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INTRODUCTION

Multiple nociceptive pathways in the nervous system have been identified based on structural
connectivity studies (Willis, 1991, 2007). However, scientific understanding of the neural
dynamics underlying traffic patterns along these highways (i.e., functional connectivity) remains
incomplete. Extant techniques for sampling neural data at the micro-scale level using single-unit
electrophysiology, and at the macro-scale level using whole brain fMRI, have left a wide knowledge
gap at the level of mesoscale network dynamics mediating pain perception.

Approaches involving neural ensemble recordings combined with optogenetic interventions
represent a valid strategy for closing this knowledge gap. However, significant research efforts to
simply amass big data without a valid conceptual framework risk being misguided; data without
theory are just numbers. We propose a unifying framework for the interpretation of neural
data at the cellular and network levels, generating testable hypotheses, and leading to a more
comprehensive understanding of pain in the context of network dynamics.

PAIN: A NATIONAL HEALTH CRISIS

Healthcare providers and several branches of government are promoting research initiatives that
improve our understanding of the cellular mechanisms of pain. Pain affects a third of the U.S.
population with healthcare costs exceeding $600 billions per year (Academies, 2011). On average,
it takes a patient with chronic pain 12 years and more than five referrals to be admitted to a
specialized pain center (Schulte et al., 2010). Pharmacotherapy remains suboptimal, especially in
the face of high placebo effects, while most prescription painkillers cause significant side effects
such as addiction and lethal overdose.

AN EPIC PAIN FRAMEWORK

Extensive studies based on the structural connectivity of nociceptive pathways have lead to
a conceptual entanglement, summarized in the Cartesian view that painful sensations are the
manifestation of essentially feedforward relay of sensory information along a unidirectional
highway from nociceptors toward a passive brain. This incomplete and misguided view is
surprising, for pain is highly context-dependent, especially with regards to cognitive and
psychosocial processes (Edwards et al., 2016). Hence, cortical feedback is a key determinant factor
in pain perception, and the predictive coding model, which argues that error signals must be
minimized via dialog between feedback and feedforward signals, provides an ideal framework for
disentangling the pain pathway knot.

Following the principles of predictive coding and active inference, the brain functions as a
hierarchical generative model of the world, according to Bayesian probability, to explain sensory
events based on past experience (Chanes and Barrett, 2016). The flow of information carrying
prediction signals (feedback projections) travels from higher areas in the processing hierarchy
toward lower areas. The difference between predictions and sensory input (“prediction error”) is
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sent back up the hierarchy (feedforward projections). In
particular, the EMBODIED PREDICTIVE INTEROCEPTION

CODING (EPIC) model (Barrett and Simmons, 2015) is an active
inference account of interoception that anticipates (rather than
reacts to) external stimuli, with the goal of minimizing the
difference in prediction error between internal hypotheses that
are continuously being generated and external events in the
environment. While EPIC has been argued to have significant
implications for a wide range of cognitive and affective illnesses
(Barrett and Simmons, 2015), it has not been incorporated into
the mechanisms of normal and neuropathic pain, a powerfully
salient sensory, affective, and cognitive experience. This novel
concept has the potential to serve as a generative scientific
framework for studying and understanding pain. Below, we
present empirical evidence vis-a-vis the EPIC pain model and
propose future experiments to test specific hypotheses related
to a comprehensive functional connectivity map for pain at the
mesoscale level.

THALAMIC BURSTS AND PAIN: AN EPIC
COPING MECHANISM?

Thalamic bursts during pain can be viewed as manifestation
of a putative EPIC “error signal” generated for example from
a poorly executed motor command leading to injury. In this
context, thalamic bursts would be considered as an adaptive EPIC

response to cope with pain in three ways: first, to propagate
the error along cortical connections via somatosensory cortex
and back to agranular limbic cortex; second, to change how the
brain allocates attention to nociceptive input; third to generate
immediate escape movements and safer behavior in the future.

Irregular burst patterns during pain have been characterized
pre-clinically (Hains et al., 2005, 2006; Iwata et al., 2011) and
clinically (Lenz et al., 1989, 1993). However, conflicting evidence
suggests thalamic bursts may be positively (Lenz et al., 1989;
Llinás et al., 1999; Hains et al., 2005, 2006; Iwata et al., 2011;
Leblanc et al., 2016b) or negatively (Radhakrishnan et al., 1999;
Kim et al., 2003; Cheong et al., 2008; Huh et al., 2012; Huh
and Cho, 2013) correlated with pain. While tonic firing in wake
monkeys follows a linear stimulus-response function, suggesting
rate coding properties (Bushnell et al., 1993), thalamic bursts
have been argued to signal changes in the environment to
cortex more effectively than tonic firing (Swadlow and Gusev,
2001). Bursts correlate with potent activation of cortical circuits
(Swadlow andGusev, 2001) and augmentation of visual detection
(Lesica et al., 2006), suggesting a dynamic role in sensory
processing. Burst firing, however, is thought to be absent in
thalamic neurons and of no useful function during normal
waking behavior (Steriade, 2000), in contradiction to evidence
supporting an important role in sensory transmission in the
wake state (Sherman, 2001b; reviewed in Sherman, 2001a).
Though burst probability is indeed low during waking, occasional
bursts could possibly be evoked by synchronous afferent volleys
(Steriade, 2001), such as during a prolonged pain episode. What
generates thalamic bursts and how could bursts be related to
EPIC?

THALAMIC BURSTS: EPIC PAIN
RESPONSE VIA THALAMIC RETICULAR
NUCLEUS

Neuronal burst firing is generated by specific, intrinsic
biophysical properties that have been described in detail
in vitro (Krahe and Gabbiani, 2004), whereas the extrinsic
and network mechanisms in vivo continue to be elucidated.
Thalamic bursts are caused predominantly by strong GABAergic
projections from the reticular thalamic nucleus (TRN), a thin
layer overlaying sensory thalamus. Taking the EPIC pain model
into consideration, TRN receives strong input from agranular
cortical areas. Indeed, pathways for emotion and attention have
been shown to converge on TRN (Zikopoulos and Barbas, 2012).

Thalamus and cortex form mutually interdependent
structures whose coordinated actions shape the sensory
experience. Thalamocortical neurons, the obligatory relay of all
sensory information (except olfaction) fire in two dynamic and
state-dependent modes: tonic and burst discharges of action
potentials (Sherman, 2001a). The respective roles of these modes
in gating sensory processing remains controversial (Sherman,
2001b; Steriade, 2001). Thalamic feedforward and cortical
feedback projections both pass through, and send collaterals to,
TRN neurons. In turn, TRN neurons send inhibitory projections
unto thalamocortical relay neurons (Pinault, 2004), causing
transient membrane hyper-polarization, de-inactivation of
T-type calcium channels and bursts (Jahnsen and Llinás, 1984a,b;
Figure 1). It has been suggested that TRN prevents “sensory
overload” by allocating attention to relevant sensory stimuli.
Thus, TRN is referred to as “guardian of the sensory gate” (Crick,
1984) and a “modality gate” (Crick, 1984; Yen and Shaw, 2003;
Yen and Lu, 2013) that inhibits tactile input while allowing
passage of nociceptive input to thalamus. Pharmacologic and
molecular data further suggest that GABA-mediated inhibition
in VPL is suppressed under pain conditions (Lee et al., 1994;
Ferreira-Gomes et al., 2006) (presumably due to the inhibition of
TRN neurons Peschanski et al., 1980; Yen and Shaw, 2003). This
scenario is thought to lead to hyper-excitability, sensitization,
and enhanced bursting of thalamic neurons. Imaging and
biochemical studies in humans further support the notion that
TRN neurons are inhibited during chronic pain (Henderson
et al., 2013; Gustin et al., 2014; Alshelh et al., 2016; Henderson
and Di Pietro, 2016). However, there is latent contradiction in
the assumption that thalamic bursts are increased while TRN
activity is simultaneously suppressed. A possible way to resolve
this issue is to use paired thalamocortical recordings while
generating thalamic bursts by selective optogenetic drive of
TRN neurons (on-going experiments in the Saab lab; see future
experiments).

CORTICAL THETA: EPIC PAIN RESPONSE
VIA DIALOG BETWEEN
GRANULAR-AGRANULAR CORTEX

The Saab lab reported in a series of studies that various
pain states in rodents correlate with increased theta (4–8Hz)
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FIGURE 1 | Wheel within a wheel: the EPIC pain model. Schematic representation of functional connectivity between the major sensory pathway (thalamus and

somatosensory granular cortex), and agranular cortical areas which are continuously engaged in generating internal predictions based on interoceptive inference, even

in the absence of external sensory input. The farther away an external sensory stimulus falls from the internal prediction (i.e., a powerfully salient, unexpected or

“unexplained” painful event), the larger the prediction “error signal.” The objective of this feedback-feedforward dialog (which we refer to as the EPIC pain model) is to

coordinate optimal cortical responses along two putative functional connectivity patterns: thalamic bursts via TRN, and bidirectional communication between

agranular cortex (limbic/paralimbic) and granular cortex (somatosensory). According to this model, the error signal is rectified when internal predictions are updated

with new information about the environment or, in the case of chronic pain, when cortical mechanisms lead to successful coping behaviors.

oscillations in somatosensory cortex using local field potential
(Leblanc et al., 2016b), electrocorticography (Leblanc et al., 2014),
and electroencephalography (Leblanc et al., 2016a) recordings.
Moreover, the pain-induced increase in cortical theta power is
reversed upon treatment with analgesics including pregabalin
and mexiletine (Leblanc et al., 2016a). Hence, our team and
others have speculated that somatosensory cortical theta is a
neural signature of pain in rodents (Leblanc et al., 2016a) and
humans (Stern et al., 2006; Pinheiro et al., 2016). The origin of
theta oscillations, however, remains elusive. We reported that
functional connectivity between thalamus and somatosensory
cortex is attenuated in rodent models of acute and neuropathic
pain (Leblanc et al., 2014), suggesting thalamus is an unlikely

generator of the pain-induced cortical theta (however, see
Sarnthein and Jeanmonod, 2008).

Here again, applying the EPIC pain model, we have observed
that functional connectivity between prefrontal cortex and
somatosensory cortex in the rat is enhanced during neuropathic
pain (Leblanc et al., 2016a). Prefrontal cortex is agranular
in rat (Leonard, 2016) and thus conceivably engaged in
an EPIC bi-directional communication with somatosensory
cortex. In humans, interestingly, functional connectivity is
decreased between Fz and Cz EEG electrodes corresponding
to prefrontal and somatosensory cortex, respectively, during
moderate pain (Levitt et al., 2016) noting that primate prefrontal
cortex and somatosensory cortex are both granular (hence
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no or little communication flow is expected between these
structures based on the EPIC pain model). Therefore, in
addition to the putative EPIC response at a subcortical level via
TRN, traffic patterns between agranular and granular cortices
embody cortical feedback and feedforward communication from
limbic/paralimbic areas to somatosensory cortex and back in
a top-down and bottom-up manner, arguably generating theta
oscillations.

FUTURE DIRECTIONS

Hypotheses proposed above based on the conceptual EPIC

model of pain can be tested empirically. Deep understanding
of the dynamic interactions in the thalamocortical and cortico-
cortical networks, which give rise to integrated functional
states including pain, is best achieved in the context of the
whole organism and its behavior. Suboptimal experimental
conditions imposed by pharmacological, electrical stimulation,
and lesion approaches in the past have precluded a reliable
inference to “causality” between thalamic bursting, cortical
state, and pain. Paired, multiunit thalamocortical recordings,
as well as paired, laminar cortico-cortical recordings will be
necessary to directly test functional connectivity (for example
coherence and phase-amplitude coupling) and directional
flow of information (such as Granger causality) between
brain networks at a temporal resolution high enough to
resolve the neural dynamics in the TRN-thalamocortical
network. Ideally, these experiments would be conducted in
vivo during awake, freely-behaving states concomitant to
intervention techniques with unprecedented selectivity (i.e.,
optogenetics, see Park et al., 2015; Copits et al., 2016) while
longitudinally assessing the development of maladaptive pain
behaviors.

Our suggested model pertains to pain in general. For
acute nociceptive pain, the error signal is rectified upon
elimination of the primary cause of pain. In the case of
chronic pain, for example neuropathic pain secondary to
peripheral nerve injury, the error signal that persists might
lead an individual to engage in a multitude of behavioral
modifications, some being ineffective or maladaptive.
Under such neuropathic conditions, Bayesian inference
systematically fails to make accurate sensory predictions due
to stochastic and/or excessive nociceptive signals emanating
from the injured nerve, thus contributing to symptoms
of hypersensitivity such as allodynia and hyperalgesia. We
acknowledge, furthermore, that chronic pain induces structural
and functional reorganization of brain connectivity patterns and
chronic pain per se has been described as evolving according
to a multiphasic continuum (Baliki and Apkarian, 2015).
We argue, however, that thalamic bursting and cortical theta
represent hallmark neural signatures of pain irrespective of
its temporal progression. A formalized computational model
might further illuminate the longitudinal and quantitative
relationships between the different components of the
EPIC pain model. Noting several caveats of non-invasive

electrophysiological approaches including EEG (notably poor
spatial resolution and source localization, especially with respect
to neural folding and volume conduction), integration of
field potential recordings with resting state imaging data is
key to building such biophysically-principled computational
models.

SENSATION AND AFFECT ARE
INTERCONNECTED IN THE BRAIN

Sensory cortical regions are anatomically connected with limbic
and paralimbic cortical regions that are responsible for allostatic
control, or regulation of the physiological systems of the body
(Mesulam and Mufson, 1982; Mufson and Mesulam, 1982).
The sensory consequences of that regulation (referred to as
interoception) are experienced as low dimensional properties of
affect (i.e., valence and arousal). Stimuli that evoke interoceptive
changes, and therefore changes in affective experience, routinely
engage sensory input regions of cortex (Barrett and Bliss-Moreau,
2009; Barbas, 2015; Barrett, 2017). A recent meta-analysis of
brain imaging studies concluded that stimuli that evoke affective
changes evoke sensory activations in a modality-specific manner
(Satpute et al., 2015). These observations indicate that sensory
areas in the brain, including somatosensory cortex, contribute to
the affective experience beyond merely encoding features related
to the localization and discrimination of nociceptive stimuli
(Uhelski et al., 2012; Hu et al., 2014). They also dovetail with the
principles of predictive coding, active inference and EPIC.

Current view that the sensory system is passively waiting
for external sensory inputs is untenable, while pain researchers
continue to rely mostly on spinal reflex behaviors to assess pain.
The EPIC model for pain provides an alternative, more plausible
explanation for a context-dependent pain experience modulated
by dynamic brain states (i.e., networks within networks Gary
Marcus, 2015) that reflect on-going cognitive and psychosocial
processes. Pain does not equate to an evoked response to
a noxious stimulus (see Williams and Craig, 2016 regarding
the need to update the definition of pain), and the brain
is a not a hollow drum struck by random sensory stimuli,
rather it generates continuous predictions pertaining to the
environment in order to minimize the element of surprise and
maladaptive responses. To understand pain is to appreciate the
state-dependent and dynamic traffic patterns in the brain.

SUMMARY

Thalamic neurons fire irregular bursts during neuropathic pain,
a common neurologic condition characterized with sensory
and affective symptoms that are poorly managed clinically.
Conflicting hypotheses regarding the role of thalamic bursts
in pain have been proposed. In this opinion letter, we discuss
the EMBODIED PREDICTIVE INTEROCEPTION CODING (EPIC)
model of pain as a unifying framework for formulating testable
hypotheses regarding the relation between thalamic burst and
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pain, and as a putative cortical feedback mechanism mediating
context-dependent pain experiences and coping behaviors.
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