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Recurrent neural networks (RNN) have traditionally been of great interest for their capacity

to store memories. In past years, several works have been devoted to determine the

maximum storage capacity of RNN, especially for the case of the Hopfield network, the

most popular kind of RNN. Analyzing the thermodynamic limit of the statistical properties

of the Hamiltonian corresponding to the Hopfield neural network, it has been shown

in the literature that the retrieval errors diverge when the number of stored memory

patterns (P) exceeds a fraction (≈ 14%) of the network size N. In this paper, we study

the storage performance of a generalized Hopfield model, where the diagonal elements

of the connection matrix are allowed to be different from zero. We investigate this model

at finite N. We give an analytical expression for the number of retrieval errors and show

that, by increasing the number of stored patterns over a certain threshold, the errors

start to decrease and reach values below unit for P ≫ N. We demonstrate that the

strongest trade-off between efficiency and effectiveness relies on the number of patterns

(P) that are stored in the network by appropriately fixing the connection weights. When

P≫N and the diagonal elements of the adjacency matrix are not forced to be zero, the

optimal storage capacity is obtained with a number of stored memories much larger than

previously reported. This theory paves the way to the design of RNN with high storage

capacity and able to retrieve the desired pattern without distortions.

Keywords: maximum storage memory, feed-forward structure, random recurrent network, Hopfield model,

retrieval error

1. INTRODUCTION

A vast amount of literature deals with neural networks, both as model for brain functioning (Amit,
1989), and as smart artificial systems for practical applications in computation and information
handling (Haykin, 1999).

Among the different possible applications of artificial neural networks, those referred to as
“associative memory” are particularly important (Rojas, 1996), i.e., circuits with the capability to
store and retrieve specific information patterns. According to Amit et al. (1985a,b) there is a natural
limit for the usage of an N nodes neural network built according to the Hebbian principle (Hebb,
1949) as associative memory. The association is embedded within the connection matrix which has
a dyadic form: the weight connecting neuron i to neuron j is the product of the respective signals.
The limit of storage is linear with N: an attempt to store a number P of memory elements larger
than αcN, with αc ≈ 0.14, results in a “divergent” (order P) number of retrieval errors. In order to be
effective (low retrieval error probability) a neural network working as associativememory cannot be
efficient (i.e., it can store only a small number of memory elements). This is particularly frustrating
in practical applications, as it strongly limits the use of artificial neural networks for information
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storage, especially since it is well known that the number of
fixed points in randomly connected (symmetric) neural networks
shows an exponential relation with N (Tanaka and Edwards,
1980; Sompolinsky et al., 1988; Wainrib and Touboul, 2013).

Contemporaneous to Amit et al., Abu-Mostafa, and St. Jaques
(Abu-Mostafa et al., 1985) claimed that the number of fixed
points that can be used for memory storage in a Hopfield model
with a generic coupling matrix is limited to N (i.e., P<N). Soon
after, Mc Eliece et al. (1987), considering only the Hebbian dyadic
form for the coupling matrix, found a more severe limitation:
the maximum P scales as N/log(N). In a more recent study,
Sollacher et al. (2009) designed a network of specific topology,
reaching αc-values larger than 0.14, but still maintaining the
limit of a linear N dependence of the maximum storage capacity.
The storage problem remains an open research question (Brunel,
2016).

In this letter we show that the existence of a critical P/N-
value in the Hebbian scheme for the coupling matrix is only part
of the story. As demonstrated in Amit et al. (1985a,b), the limit
P<αcN holds in the region where P<N. In all previous studies,
the diagonal elements are removed from the dyadic form of the
couplingmatrix. Here we show the existence of a not yet explored
region in the parameter space, with P≫N, where the number of
retrieval errors decreases with increasing P and reaches values
lower than one. This region can be found by not removing the
diagonal elements. Strictly speaking the present model is not a
“Hopfield model,” as in the latter case the diagonal elements are
forced to vanish and—as we will see- bring significant differences
in the network behavior. In order to avoid confusion, let us
call the present model as “Hopfield model with autapses” or
“Generalized Hopfield model.” This strategy allows the design
of effective and efficient associative memories based on artificial
neural networks. In the following we will derive analytically
the probability of retrieval errors, validate these results by their
comparison with a numerical simulation and study the efficiency
of the system as a function of P and N.

2. METHODS

2.1. Network Model
In an artificial neural network working as associative memory,
one deals with a network of N neurons of which each one has
state si (i = 1...N) that can be “active” (si = 1) or “quiescent”
(si = −1). The configuration of the whole network is given by
the vector s̄ ≡ {s1, s2, ..sN} and its temporal evolution follows the
parallel non-linear dynamics:

si(t + 1t) = E[si(t)]
.= sign

[

N
∑

j=1

Jijsj(t)
]

, (1)

where J = {Jij} is the connection matrix. We set external inputs
to be equal to 0. We assume a symmetric bimodal distribution
for the synaptic polarities in the wiring matrix J, so 50% of the
connections are excitatory and 50% inhibitory. After a transient
time related to the finite value of N, the network reaches a fixed
point, si = E[si], or a limit cycle of length L, si = E(L)[si].

2.2. The Hebbian Rule and the Storage
Memory
Previous work has studied the cycle length and transient time
distribution as a function of the properties of J (Gutfreundt et al.,
1988; Sompolinsky et al., 1988; Derrida, 1989; Bastolla et al.,
1997). In order to work as an associative memory, the matrix
J must be tailored in such a way that one or more patterns of
neurons are fixed points of the dynamics in Equation (1), i.e.,
they are the “memory elements” stored in the network. To store
one pattern ξ̄ , the connection matrix is simply the dyadic form
given by Jij = ξiξj

1 , while to store a generic number P of
patterns ξ̄µ (µ = 1...P) one follows the storage prescription of
Cooper (1973) and Cooper et al. (1979), who exploited an old
idea which goes back to Hebb (1949) and Eccles (1953) and which
states that the change in synaptic transmission is proportional
to the product of the signals of pre and post-synaptic neurons.
The process for which each matrix element is appropriately
determined is called learning. Specifically, the “Hebbian” rule
results in the following expression for the connectivity matrix,

Jij =
1

P

P
∑

µ=1

ξ
µ
i ξ

µ
j . (2)

The set of vectors ξ̄mu is known as “training set.” In this case, it is
not guaranteed that each ξ̄µ is a fixed point. In other words, ξ̄µ is
stable in probabilistic sense. Further, the probability for ξ̄µ to be
a fixed point depends on the values of P and N. This dependence
has been first studied by Hopfield (1982); Hopfield et al. (1983);
Hopfield (1984) who concluded that the retrieval of the memory
stored in the Hebbian matrices is guaranteed up to a P-value
which is a critical fraction on the number of network nodes N
of the order of 10–20%. Above this value, the associative memory
quickly degrades. Following these studies, Amit et al. (1985a,b),
who noticed the similarity between the Hopfield model for the
associative memory and the spin glasses, developed a statistical
theory for the determination of the critical P/N ratio, that turned
out to be ≈ 0.14, in good agreement with the previous Hopfield
estimation. Above P=0.14N the number of errors is so large that
the network based on the Hebbian matrix is no longer capable
to work as an associative memory. All these studies assumed a
modified form of Equation (2): the diagonal elements of J are
forced to be zero.

2.3. Numerical Simulations and Data
Analysis
In order to demonstrate the validity of our analytic results (see
Section 3), we perform numerical simulations by evolving the
network model as described in Equation (1). We design the
default network by fixing the NxN recurrent connections as given
in Equation (2), by randomly assigning the value ±1 to ξ

µ
i and

retaining the diagonal elements. So, theN(N−1) connections are
50% excitatory and 50% inhibitory and the N neurons can form
self-connections. We then run simulations by varying the size of
the network, N = 50, .., 200 and the number of stored memories

1The evolution E[ξi] always return ξi since the sum
∑

j ξ
2
j = N.
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in Equation (2), P = 1, ..., 2000. Finally, for each pair of N and P,
we perform 1000 different random realizations.

All P patterns introduced in Equation (2) are given as input
to the network and their dynamics is followed until the network
reaches the equilibrium state. The initial patterns are chosen
among those that were stored in the adjacency matrix and that
have been randomly chosen in the designing of the network.
Evolved patterns were recorded at each time step and compared
with the initial one. Then, if the evolved pattern is different
from the initial state, we calculated the temporal evolution
of the distortion (number of wrong bits) and determined the
probability that one of the bits was wrong, the probability that the
whole vector was exactly recovered, and the number of memory
patterns that could not be recovered, as a function of N and
P. Basically, to calculate the storage capacity, it is sufficient to
determine all these quantities by using the distortion between the
stimulus (the stored memory) and its first evolved pattern.

3. RESULTS

3.1. The Probability of Recovery
In order to investigate the maximum storage memory of our
model, we calculate the one-step dynamical evolution. We give
as input a vector of the training set and we calculate a single step
of the dynamical evolution according to Equation (1). Then, we
compare the output with the input. We aim to look whether or
not a vector, ξ̄µ, belonging to the training set, is truly a fixed
point. If ξ̄µ is a fixed point, the output coincides with the input,
and the recovery has been successful. If ξ̄µ is not a fixed point,
the two vectors differ for at least a single bit. We now derive
an analytical expression for the probability that the recovery of
a stored pattern was not successful. The first step is to find the
probability pB that -given the matrix J of Equation (2)- a single
element of the vector (a “bit”) was wrong, i.e., the probability
that E[ξ

µ
i ] 6= ξ

µ
i . Basically, we need to evolve a vector ξ̄mu

(from the training set) for one step and count how many bits
of its time evolution are different from the bits of ξ̄mu itself.
Obviously, if ξ̄mu actually is a fixed point, this distance vanishes.
On the contrary, ξ̄mu is not a fixed point, the network has made
a recovery error. Thus, pB (or better, pV , as we see in the next
paragraph) measures “how many” training set vectors are not
fixed points. The argument of the sign function in Equation (1) is
A

µ
i =

∑N
j=1

∑P
ν=1 ξ ν

i ξ ν
j ξ

µ
j , this containsNP terms among which

there are N+P−1 terms (those with j=i 2 and those with ν=µ)
where two out of the three ξ of the product are equals to each
other ξ ν

i and the third is ξ
µ
i . Thus A

µ
i = (N+P−1)ξ

µ
i + T

µ
i ,

with T
µ
i =

∑N
j 6=i

∑P
ν 6=µ ξ ν

i ξ ν
j ξ

µ
j . The first term is the “coherent”

one, its sign is identical to ξ
µ
i , and it will -if dominant- guarantee

that ξ̄µ is a fixed point of the dynamics. The second term T
µ
i ,

on the contrary, is “noise” and its presence can either reinforce or
weaken the stability of ξ

µ
i as fixed point. Specifically, if |Tµ

i | >

(N+P−1) and sign(T
µ
i ) 6= ξ

µ
i , then the i-th bit of the vector

ξ̄µ will turn out to be wrong. The quantity T
µ
i is the sum of

(N−1)(P−1) statistically independent terms, each one being +1

2These are P terms that are present only if the diagonal elements are kept as they

are and are not forced to vanish.

or−1. Therefore, for large enough P andN, its distributionN(T)
can be approximated by a gaussian with zero mean and standard
deviation

√
(N − 1)(P − 1):

N(T) =
e−T2/(2(N−1)(P−1))

√
2π(N−1)(P−1)

. (3)

It is now straightforward to determine the probability that |Tµ
i | >

(N+P−1) and sign(T
µ
i ) 6= ξ

µ
i , thus that one of the bits of E[ξ

µ
i ]

was wrong, as pB =
∫ ∞
N+P−1 dT N(T). In conclusion:

pB =
1

2

[

1− erf
( N+P−1
√
2(N−1)(P−1)

)]

. (4)

It is worth to note that this expression is symmetric under the
exchange of P with N, and that for large P and N, with P/N = 1,
it tends to (1−erf(

√
2))/2≈0.02275 which corresponds to the

maximum of probability in a wrong recovery of a single bit (see
Figures 1, 2).

The second step is the determination of the probability pV that
one of the P vectors encoded into the connection matrix (the
training set) turns out not be a fixed point. If only a single bit
of the vector is wrong, the whole vector is considered “wrong.”
Since there are N bits that can be wrong, the probability pV will
be much higher than pB. The calculation is straightforward, in
order not to be wrong, all the bits of the vector ξ̄µ must be right,
thus pV = 1−(1−pB)

N , therefore:

pV = 1−
[1

2
+

1

2
erf

( N+P−1
√
2(N−1)(P−1)

)]N
. (5)

Finally, the number, NV , of memory vectors that are not
recovered, i.e., that are not true fixed points of the dynamics is
given by PpV , that is:

NV =
[

1−
[1

2
+

1

2
erf

( N+P−1
√
2(N−1)(P−1)

)]N]

P (6)

3.2. The Asymptotical Approximation
Equations (4), (5) and, in particular, Equation (6) represent the
main result of this work. Before showing their validity, via a
comparison with numerical simulations, and discussing their
relevance in the framework of artificial neural networks, it is
important to present the asymptotical approximation for NV .
The argument of the error function, for either P≫N or P≪N,
is large, and can be expanded as erf(x) ≈ 1−exp(−x2)/(x

√
π).

Furthermore, as pB is exponentially small with N (or P) for large
N (P), we use, (1−pB)

N ≈ (1−NpB). Thus, for largeN or large P:

pV ≈
N3/2P1/2e−

(N+P)2

2NP

√
2π(N + P)

(7)

NV ≈
N3/2P3/2e−

(N+P)2

2NP

√
2π(N + P)

(8)

We note that, while in the exact expression for NV (Equation 6)
the P↔N exchange symmetry is lost, in the approximate form
the symmetry is recovered.
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FIGURE 1 | Comparison of the results of the numerical simulation (pB,

full dots A; pV , full squares, B; NV , full diamonds, C) with the corresponding

theoretical function (pB, Equation 4; pV , Equation 5; NV , Equation 6) reported

as full lines. The three quantities are reported as a function of P for fixed N. The

values of N are 50 (black), 100 (blue), 150 (green), and 200 (red). The P range

in (C) is extended with respect to (A,B).

For sake of comparison with the previous literature, it is also
useful to express the main results as a function of α

.= P/N.
Equations (4) (for large N) and (8) read:

pB ≈
1

2

[

1− erf
(1+ α
√
2α

)]

(9)

NV ≈ NP
1

√
2π

√
α

1+ α
e−

(1+α)2

2α . (10)

While pB only depends on α, NV clearly is an extensive
observable, being proportional to P and N. Furthermore, both
expressions keep their symmetry with respect to the exchange of
P andN, thus to the exchange of α with 1/α. The last observation
anticipates that there must exists a region at large α-values where
the same features are observed as at small values of α.

3.3. Numerical Results
To check the predictions of our network model, we have
simulated the Model (1) and studied the dynamics for several
values of N and P, in the range of few hundred, see Section

FIGURE 2 | Theoretical curves for the three quantities pB, pV , and NV
(pB, Equation 4, A; pV , Equation 5, B; NV , Equation 6, C) reported as full

lines. The three quantities are reported in linear scale as a function of α = P/N

for fixed N. The values of N are 50 (black), 100 (blue), and 200 (red). The

dotted lines in (C) represent NV = P.

2.3 for details. In the numerical analysis, the P memory vectors
have been randomly chosen and used to construct the connection
matrix J. Next, we tested whether or not the stored memories
were fixed points of the dynamics. The values of pB, pV and NV

were calculated by averaging over (up to) 1000 different random
realizations of ξ̄µ. The results of the numerical simulations
are reported (dots) in Figure 1, together with the analytical
Expressions (4)–(6) (lines). The three panels refer to the three
quantities pB (Figure 1A), pV (Figure 1B), and NV (Figure 1C)
as a function of P for the selected values of N, as reported in
the legend. From Figure 1, we observe that on increasing P,
at fixed N, both the single bit probability error, the probability
of recovery error (PV ), and the number of wrong recoveries
NV , after a first fast increase, reach a maximum (equal to
0.02275 for pB, close to one for pV , and larger than N for
NV ) then start to decrease, tending to zero for very large P-
values.

To better emphasize this behavior, the same quantities are
reported (analytic results only) as a function of α in Figure 2

(linear scale) and in Figure 3 (log scale) for selected N. The
dotted lines in panels C of both figures represent NV = P,
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i.e., indicate the case of “totally wrong recovery.” Due to the
already observed α↔1/α symmetry, the asymptotic curve in
Figure 3A appears with a left-right symmetry around α = 1.
From Figures 2, 3, we can clearly identify two regions of high
recovery efficiency. The low α region, already studied many
years ago by Hopfield (1982); Hopfield et al. (1983); Hopfield
(1984) and Amit et al. (1985a,b), shows the existence of a quick
transition toward “loss of memory recover” on increasing α

around α ≈ 0.14. The second region at large α-values is not yet
explored.

Although the value α = 1 (P = N) represents traditionally
a sort of limit in the computation of the storable memories in a
RNN, there is no reason why not to store more than N memory
elements in a network of N neurons, that by construction allows
2N possible patterns. Indeed, the number of fixed points in a
(random) symmetric matrix is known to be, for fully connected
symmetric matrices as in our case, exponentially large with N
(Tanaka and Edwards, 1980). Specifically, the number of fixed
points Po is equal to Po = exp(γN), with γ ≈ 0.2. Po, much larger
than N, can be considered a natural limit for P.

FIGURE 3 | Theoretical curves for the three quantities pB, pV, and NV

(pB, Equation 4, A; pV, Equation 5, B; NV, Equation 6, C) reported in

Log-Log scale as full lines. The three quantities are reported in linear scale as a

function of α = P/N for fixed N. The values of N are 50 (black), 100 (blue), and

200 (red). The dotted lines in (C) represent NV = P.

The recovery efficiency increases for large P. In fact, the
coherent term in the argument of the sign function increases
linearly with P and the noise increases as P1/2. For large P, the
relative weight of the noise decreases as P−1/2, this allows to store
a large number of memories in a relatively small neural network.

For practical purposes, as for example in the design of
an artificial neural network with high efficiency (large storage
capacity) and effectiveness (low recovery error rates), it is
important to study (Equation 6, and its approximation in
Equation 8) and, in particular, to find the conditions for which the
network shows “perfect recovery.” Let’s define perfect recovery
as the state where the number of retrieval errors NV is smaller
than one.

In Figure 4 we show the contour plot of the (decimal)
logarithm of NV , from Equations (6) and (8), in the P-N range
[0–100]. The full lines are the loci of the points where log10(NV )
equals 0, 0.4, 0.8, 1.2, and 1.6, as indicated on the right side of the
figure. The dashed lines are the same level lines for the (logarithm
of the) approximate form of NV reported in Equation (8). As can
be observed, for NV ≈ 1, the approximation (Equation 8) for
NV is highly accurate, indicating that this approximation can be
safely applied to find the “perfect recovery” condition.

In the P-N plane the existence of two regions (small and
large α) where the perfect recovery (NV = 1, red lines) takes
place can be easily observed and the result is symmetric under the
exchange of P and N. In the already explored small α region, we
also show (full blue line) the P = 0.14N condition. Similar to the
high α region, it is important to find a simple relation between
N and P identifying the NV = 1 condition. We aim, therefore,
to obtain a function P(N) which returns, at given N, the P-value

FIGURE 4 | Contour plot of log10(NV ) from Equations (6) (full lines) and

(8) (dashed lines), in the P and N range 0–100. The lines are the loci of the

points where log10(NV ) equals 0.0 (red), 0.4, 0.8, 1.2, and 1.6 (black), as

indicated on the right side of the figure. The blue line represents P = 0.14N,

while the black dotted line is the bisectrix N = P, plotted to emphasize the

symmetry of the contour lines.
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such that NV = 1. We write the prefactor NP in Equation (10)
as αN2 and exploit the α≫1 limit, so to obtain NV ≈ N2α1/2

exp(−α/2)/
√
2π . The equation N2α1/2exp(−α/2)/

√
2π = 1

can be squared, α exp(−α) = 2π/N4, and solved with respect
to α, to give α = −W−1(−2π/N4), where W−1(x) is the second
real branch of the Lambert function (Olver et al., 2010 ). In
conclusion, the “perfect recovery condition” is satisfied -for each
N-value- if we chose to store a number of memories larger than
P(N) given by:

P(N) = −NW−1(−2π/N4). (11)

For practical purposes, for large enough N, we can use the small-
argument expansion of the Lambert function −W−1(−x) ≈
−ln(x)+ln(−ln(x)) (Corless et al., 1996), to have:

P(N) = N
[

ln
(N4

2π

)

+ ln
(

ln
(N4

2π

))]

. (12)

The results for P(N) are shown in Figure 5 as a function of N in
the range 1–1000. The black line represents the exact, numerical,
solution to NV = 1, with NV in Equation (6), the blue line is the
expression for P(N) in Equation (11), while the red line is those
in Equation (12).

It is important to note that the presence of a decrease of
the retrieval error probability at high P, or α, values is due
to the presence of non-zero diagonal elements in the J matrix
that creates a coherent term of weight P. Indeed, repeating
the rationale leading to Equation (4) with the assumption that
Jii = 0, would give rise to the same (Equations 4–6) but with
the numerator of the argument of the error functions equal to
N − 1 instead of to N + P − 1. This is shown graphically in
Figure 6 where we compare for N = 50, both theoretically (full

FIGURE 5 | The quantity P(N), i.e., the P-value where the perfect

recovery is guaranteed, is shown as a function of N. The blue line is the

numerical solution of NV = 1 from Equation (6), the blue line is the plot of

Equation (11) and the red line is the plot of Equation (12).

line) and numerically (full dots), the quantities pB, pV , and NV as
a function of P in the two cases: diagonal elements in Equation (2)
(black) and diagonal elements forced to vanish (orange).

The stabilization of the fixed points ξ̄µ in the high storage
region arises from the presence of the non-zero diagonal
elements. Asymptotically, on increasing P, the diagonal elements
growth coherently and the J matrix tends to become the unit
matrix. However, the dynamics (see Equation 1) dictated by the
matrix J does not tend to the dynamics dictated by the unit
matrix. In the latter case, indeed, all the 2N state vectors should
become fixed points and the network should loose on important
feature: the capability to distinguish between the storedmemories
(the vectors ξ̄µ, for µ = 1...P) and the spurious fixed points,
all the vectors ζ̄ not belonging to the set ξ̄µ but such that E[ζ̄ ]
= ζ̄ . To study this property, we have calculated the probability
that a (randomly chosen) vector ζ̄ (different from all the ξ̄µ used

FIGURE 6 | The upper panel (A) reports for a given N-value (N = 50), as

a function of P, the probability pB that, stimulating the network with a

vector inside the training set, there is one bit wrong in the network

response. The middle panel (B) reports pV , the probability that, stimulating

the network with a vector inside the training set, the vector obtained after one

dynamical step is not the stimulating vector. The lower panel (C) reports

NV = PpV . The black symbols/lines refer to the case where the diagonal

elements are as determined in Equation (2), while the oranges ones to

diagonal elements forced to vanish. The full lines are the theoretical prediction,

the full dots are the results of the numerical simulation.
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to build the J matrix) was recognized as a “memory” from the
network dynamics. To be consistent with the previous notation
(where we called pB and pV the probability of errors, not that
of correct retrieval of the memory states) we define p̄B (p̄V ) as
the probability of correctly not retrieving a vector not belonging
to the training set. More specifically, the quantity p̄V is the
probability that one dynamical step after presenting a vector ζ

not belonging to the training set to the network, the output a
vector is different from ζ .” More specifically, the quantity p̄V is
the probability that presenting a vector ζ not belonging to the
training set to the network, after one dynamical step we found
as output a vector different from ζ . Similarly for p̄B. It turns out
that 3:

p̄B =
1

2

[

1− erf
( P
√
2(N−1)(P−1)

)]

(13)

p̄V = 1−
[1

2
+

1

2
erf

( P
√
2(N−1)(P−1)

)]N
. (14)

In Figure 7 we report the comparison of the P dependence of
pB and p̄B (Figure 7A) and that of pV and p̄V (Figure 7B). As
usual, full lines are the theoretical results, while the full dots
are the outcome of the numerical simulation. Black data are for
the “memory states,” while the green ones are for the “spurious
state.” As can be seen, the spurious state becomes more and more
“present” in the set of memories stored by the network as P
increases. It seems however that also at high P-values the retrieval
of the memory states is reasonably good and that of the spurious
states reasonably bad.

To be quantitative on this point, we rewrite Equation (14) in
its large N limit:

p̄V ≈
N3/2P−1/2e − P

2N

√
2π

(15)

and compare it with Equation (7). In particular, is interesting to
calculate the ratio, ρ, between the probability of wrong retrieval
of a spurious state and that of a memory state: ρ = p̄V/pV . From
Equations (7) and (15) it turns out:

ρ =
(N + P

P

)

e
(N+P)2

2NP e−
P
2N . (16)

This quantity only depends on α:

ρ =
(1+ α

α

)

e

(

1+ 1
2α

)

(17)

and ρ has a finite high α limit:

lim
α→∞

ρ = e. (18)

In other words, although the number of spurious attractors tends
to increase for P ≫ N, the vectors encoded into the system
through the connection matrix are retrieved with an efficiency
almost three times better than for the spurious states.

3The calculation follows the same steps already depicted before, counting the

“coherent” terms, that, in this case, only arise from the diagonal elements (i=j)

and not from the µ=ν terms that now do not exist. The weight of the coherent

part is equal to P instead of N + P − 1. The rest of the demonstration follows

straightforward.

FIGURE 7 | (A) The upper panel reports for a given N-value (N = 50), as a

function of P, the probability that, stimulating the network with a vector inside

(pB, black) or outside (p̄B, green) the training set, there is one bit differing

between the input and the output vector. (B) The lower panel reports the

probability that, stimulating the network with a vector inside (pV , black) or

outside (p̄V , green) the training set, the vector obtained after one dynamical

step is not the stimulating vector. The full lines are the theoretical prediction,

the full dots are the results of the numerical simulation.

4. DISCUSSION

In this work we have developed a simple theoretical approach to
investigate the computational properties and the storage capacity
of feed-forward networks with self-connections.We have worked
out an exact expression which gives the probability pB of having
a wrong bit in the recovery of a memory element from a Hebbian
N-node neural network, where P memory elements are stored.
In disagreement with previous studies we have investigated the
case in which the diagonal elements were not forced to vanish.
Studying the storage capacity, and deriving the related probability
pV and number NV of having a wrongly recovered memory
element, we discovered that besides the well know P≪N region,
there is another region, at P≫N, where the recovery is highly
effective. When P≫N, the efficiency of recall for a large number
of encoded vectors in the J matrix is related to the presence of
non-zero diagonal elements of the matrix. Basically, the higher
storage performance of the network depends on the number of
“coherent” terms (the signal) in the quantity A

µ
i (see Section

3.1) with respect to the “incoherent” ones (the noise). The larger
the ratio between coherent to incoherent terms, the lower the
probability of a wrong recovery. The number of coherent terms
is (N + P − 1) in the case of autapses, it is (N − 1) in the case
of no autapses. Indeed, the P terms disappear if the diagonal is
forced to be zero as in the standard Hopfield model. It is clear
that, apart from a transient regime at P ∼ N, increasing P ≫ N
strongly reinforces the signal-to-noise ratio and induces a much
larger storage capacity. In addition to the vectors encoded into
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the system, other unwantedmemories also appear in the network.
These are the spurious states, fixed points which do not belong to
the training set. The presence of spurious states is not a feature
specific to the present model, it is a typical characteristic of
the standard Hopfield network and its successive improvements.
Indeed, as shown by Tanaka and Edwards (1980), a random
N × N matrix has 2γN fixed points (γ ≈ 2). As an example,
if N = 100, the number of fixed points is about one million.
A Hebbian 100×100 matrix storing P = 1000 patterns, besides
the “good” P fixed points have also an overwhelming number
of spurious fixed points (or “false memories”). The interest of
our approach does not rely in “how many” spurious (i.e., not
belonging to the training set) states are present but rather in how
the recognition of a vector belonging to the training set is as a
“good” one. Obviously, the argument of Tanaka-Edwards applies
only to random matrices. The Hebbian form, with or without
autapses, is not fully random (there exists correlation among the
matrix elements), but we expect a number of fixed points similar
to that of a random matrix. It would be interesting to determine
such a number, but this is beyond the scope of the present paper.
In spite of the overwhelming majority of spurious fixed points,
the network—even at very large P-values, maintains the capacity
of discriminate between “good” state (belonging to the training
set) and “wrong” ones (not belonging to the training set). More
specifically, looking at the one-step dynamical evolution and
comparing the input vector with the output one, we have posed
to the network the question: “is the input vector belonging to the
training set”? We have demonstrated that, when the input vector
actually belongs to the training set, at large P (similarly to low
P) the probability of having a wrong response (“no, it does not
belong to the training set) goes to zero. Furthermore, we have
demonstrated that when the input vector does not belong to the
training set the probability of a wrong response (“yes, it is a fixed
point”) is much less that in the previous case, asymptotically 2.7
time worst.

In order to identify whether or not a vector belonging to
the training set was a fixed point we propose to the system a
vector of the training set as input. Then we perform a one-
step dynamic evolution of this input state. If after one step the
output vector is equal to the input one, this is a fixed point. On
the contrary, if after one step the output vector is not equal to
the input one, it could be possible that further dynamical steps
lead to the input vector. From this point on, as the dynamic is

deterministic, the system enters a limit cycle (of length greater
than one). Since it is not clear whether or not a limit cycle can be
considered a “right recognition,” we have excluded this possibility
from the counts of the right recognition. Only fixed point are
considered “good.” For this reason, to determine the probability
of “right recognition” one dynamical step is enough.We have also
not considered the possibility that, using as input a vector not
belonging to the training set, it converges to one of the training
vectors. The probability of right recognition reported here is an
underestimation of the network capability. A further quantity
that it would be interesting to evaluate is the size of the attraction
basin of a given fixed point, i.e., how many non-training vectors
converge to a given training vector fixed point. The basins size
would be an important measure of the network performance,

their determination is however difficult to achieve analytically,
and is behind the goal of the present paper.

One important finding is summarized in Equation (18). It
states that for P ≫ N, when the connection matrix is dominated
by the diagonal term and is still different from the unity matrix
(this is due to the great number of off-diagonal elements with
zero average and RMS of the order of 1/

√
P ), the network retains

its capacity of give more “good” than “wrong” answers. This
property, the fact that the limit in Equation (18) is e and not
“1,” can be ascribed to the observation that, although the matrix J
tends to the unit matrix for large P, the dynamics (see Equation 1)
dictated by the matrix J does not tend to the dynamics dictated
by the unit matrix. This finding opens the way to a much
more efficient use of the artificial Hebbian neural network for
information storage. In the first region, as well known since 40
years, the storage capacity is limited as the number of encoded
vectors becomes of the order N. Indeed, in the high α region, the
number of elements is basically unlimited 4, when the number of
stored elements is taken larger than≈ 4Nln(N).
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