connected (FC) layer leads to
stronger, but not perfect, class cluster. As expected, the softmax
layer leads to extremely strong class distinction. However, most
of themodels still view 1s as similar to other classes, as seen by the
large horizontal and vertical gray stripes. The notable exception
is the finetuned CNN, which had the lowest testing error.

While viewing the RDMs directly can make certain facts
about the transformations performed by the models evident,
it can be hard to compare RDMs to each other by visual
inspection. To better understand the relationships between
the representations of the different models, we calculate the
correlation distance between each pair of RDMs and use MDS to
create a 2-D plot showing the relative position in representational
space of the transformations learned by the various trained
networks (Figure 4). This allows for drawing several qualitative
conclusions. As expected, the RDMs of the networks start close
to the pixel-based RDM and become more similar to the target
RDM the deeper the layer. The differences between the evaluated
techniques can most clearly be seen at the 2nd (Conv2) and 3rd
(FC) layers. As expected: (1) the network initialized with the
weights of the teacher and then finetuned has the most similar
RDMs to the teacher, (2) deep supervision pulls the RDMs of the
student toward the target, (3) RDL pulls the RDMs of the student
toward and the RDMs of the teacher, especially at 3rd layer.

3.2. CIFAR-100
In order to test RDL on a more interesting problem, we
performed transfer learning from CIFAR-10 to CIFAR-100. This
experiment consists of transferring knowledge learned in an
easier task to a harder one, something that is useful in many
instances. CIFAR-100 is a dataset of 32 × 32 color images
each containing one of 100 objects. The dataset contains 50,000
training images and 10,000 test images. A 10,000 image subset of
the training data was used as a validation set for hyper-parameter

FIGURE 5 | The change in the train and test errors through time for the “Network in Network” (NiN) models trained on CIFAR-100.
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tuning. CIFAR-10 is also a dataset of 32 × 32 color images,
but containing only 10 distinct classes instead of 100. CIFAR-10
also contains 50,000 training images and 10,000 test images. For
both datasets, the data were pre-processed using global contrast
normalization. During training, random horizontal flips of the
images were performed and the learning rate was halved every 25
epochs.

To evaluate using RDLwith a more complex network, we used
a “Network in Network” (NiN) architecture (Lin et al., 2013),
which use MLPConv layers, convolutional layers that use multi-
layered perception (MLP) filters instead of linear filters (Table 4).

TABLE 5 | The McNemar exact test p-values for the tested “Network in

Network” (NiN) models trained on CIFAR-100.

Baseline Finetuning Deep supervision Hints RDL

Baseline — 0.00← 0.00 ↑ 0.00 ↑ 0.00 ↑

Finetuning 0.00 ↑ — 0.00 ↑ 0.00 ↑ 0.00 ↑

Deep supervision 0.00← 0.00← — 0.86 0.08

Hints 0.00← 0.00← 0.86 — 0.05

RDL 0.00← 0.00← 0.08 0.05 —

Arrows indicate a significant difference (p < 0.05,uncorr.) and point to the better model.

The CIFAR-10 trained teacher network had the same architecture
as the baseline CIFAR-100 NiN (Table 4) except with a 10-class
output layer and had a testing error of 8.0%. The DSN had linear
auxiliary softmax classifiers after the first and second pooling
layers and α was decayed as proposed in Lee et al. (2014). The
finetuning network’s weights were initialized using those of the
CIFAR-10 teacher network and a linear readout was added. The
RDL network had the same architecture as the baseline CIFAR-
100 network with randomly initialized weights and the addition
of auxiliary error functions that used the RDMs from the CIFAR-
10 teacher. For RDL, an additional linear readout was added after
the last MLPConv layer since RDL does not specify that each
neuron in a representation corresponds to an output class. For
RDL, 2.5% (406) of the image pairs per mini-batch of 128 images
were used to calculate the RDL auxiliary errors.

As in the previous experiment, the performances of the
networks (Figure 5 and Table 3) were statistically compared
using theMcNemar test. The results are shown in Table 5. Unlike
in the MNIST experiment, the fine tuned network performed
statistically worse than all tested methods. This is likely a
combination of the weights being overspecialized for CIFAR-10
classification and the last MLPConv layer having less units. The
networks that were trained with deep supervision, hints, and
RDL all significantly improved upon the baseline NiN and the

FIGURE 6 | 2-D multi-dimensional scaling (MDS) visualization of the distances between the representational distance matrices (RDMs) for selected

layers of the CIFAR-100 trained networks. RDMs were generated for each model using 20 bootstrapped samples of 100 images from the test set. For each

sampled image set, the normalized Euclidean distance between the RDMs of the different networks were calculated. These values were then averaged to generate

the MDS plot.
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finetuned network. These results show that learning from RDMs
can extract meaningful information from a teacher network,
which leads to improved classification performance.

To investigate the relationships between the representations
of the different NiN models, we calculate the correlation between
each pair of RDMs and use MDS to create a 2-D plot showing the
relative position in representational space of the transformations
learned by the various trained networks (Figure 6). The MDS
plots shows that: (1) the layer 2 and layer 3 RDMs of the network
initialized with the weights of the teacher and then finetuned are
further from the target than the other non-teacher networks, (2)
deep supervision pulls the RDMs of the student toward the target,
(3) despite learning a series of transformations that do not map
directly to the target, the teacher contains useful information to
the students’ task, and (4) RDL pulls the RDMs of the student
toward and the RDMs of the teacher. This shows the ability of
RDL to incorporate both the representational information from
the teacher as well as from the classification task.

4. DISCUSSION

In this paper, we proposed RDL, a technique for transferring
knowledge from a teacher model to a student DNN. The
representational space of the student is pulled toward that of a
teacher model during training using stochastic gradient descent.
This was performed by minimizing the difference between the
pairwise distances between representations of two models at
selected layers using auxiliary error functions. Training with RDL
was shown to improve classification performance by extracting

knowledge from another model trained on a similar task,
while allowing architectural differences between the student and
teacher. This suggests that RDL can transfer the relationships
between class examples learned by the teacher. This information
is not present when only constraining internal layers using class
labels, as done in the deeply supervised method, since the target
vectors for each class are orthogonal. In particular, RDL allows
a student network to learn similar sequential transformations to
those learned by a teacher network. This could be of potential
use in learning transformations similar to those performed in
the human visual ventral stream. Such a model might be able to
generate brain-like RDMs for novel stimuli. In the future, we plan
to train such a model by constraining large DNNs using fMRI-
based RDMs from the human visual ventral stream. By learning
from brain-activity patterns, RDL has the potential to help build
more realistic models of computations in biological brains.
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