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Detecting the existence of temporally coordinated spiking activity, and its role in

information processing in the cortex, has remained a major challenge for neuroscience

research. Different methods and approaches have been suggested to test whether the

observed synchronized events are significantly different from those expected by chance.

To analyze the simultaneous spike trains for precise spike correlation, these methods

typically model the spike trains as a Poisson process implying that the generation of

each spike is independent of all the other spikes. However, studies have shown that

neural spike trains exhibit dependence among spike sequences, such as the absolute

and relative refractory periods which govern the spike probability of the oncoming

action potential based on the time of the last spike, or the bursting behavior, which is

characterized by short epochs of rapid action potentials, followed by longer episodes

of silence. Here we investigate non-renewal processes with the inter-spike interval

distribution model that incorporates spike-history dependence of individual neurons. For

that, we use the Monte Carlo method to estimate the full shape of the coincidence

count distribution and to generate false positives for coincidence detection. The results

show that compared to the distributions based on homogeneous Poisson processes,

and also non-Poisson processes, the width of the distribution of joint spike events

changes. Non-renewal processes can lead to both heavy tailed or narrow coincidence

distribution. We conclude that small differences in the exact autostructure of the point

process can cause large differences in the width of a coincidence distribution. Therefore,

manipulations of the autostructure for the estimation of significance of joint spike events

seem to be inadequate.

Keywords: renewal process, Poisson process, synchrony, ISI, joint spike events, coincidence distribution

1. INTRODUCTION

The mammalian brain is comprised of billions of neurons, each connected to thousands of other
neurons by synapses. Every millisecond, thousands of neurons get excited and transmit brief,
identical and stereotyped electrical pulses, called action potentials or spikes, to other neurons. The
question of what kind of information is embedded in the spike trains, or how sensory and other
information is represented in the spike trains and transmitted to other neurons, refers to a well-
known puzzle namely, the neural coding problem. This problem has been a longstanding challenge
within the neuroscience community and up to the present, there has not been a defined answer to
this issue.
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To decipher the neural codes, two candidates have largely
been examined : 1- rate coding (e.g., Shadlen and Movshon,
1999), 2- temporal coding (e.g., Uhlhaas et al., 2009). Rate coding
refers to the scheme which assumes that most, if not all, of
the relevant information is transferred via mean firing rate of
the neuron that neglects all the information which may exist in
the exact timing of spikes. In recent years, the contrary idea of
temporal coding has gained increasing attention. The temporal
coding hypothesis claims that the temporal patterns of the neural
activity may play a role in information coding, i.e., the precise
temporal structures of neuronal discharges participate in coding
information. Different coding strategies based on spike timing
have been proposed, including, the time-to-first-spike (time of
the first spike relative to onset of single event), phase-of-firing
(phase of the spike with respect to the background oscillation in
the brain) and correlations in spike timing of a group of neurons.
The first two strategies are mostly concerned with how a single
neuron encodes information, and the third strategy, which is
known as the correlation coding model, claims that correlations
between the spike timing of groups of neurons or cell assemblies
convey information.

One extreme case of the correlation is synchrony, by which
the spike patterns come in precise millisecond coordination
across group of neurons. Coding by synchrony has been studied
extensively both experimentally and theoretically (e.g., von der
Malsburg, 1981; Gray and Singer, 1989; Gray et al., 1989;
Riehle et al., 1997; Vicente et al., 2008; Pipa and Munk, 2011;
Haslinger et al., 2013; Toutounji and Pipa, 2014; Torre et al.,
2016b). Mounting evidence indicates the importance of neural
synchrony in cognitive and executive processes and disruption
of synchronization in cognitive dysfunctions (e.g., Niebur et al.,
2002; Uhlhaas and Singer, 2006; Haenschel et al., 2007; Palva
et al., 2010). Hence, theoretical tools for analyzing synchronized
events is a necessity in the field of theoretical neuroscience.

To address the problem of coding by synchrony, one crucial
step to take is to determine whether the synchronized events
occur above chance. In other words, whether they occur
more often than is expected if the individual neurons fire
independently. To investigate this issue, different approaches and
methods have been taken (e.g., Aertsen et al., 1989; König, 1994;
Grün et al., 1999; Grün et al., 2002a,b; Pipa and Grün, 2003;
Pipa et al., 2007, 2008; Staude et al., 2010; Torre et al., 2013,
2016a). To analyze ensembles of spike trains from simultaneously
recorded neurons for precise spike correlations, many of these
approaches model the spike train as a Poisson process with
the same rate profile as the neuron under investigation (e.g.,
Grün et al., 2002a,b). Poisson process is a memoryless process,
i.e., the occurrence of a spike at time t does not depend on
the time occurrence of the previous spikes. In other words,
the generation of each spike is independent of all other
spikes. Another characteristic of the spike trains modeled as a
Poisson process is that the inter-spike interval (ISI) follows an
exponential distribution. However, the experimental spike trains
show substantial deviation from these characteristics of Poisson
process, i.e., independence of spike times and an exponential ISI
distribution (e.g., Burns and Webb, 1976; Levine, 1991; Iyengar
and Liao, 1997; Teich et al., 1997; Krahe and Gabbiani, 2004;

Nawrot et al., 2007, 2008; Farkhooi et al., 2009). For example,
neural spike trains exhibit absolute and relative refractory periods
during which the probability of oncoming action potential, based
on the time of the last spike, is zero or very low, respectively, or
the bursting behavior, which is characterized by short epochs of
rapid action potentials, followed by longer episodes of silence.

To model such characteristics of the neural firing, i.e.,
refractoriness, burstiness, and the regularity of the spike trains,
Pipa et al. (2013) used two types of renewal processes, namely,
a gamma process and a log-normal process, to study the effects
of the autostructure of the spike trains on the shape of the
probability distribution of coincidence count distribution of
pairs of mutually independent spike trains. It is shown that
the width of the coincidence count distribution depends on
detailed properties of the ISI distribution, such as the coefficient
of variation CV .

Assuming mutually independent ISIs, Pipa et al. (2013) used
a renewal process to model the autostructure of the spike trains.
However, this assumption may not be always in agreement with
the characteristics of the biological spike trains. Neural firing
might be described by non-renewal processes which can model
higher order dependence of spike times that lie further back in
the past (Nawrot et al., 2007). We will show that the higher order
dependence can be modeled by a non-renewal process. We will
further investigate the impact of the higher order dependence
of the spike times on the probability distribution of coincidence
events.

2. MATERIALS AND METHODS

2.1. Renewal Process
Renewal process is a simple class of point process model with
a very rich mathematical structure that can be an appropriate
candidate to model events that occur randomly in time or space.

Definition 1. Renewal process is a stochastic process to models
the random events in time (space) that are independent and
identically distributed. It is called renewal because the process
starts over after each event occurs, and the only factor that affects
the likelihood of occurrence of an event is the elapsed time (space)
since the last event.

Renewal process is frequently used to model the spike train,
which implies that the inter-spike interval is i.i.d and the
probability of occurrence of a spike depends on the elapsed time
since the last spike. However, the occurrences of other spikes in
the past do not affect the generation of the oncoming spike, in
other words, if λ is an instantaneous firing rate at time t andH(t)
is the history of the spikes and tN(t) is the time of the last spike
then:

λ(t|H(t)) = λ(t − tN(t)) (1)

2.1.1. Poisson Process
Poisson process is a simple renewal process where the time
between the successive arrivals is distributed exponentially, i.e.,

P{X = x} = λe−λx; (2)
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where x, λ ≥ 0. Since Poisson process is a memoryless process,
the probability of occurrence of a new spike does not depend on
the elapsed time since the last spike. For a homogenous Poisson
process, the instantaneous firing rate is given by:

λ(t|H(t)) = λ (3)

and for an inhomogenous Poisson process, the instantaneous
firing rate is as follows:

λ(t|H(t)) = λ(t) (4)

Two other renewal processes widely used in modeling the spike
trains are gamma and log-normal processes with the inter-spike
intervals distributed from gamma and log-normal probability
distribution, respectively.

2.1.2. Gamma Process
The gamma probability distribution is a two parameter
probability distribution defined as follows:

p(x;β , θ) =
βθ e−βx

Ŵ(θ)
xθ−1 (5)

E[X] =
∫ +∞

0
x p(x) dx =

θ

β
(6)

Var[X] = E[X2]− (E[X])2 =
θ

β2
(7)

θ and β are two parameters that describe the shape and the rate
of the gamma process, respectively.

Given a constant firing rate λ = R and an average inter-spike
interval 〈X〉 = 1

R , two properties of the gamma process with the
parameters θ and β are as follows:

β = θR (8)

C2
V =

σ 2
X

〈X〉2
=

1

θ
(9)

since σ 2
X = 1

θR2
and 〈X〉 = 1

R . CV is the coefficient of variation
of the inter-spike interval distribution and it is one of the factors
that is widely used to characterize the autostructure of the spike
trains. Thus, gamma spike trains can be either described by the
shape parameter θ and the rate β or with the coefficient of
variation of the inter-spike interval CV and the firing rate R.

Poisson process is a special case of the gamma process for
which θ = 1 and ISI distribution is exponential. The distribution
of ISI becomes hyperexponential for a shape parameter θ < 1,
which makes the short intervals more likely to happen than for a
Poisson process with the same firing rate. Gamma process with
θ < 1 can be used to model the bursty spike trains which is
characterized by short epochs of rapid action potentials, followed
by longer episodes of silence. On the contrary, when θ > 1,
the gamma distribution approaches a narrow normal distribution
which can be used tomodel regular spike trains (Pipa et al., 2013).

2.1.3. Log-Normal Process
If {X} is a random variable which is log-normally distributed with
two parameters a and k then:

lnN (x; a, k) =
1

k
√
2π

exp(− (ln(x)−a)2

2k2
)

x
(10)

E[X] =
∫ +∞

0
x lnN (x) dx = ea+

k2

2 (11)

Var[X] = E[X2]− (E[X])2 = (ek
2
− 1) e2a+k2 (12)

Given a constant firing rate R and a coefficient of variation of
inter-spike interval CV two parameters a and k can be expressed
as follows:

a = − lnR−
1

2
ln(C2

V + 1) (13)

k =
√

ln(C2
V + 1) (14)

The log-normal distribution of the inter-spike intervals is more
heavy-tailed than the inter-spike intervals distributed according
to the gamma distribution. Also, very short intervals are unlikely
to happen, which makes this distribution a good candidate to
model the refractory period when short inter-spike intervals on
the order of several milliseconds are unlikely to happen.

2.2. Non-renewal Process
One further step to generalize a stochastic process model
to generate the spike trains is to remove the property
of independence of the inter-spike intervals, as abundant
experimental observations have shown that the spiking activity
of many neurons cannot be modeled as a renewal process, since
the occurrence of an action potential depends on other action
potentials that occurred in the past (Burns and Webb, 1976;
Levine, 1991; Iyengar and Liao, 1997; Teich et al., 1997; Krahe and
Gabbiani, 2004; Nawrot et al., 2007, 2008; Farkhooi et al., 2009).
In other words, they display history dependence in their spiking
activity that persists over multiple action potential firings (Perkel
et al., 2011). To model such spiking activities, a non-renewal
process (denoted as C-log-normal process) is introduced in this
paper. To this end, a new ISI probability distribution, called
the C-log-normal probability distribution, which is a generalized
form of the log-normal probability distribution, is presented. In
the following section, a formal definition of the C-log-normal
probability distribution and its properties are given.

2.2.1. C-Log-Normal Process
Definition 2. C-log-normal probability distribution is a doubly-
stochastic Gaussian process with log-normal intensity, and it is
obtained as follows:

1. Let Xn ∼ N(0, 1), Xn− 1 ∼ N(0, 1) and ζn ∼
N

(

0, 1− γ 2
)

, |γ | < 1, γ 6= 0

2. Define Xn = γ Xn−1 + ζn

3. Define Zn = Xn −α Xn− 1√
1+α2 − 2αγ

, (α(α − 2γ ) > −1)

4. Define tn = ea+ kZn .
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The marginal distribution of C-log-normal probability
distribution is defined as follows:

lnN (tn; a, k,α, γ )C−log−normal =
1

k
√
2π

exp(− (ln(tn)− a)2

2k2
)

tn
,

(15)
where a, k,α, and γ are the parameters of the distribution. The
difference between the log-normal process and the C-log-normal
process is given in the following example.

Example: Let Xn be an independent random variable with a
normal distribution, i.e., Xn ∼ N (0, 1). Then Tn = exp(Xn)
follows a log-normal distribution. However, Xns from the C-log-
normal probability distribution are not independent variables.
If we define Xn and Zn according to definition 2 (2) and 2 (3)
respectively, then Tn = exp(Zn) has a C-log-normal distribution.
Bare in mind that here, Zn ∼ N (0, 1) (See Supplement 2.1 and
2.2 ). However, they are not independent.

To illustrate the effect of dependent ISIs on the spike train’s
autostructure, we compare the spike trains generated from the
Poisson, log-normal and C-log-normal processes. Figures 1A–C
shows the raster plots for 50 trials of mutually independent spike
trains from the aforementioned processes, respectively. The spike
rate for all three processes is 50Hz, however, the autostructure
of the spike trains is different in the C-log-normal process. That
is, the burst firings with longer periods happen more often in
the C-log-normal process than in the other two processes. The
next section provides a more in-depth look at the properties of
C-log-normal processes.

2.2.2. Properties of the C-Log-Normal Process
(i) If X1 ∼ N (0, 1), then the successive Xis obtained by

definition 2 (2) are also normally distributed, i.e., Xi ∼
N (0, 1) (See Supplement 2.1 for the proof).

(ii) Zn given by definition 2 (3) has a normal distribution, i.e.,
Zi ∼ N (0, 1) (See Supplement 2.2 for the proof).

(iii) If Zn and Zn− k are defined by definition 2 (3), then

< Zn Zn− k > = γ |k|−1

(

(1+ α2) γ − α (1+ γ 2)

1+ α2 − 2αγ

)

,

k 6= 0; (α(α − 2γ ) > −1) (16)

(See Supplement 2.3 for the proof).
(iv) The log normal process is a special case of the C-log-

normal process, when α = γ , which in this case:

< Zn Zn−k >= 0.

That is, there is no dependence between Zns, which results
in mutually independent ISIs of a spike train, and that is
the property of the log-normal process.

(v) C-log-normal and log-normal processes have the same ISI
distribution. However, the ISIs of the C-log-normal process
are correlated but the ISIs of the log-normal process
are independent. Figure 2 illustrates the ISI distribution
of the C-log-normal process for different pairs of α

and γ (parameters of C-log-normal process). The solid
distribution is the ISI distribution of the C-log-normal

process, while the red curve indicates the ISI distribution
of the log-normal process. Both ISI distributions have the
same profile.

(vi) Since the ISI distribution of C-log-normal and log-normal
process are the same, the first order statistics of their
ISIs, such as the mean and variance of their ISIs, are
also equal. Thus, the parameters a and k of C-log-normal
process can be substituted by the spike rate R and the
coefficient of variance CV according to Equation (13) and
(14), respectively.

(vii) The values of α and γ affect the autostructure of the
spike train. Figure 3 shows 8 spike rasters, each has 50
mutually independent spike trains generated from the C-
log-normal process for different pairs of γ and α. For
the same pairs of γ and α, Figure 4 illustrates E[ZnZn−k]
defined in Equation (16). For a negative γ , E[ZnZn−k]
oscillates between negative and positive values. If α1 <

α < α2
1 then oscillation starts from a positive value

(first lag) (Figure 4A2). If α < α1 or α > α2 then
oscillation is in the opposite order, it starts from a negative
and then to a positive (Figures 4A1,A4). For a positive γ ,
E[ZnZn−k] does not oscillate and it is either positive or
negative depending on the value of α. If α1 < α < α2,
then E[ZnZn−k] is negative (Figure 4B3), and if α < α1

or α > α2 it is positive for all lags (Figures 4B1,B4).
Table 1 summarizes the results. Refer to the Figure S1 for
the autocorrelation of the spike times.

2.3. Simulation Methods
2.3.1. Coincidence Count Distribution
To estimate the coincidence count distribution, the following
procedure is applied:

1. Generate N = 600 mutually independent spike trains of
length T = 5 s from the C-log-normal distribution.

2. Divide the length of the first spike train intoNbin exclusive bins
with the length of 1t = 4 ms, thus the total number of bins,
Nbin, is

T
1t .

3. For each spike train, count the number of spikes that fall into

each bin. n
j
i(i = 1, 2, . . . , T

1t ), is the number of the spikes that

are assigned to the bin i from the jth spike train.
4. Count the number of coincidences for each independent pair

of spike trains a and b, that is, multiply the number of the
spikes in the bin i of the spike train a, i.e., nai , by the number

of the spikes in the bin i of te spike train b, i.e., nbi . Repeat this
step for all the bins. The number of coincidences of these two
spike trains is the sum of the number of coincidences of all the

bins, i.e., Nc =
∑Nbin

i= 1 n
a
i n

b
i .

5. Generate a histogram of Ncs as an estimate of the coincidence
count distribution.

2.3.2. Estimation of False Positive Rate
To estimate the false positive rate of the coincidence count
distribution of C-log-normal process, we take the following
steps:

1α1 and α2 are two solutions for equation E[ZnZn−k] = 0
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FIGURE 1 | (A–C) Raster plots for 50 trials of mutually independent spike trains generated from the Poisson, log-normal, and C-log-normal processes, respectively.

Spike rate for all spike trains are chosen to be R = 50Hz and CV = 1.

FIGURE 2 | (A–C) Solid distribution shows the ISI distribution of the C-log-normal process for different pairs of α and γ . The red curve illustrates the ISI distribution of

the log-normal process. For all distributions CV = 1, R = 50Hz.

FIGURE 3 | Eight spike rasters, each has 50 mutually independent spike trains generated from C-log-normal process for different pairs of γ and α. For

all distributions CV = 1, R = 50Hz. (A1–A4) correspond to γ < 0 and (B1–B4) correspond to γ > 0 .
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FIGURE 4 | Analytical E[ZnZn− k] (Equation 16) for the same pairs of γ and α used in Figure 3. (A1–A4) correspond to γ < 0 and (B1–B4) correspond to

γ > 0.

1. Generate N1 = 200 mutually independent spike trains of
length T = 5 s and firing rate of R = 50 Hz from the Poisson
process.

2. Compute the coincidence count distribution, fp, according to
the Section Coincidence Count Distribution.

3. Estimate the expected number the coincidence counts, λ, by
taking the mean fp.

4. Find the empirical estimation of fp, Fp.
5. Generate N2 = 1000 random numbers from the Poisson

probability distribution with rate λ.
6. Estimate the empirical cumulative distribution function, Fp,

of fp.
7. Use Fp and find the critical number, NcriticalPoisson, for which

1−F(NcriticalPoisson) < 1%. This critical number corresponds
to 1% significance level.

8. Set i = 1.
9. Generate N = 200 mutually independent spike trains of

length T = 5 s and firing rate of R = 50 Hz from
C-log-normal process.

10. Compute the coincidence count distribution, fp, according to
the Section Coincidence Count Distribution.

11. Find the empirical estimation of fC−logN , FC−logN .
12. Use FC−logN and NcriticalPoisson to compute:

FP = 1− FC−logN(NcriticalPoisson). (17)

13. FP is the false positive rate of coincidence count distribution
of C-log-normal process corresponds to 1% significance level
under the assumption that the underlying spike trains are
generated from Poisson process.

TABLE 1 | Effects of parameters α and γ on the sign of E[Zn Zn−k]

α1 < α < α2 α > α1 or α < α2

γ < 0 E[Zn Zn−k ] oscillates from

positive to negative

E[Zn Zn−k ] oscillates from negative to

positive

γ > 0 E[Zn Zn−k ] < 0 E[Zn Zn−k ] > 0

14. Iterate steps 9–12 for i = 2, . . . , 10 trials.
15. Iterate steps 1–14 and substitute the Poisson process with the

Log-Normal process.

3. RESULTS

This section presents the effects of parameters of the C-log-
normal process, namely, α and γ , on the autostructure of the
spike trains. The questions addressed in this section are: 1-how
do parameters α and γ influence the autocorrelation of C-log-
normal process 2- what is the role of parameters α and γ on the
order of serial correlation of ISIs? 3- how so parameters α and γ

affect the shape of the coincidence count distribution? and finally,
how do values of α and γ influence the false positive rate for a
particular test level?

3.1. Effect of α and γ on the ISI Correlation
Figure 5 illustrates in the form of a colormap of a comparison
E

[

Zn Zn−k

]

for different values of parameters α and γ .
Figures 5A1– A3 show E

[

Zn Zn−k

]

for k = 1, k = 2, and
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FIGURE 5 | Analytical E[Zn Zn−k] (Equation 16) for different values of parameters (α, γ ). (A1–A3) Correspond to k = 1, k = 2, and k = 3, respectively. Red

crosses indicate the values of α which are the solutions of E[Zn Zn−k ] = 0 for γ = −0.7 and γ = −0.7.

FIGURE 6 | Effects of parameters α and γ on the ISI serial correlation of the C-log-normal process. The first column corresponds to α < α1, the second

column corresponds to α1 < α < α2, and the third column corresponds to α > α2, where α1 and α2 are the solutions for E[Zn Zn−k ] = 0 for a given parameter γ

(CV = 1, R = 50Hz). (A1–A6) correspond to γ = −0.7 and different α. (B1–B6) correspond to γ = −0.85 and different α.

k = 3, respectively. Two examples, namely γ = −0.7 and
γ = 0.7 which are indicated by two black lines, are considered
to be explained in more detail in this part. Two solutions of
E

[

Zn Zn−k

]

= 0 when γ = −0.7 and γ = 0.7 are [α1 =
−1.42,α2 = −0.7] and [α1 = 0.7,α2 = 1.42], respectively.
α1s and α2s are shown by red crosses in Figures 5A1–A3.
First consider the value of E

[

Zn Zn−k

]

for γ = −0.7. As
it is summarized in Table 1, for γ < 0 and α1 < α <

α2, E
[

Zn Zn−k

]

oscillates from a positive to a negative value.
The same results are shown in Figures 5A1–A3. For α1 <

α < α2, E
[

Zn Zn−k

]

is positive for k = 1, negative for

k = 2, and it is positive for k = 3. For α < α1 or α >

α2 the oscillation is in the opposite order, i.e., E
[

Zn Zn−k

]

is
negative for k = 1, positive for k = 2, and for k = 3 is
negative.

In the second case when γ = 0.7, E
[

Zn Zn−k

]

does not
oscillate and it is either positive or negative based on the value of
α. As given in Table 1, for γ > 0 and α1 < α < α2, E

[

Zn Zn−k

]

is negative and for α < α1 or α > α2 it is positive, irrespective
of the value of k. As indicated in Figures 5A1–A3 for γ = 0.7,
E

[

Zn Zn−k

]

is negative where α1 < α < α2 and it is positive
where α < α1 or α > α2.
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FIGURE 7 | Effects of parameters α and γ on the ISI serial correlation of the C-log-normal process. The first column corresponds to α < α1, the second

column corresponds to α1 < α < α2, and the third column corresponds to α > α2, where α1 and α2 are the solutions for E[Zn Zn−k ] = 0 for a given parameter γ

(CV = 1, R = 50Hz). (A1–A6) correspond to γ = 0.85 and different α. (B1–B6) correspond to γ = 0.99 and different α.

FIGURE 8 | Coincidence count distribution for the spike trains generated from the C-log-normal process with the parameters γ = 0.99 and

α = [0.95, 0.99, 1, 1.05], indicated by the blue histogram. The red profile indicates coincidence count distribution of the Poisson process. The red and green

vertical lines show the critical numbers of coincidences that correspond to 1% significance level under the assumption that the underlying spike trains are generated

from the Poisson and C-log-normal processes, respectively (CV = 1, R = 50Hz). (A–D) correspond to γ = 0.99 and different α.
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FIGURE 9 | Coincidence count distribution for the spike trains generated from the C-log-normal process with the parameters γ = 0.99 and

α = [0.95, 0.99, 1, 1.05], indicated by the blue histogram. The red profile indicates the coincidence count distribution of the log-normal process. The red and

green vertical lines show the critical numbers of coincidences that correspond to1% significance level under the assumption that the underlying spike trains are

generated from the the log-normal and C-log-normal processes, respectively (CV = 1, R = 50Hz). (A–D) correspond to γ = 0.99 and different α.

FIGURE 10 | False positive rate of the coincidence count distribution of the C-log-normal process based on the critical number of coincidences that

corresponds to 1% significance level under the assumption that the underlying spike trains are from the Poisson process. (A1–A3) correspond to

positive γ s and (B1–B3) correspond to negative γ s (CV = 1, R = 50Hz).

Moreover, the effects of the values of α and magnitude of γ

are illustrated in Figure 5. The more α is away from one side of
the interval, the higher the absolute value of E

[

Zn Zn− k

]

, and

the bigger the magnitude of γ is, the more Zns are correlated
to the previous Zn− is and the correlation goes further into the
past.
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FIGURE 11 | False positive rate of the coincidence count distribution of the C-log-normal process based on the critical number of coincidences that

corresponds to 1% significance level under the assumption that the underlying spike trains are from the log-normal process. (A1–A3) correspond to

positive γ s and (B1–B3) correspond to negative γ s (CV = 1, R = 50Hz).

FIGURE 12 | Quantile-Quantile (QQ) plots of the coincidence count distribution of the Poisson and C-log-normal processes (CV = 1, R = 50Hz).

(A1–A3) correspond to γ > 0 and different α. (B1–B3) correspond to γ < 0 and different α.

Another characteristic that can be observed by
comparison of the magnitude of E

[

Zn Zn−k

]

in
Figures 5A1–A3 is that the magnitude of E

[

Zn Zn−k

]

is higher for k = 1 for different parameters of αs and
γ s. Whereas, E

[

Zn Zn−k

]

in Figures 5A2,A3 is mostly
indicated by green, which, has the range of [−0.1–0.2].

That is, the bigger k is, the smaller the magnitude of
E

[

Zn Zn−k

]

.
The previous section presented the relation between

parameters α and γ and E
[

Zn Zn−k

]

. However, the roles of α and
γ in ISI serial correlation has not yet been and will be covered in
this section.
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FIGURE 13 | Quantile-Quantile (QQ) plots of the coincidence count distribution of the log-normal and C-log-normal processes (CV = 1, R = 50Hz).

(A1–A3) correspond to γ > 0 and different α. (B1–B3) correspond to γ < 0 and different α.

The correlation between ISIi and ISIi+j is quantified by the ISI
serial correlation coefficient, ρj, where j is the lag. ρj is given as
follows:

ρj =
〈

IiIi+ j

〉

− 〈Ii〉2
〈

I2i
〉

− 〈Ii〉2
, (18)

where Ii is the length of ith inter-spike interval. Figures 6, 7
illustrate the effects of α and γ on the ISI serial correlation. Each
box plot corresponds to N = 15 spike trains of length T = 5 s.
The green line indicates ρj = 0 as the base line.

The effects of α and γ on the ISI correlation coefficient, are
in the same way as they are on E

[

Zn Zn−k

]

. For negative γ s, ρj
oscillates between positive and negative values and if α < α1 or
α > α2, then the ISI correlation coefficient for j = 1 is negative
and for j = 2 is positive and so on. However, if α1 < α < α2

then the sequence of ρj oscillates in the opposite order, it is first
positive and then negative and so on. For positive γ , ρj does not
show any oscillatory behavior and it is either positive or negative
depends on the value of α (Figure 7). It is positive if α < α1 or
α > α2 and it is negative if α1 < α < α2.

Figures 6, 7 also show the effect of the value of α on the
ISI serial correlation. The more α is away from one side of
the interval [α1,α2] the higher the value of ρj. For example,
Figures 7A1,A2 compare the values of ρj for parameters γ =
0.85, α = 0 and γ = 0.85, α = 0.65, respectively. Since for
γ = 0.85 two solutions of E

[

Zn Zn−k

]

= 0 are α1 = 0.85 and
α2 = 1.176, and |0 − 0.85| > |0.65 − 0.85|, ρj shows higher
value for α = 0. For each value of γ shown in Figures 6, 7, first
column corresponds to α < α1, second column corresponds to
α1 < α < α2, and the third column corresponds to α > α2,
where α1 and α2 are the solutions for E

[

Zn Zn−k

]

= 0 for a given
parameter γ .

3.2. Influence of α and γ on the
Coincidence Count Distribution
Figures 8, 9 show the coincidence count distribution for the spike
trains generated from the C-log-normal process with parameters
γ = 0.99 and α = [0.95, 0.99, 1, 1.05]. The red profile in
Figure 8 indicates the coincidence count distribution of the
Poisson process and in Figure 9 indicates the coincidence count
distribution of the log-normal process with the same firing rate
as is chosen for the C-log-normal process, i.e., R = 50Hz. The
green vertical line in both figures shows the critical number of
coincidences that corresponds to 1% significance level under the
assumption that the underlying spike trains are generated from
the C-log-normal process and the red vertical line in Figures 8, 9
indicates the critical number of coincidences that corresponds to
1% significance level under the assumption that the underlying
spike trains are generated from the Poisson process and the log-
normal process, respectively. In Figures 8, 9A,D) (with α = 0.95
and α = 1.05 which are out of the interval [0.99, 1.01], two
solutions of E

[

Zn Zn−k

]

= 0) the coincidence count distributions
have long tail which results in a higher false positive rate. On
the contrary, in Figure 9C (with α = 1 which is in the interval
[0.99, 1.01]) the coincidence count distribution has a shorter tail
and the false positive value is smaller. Figure 8B (with α = γ )
also shows a shorter tail and a smaller false positive value, but in
Figure 9B the red and green lines show the same critical number
since the condition of α = γ implies that the C-log-normal
process can be considered as the log-normal process.

3.3. Impact of α and γ on the False Positive
Rate
As it is shown in Figures 8, 9 the coincidence count distribution
for αs out of the interval [α1,α2] are more heavily tailed
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and for αs in the interval [α1,α2] the tail of coincidence
count distribution of C-log-normal is shorter than the tail of
coincidence count distribution of the Poisson and the log-normal
processes. The heavy tailed coincidence count distribution results
in strong consequences for hypothesis testing. Figures 10, 11
quantitatively compare the false positive rate of the coincidence
count distribution of the C-log-normal with the Poisson process
and the log-normal process, respectively. In Figure 10, the critical
number of coincidences that corresponds to 1% significance
level under the assumption that the underlying spike trains are
Poissonian, is first estimated and based on this number, the
false positive rate of the coincidence count distribution of the
C-log-normal process is computed. In Figure 11, instead of the
Poisson process, the false positive rates of the coincidence count
distribution of the C-log-normal process are computed, based
on the critical number of coincidences that corresponds to 1%
significance level under the assumption that the underlying spike
trains are from the log-normal process. In both Figures 10, 11,
when α is out of the interval [α1,α2], then the false positive rates
are more than 1% (for both γ > 0 and γ < 0), except in
Figure 11B1 when γ = −0.7. When α is in the interval [α1,α2]
and γ > 0, then the false positive is decreasing. However, if
γ < 0 the false positive rate is again increasing. Moreover, in
Figure 11, when α = γ , the false positive rate is close to 1%, i.e.,
it equals the false positive of the coincidence count distribution
under the assumption that the spike trains are generated from
the log-normal process.

3.4. Comparison of the Full Coincidence
Count Distribution
To compare the full distribution of the coincidence count of the
C-log-normal process with the coincidence count distribution
of the Poisson process and the log-normal process, quantile-
quantile (QQ) plots are shown in Figures 12, 13, respectively.
The qualitative behavior of plots in both Figures 12, 13 are the
same. The higher themagnitude of γ , themore the curve diverges
from the diagonal. Also, in each panel where the magnitude of γ
is constant, the value of α affects how much the curve diverges
from the diagonal. The further α is away from one side of the
interval [α1,α2], the more the curve diverges from the diagonal.
For example, in Figures 12A3, 13A3, α = 0.95, 1.05 are both out
of the interval [α1 = 0.99,α2 = 1.01] and the divergence of
their corresponding curves is strongly pronounced. For α = 1,
which is in the interval [0.99, 1.01], the divergence is not very
pronounced since its distance from α1 or α2 is not high. The
curve corresponding to α = 0.99 lies on the diagonal because
when α = γ the C-log-normal process can be considered as the
log-normal process, thus both have the same coincidence count
distribution. In both figures, on the bottom left of the panels,
any curve above the diagonal indicates an increased false-positive
level, and below the diagonal indicates a reduced number of false
positives if the test statistics is based on the assumption that spike
trains follow Poissonian firing or log-normal ISIs. In contrast, on
the top right of the panels, any curve below the diagonal indicates
an increased false-positive level and above the curve indicates a
decreased false positive rate.

4. DISCUSSION

The discussion of whether the coordinated neural activities really
exist and occur more often than expected by chance, in other
words, whether they occur more often than is expected if the
neurons fire independently has long tantalized neuroscientists.

To examine this issue, different approaches have been
taken, which, most of them intentionally destroying or
involuntarily neglecting the autostructure of the spiking activity
of individual neurons. To analyze the simultaneous spike trains
for precise spike correlation and test whether the observed
coincidence events occur significantly above chance, many of
these approaches model the spike train as a Poisson Process,
implying that the generation of each spike is independent of
all the other spikes, and the inter-spike intervals (ISIs) has
an exponential distribution (Grün et al., 2002a,b). However,
the experimental ISIs show substantial deviation from these
assumptions. For example, they exhibit dependence among spike
sequences, such as absolute and relative refractory periods,
or bursting, periodic, or regular behaviors. Additionally, spike
times might show higher order dependence of spike times lying
further in the past, and thus cannot be modeled by the Poisson
process.

In this paper, we have studied the influence of higher order
dependence of spike times which lie further in the past and
exist in the autostructure of the spike times, on the shape of the
coincidence count distribution of pairs of mutually independent
spike trains. To this end, we proposed a non-renewal process
(denoted C-log-normal process) which is a generalized model of
a renewal log-normal process. We derived the properties of C-
log-normal process analytically. In addition, we used the Monte
Carlo estimation to examine the effects of themodel’s parameters,
α and γ , on the shape of the coincidence count distribution of
pairs of mutually independent spike trains generated from the
C-log-normal process. The results were also compared with the
shape of the coincidence count distribution of pairs of mutually
independent spike trains generated from the log-normal process
and the Poisson process.

The first finding is that the sign of γ causes E
[

Zn Zn−k

]

to
be either positive or negative (if γ > 0), or oscillates between
positive and negative values (if γ < 0). If γ > 0 and α1 < α <

α2, then E
[

Zn Zn−k

]

is negative, which results in the long inter-
spike intervals to be followed by the short inter-spike intervals
and vice versa. If α < α1 or α2 < α, then E

[

Zn Zn−k

]

is positive,
that is, long inter-spike intervals are intended to be followed by
long inter-spike intervals and vice versa. However, if γ < 0, then
E

[

Zn Zn−k

]

shows oscillatory behavior, that is, if α1 < α < α2,
then E

[

Zn Zn−k

]

oscillates from a positive to a negative value and
if α < α1 or α2 < α, then E

[

Zn Zn−k

]

oscillates from a negative
to a positive value.

The second finding is that, compared to the coincidence
distributions of homogeneous Poisson processes and also non-
Poisson processes, the width of the distribution of joint spike
events of the C-log-normal process changes. The non-renewal
C-log-normal process can lead to both heavy tailed or narrow
coincidence distribution, which results in higher or lower false
positive rates, respectively, in relation to 1% significance level
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under the assumption that the underlying spike trains from the
Poisson or the log-normal process. If γ > 0 and α1 < α < α2

the false positive rate is decreased and if α < α1 or α2 < α

the false positive rate is increased. The impact of γ < 0 is
more complex and does not exactly follow the same behavior
for different values of γ . However, for a higher magnitude of γ

(e.g., γ = −0.99), the false positive rate when α1 < α < α2

is decreased and if α < α1 or α2 < α the false positive rate is
increased.

In this study, the other parameters that can affect the
autostructure of spike trains, namely the coefficient of variation
of the inter-spike interval distributions CV and the Fano factor
FF were kept constant. These two parameters also have an impact
on the probability distribution of joint spikes events (Pipa et al.,
2013). In future work, the effects of these two factors along with
the parameters of the C-log-normal process on the autostructure
of spike trains, coincidence count distribution and false positive
rate can be studied.

Additionally, the complexity of interactions between neurons
can be extended. So far, we have discussed the effects of
the autostructure of spike trains on the coincidence count
distribution across pairs of neurons. In future work, this can be
extended to higher complexities, such as triplet, quintuplet, or in
general ζ -tuplet coincidences.

Another future direction worth pursuing is to use the C-log-
normal process for modeling the experimental data. To this end,
a method to fit the parameters of C-log-normal process, namely
α and γ , needs to be developed.

In conclusion, the simulations done in this paper highlight
the possible issues when spike trains deviate from Poisson but
Poisson is assumed. In respect to the neural code, the lesson
to learn is: do not make such a strong assumption about
the data since it can make the analysis fragile. That is, the
higher order dependence of spike times which lie further in
the past can affect the autostructure of spike times, which can
falsify the statistical inference of the existence of coordinated
neuronal activity. This effect results in over or underestimation
of statistical significancies.
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