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Central Pattern Generator (CPG) circuits are neural networks that generate rhythmic

motor patterns. These circuits are typically built of half-center oscillator subcircuits

with reciprocally inhibitory connections. Another common property in many CPGs is

the remarkable rich spiking-bursting dynamics of their constituent cells, which balance

robustness and flexibility to generate their joint coordinated rhythms. In this paper, we

use conductance-based models and realistic connection topologies inspired by the

crustacean pyloric CPG to address the study of asymmetry factors shaping CPG bursting

rhythms. In particular, we assess the role of asymmetric maximal synaptic conductances,

time constants and gap-junction connectivity to establish the regularity of half-center

oscillator based CPGs. We map and characterize the synaptic parameter space that

lead to regular and irregular bursting activity in these networks. The analysis indicates

that asymmetric configurations display robust regular rhythms and that large regions of

both regular and irregular but coordinated rhythms exist as a function of the asymmetry

in the circuit. Our results show that asymmetry both in the maximal conductances and

in the temporal dynamics of mutually inhibitory neurons can synergistically contribute to

shape wide regimes of regular spiking-bursting activity in CPGs. Finally, we discuss how

a closed-loop protocol driven by a regularity goal can be used to find and characterize

regular regimes when there is not time to perform an exhaustive search, as in most

experimental studies.

Keywords: spiking-bursting activity, CPG, half-center oscillator, rhythm negotiation, rhythm regularization,

closed-loop exploration

1. INTRODUCTION

Central Pattern Generators (CPGs) are neural networks that control muscle function by generating
rhythmic patterns (Marder and Bucher, 2001; Grillner, 2003). Many CPGs are built with a non-
open network architecture, i.e., a connection topology in which every neuron receives at least one
synapse from another member of the CPG (Huerta et al., 2001). The building block in this type
of connection architecture is often an oscillator circuit of reciprocally inhibitory neurons (Miller
and Selverston, 1982; Selverston, 2010; Sakurai et al., 2014). Another highly relevant property in
these neural networks is the presence of intrinsically irregular/chaotic neurons, which typically
display rich slow-fast dynamics able to generate bursts of different duration periods, phases and
spike temporal structures (Abarbanel et al., 1996; Elson et al., 1998). The reciprocal inhibitory
connections between neurons lead to the regularization of the chaotic behavior when the neurons
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interact with each other in the circuit. The rich intrinsic dynamics
provide flexibility and robustness for negotiating rhythms as
a function of external inputs, producing the characteristic
regular spiking-bursting activity that allows the CPG to control
motor movements (Selverston et al., 2000). Most CPGs are
typically studied in regular regimes where the activity of
individual neurons can be directly related to specific rhythmic
motor functions, such as walking, breathing, chewing, etc.
However, irregular rhythms can also be observed in control
or induced conditions (e.g., see Bartos et al., 1999; Thuma
and Hooper, 2003; Nadim et al., 2011; Elices and Varona,
2015; Hooper et al., 2015). Central and sensory feedback
transiently alter the CPG pattern which also results in observed
irregularity.

Minimal circuits, such as half-center oscillators involving
mutually inhibitory neurons are convenient networks to address
CPG function. In particular, the concept of a half-center oscillator
has been extensively used to study CPG rhythm generation, both
in experimental, (e.g., seeMiller and Selverston, 1982; Sharp et al.,
1996; Yakovenko et al., 2005; Brookings et al., 2012; Sakurai et al.,
2014), and theoretical works, (e.g., Nadim et al., 1995; Cymbalyuk
et al., 2002; Bem and Rinzel, 2004;Wojcik et al., 2014; Reyes et al.,
2015; Doloc-Mihu and Calabrese, 2016). Most of these studies
focus in the analysis of alternating regular rhythms, and only
a few works address the presence of irregular spiking-bursting
activity in mutually inhibitory neurons, (e.g., Varona et al., 2001a;
Doloc-Mihu and Calabrese, 2011; Nagornov et al., 2016).

Using conductance-based models and realistic connection
topologies inspired by the crustacean pyloric CPG, in this
paper we address the study of asymmetry connectivity factors
shaping CPG spiking-bursting rhythms. In particular, we show
the existence of asymmetric maximal synaptic conductances and
time constants that shape regularized and robust alternating
spiking-bursting activity in half-center oscillator circuits, and we
assess their role in the rhythm configuration. We also discuss
the modulation of the regularity by additional gap-junction
connections to the half-center oscillator. Finally, we show how
a closed-loop protocol can adapt online the synaptic time
constants based on the regularity of the burst periods. We argue
that this closed-loop interaction is an effective methodology to
characterize the coordination properties that arise both from
the connection topology and the individual dynamics of the
spiking-bursting neurons in these circuits when there is no
time to explore the whole parameter space, as in experimental
approaches.

2. MATERIALS AND METHODS

2.1. Neuron Model
For our analysis we use a conductance based model proposed
by Komendantov and Kononenko (1996), which describes the
conductances of eight membrane currents. The basic membrane
potential equation is:

− CmdV/dt = INa(TTX) + IK(TEA) + IK + INa + INa(V)

+ IB + ICa + ICa−Ca. (1)

The slow-wave generating mechanism is given by sodium,
potassium and chemosensitive currents:

INa(V) = g∗Na(V)(1/(1+ exp(−0.2(V + 45))))(V − VNa);(2)

INa = g∗Na(V − VNa); (3)

IK = g∗K(V − VK); (4)

IB = g∗BmBhB(V − VB); (5)

dmB/dt = (1/(1+ exp(0.4(V + 34)))−mB)/0.05; (6)

dhB/dt = (1/(1+ exp(−0.55(V + 43)))− hB)/1.5; (7)

The spike-generating mechanism is described by TTX-sensitive
sodium and TEA-sensitive potassium Hodgkin-Huxley type
currents:

INa(TTX) = g∗Na(TTX)m
3h(V − VNa); (8)

IK(TEA) = g∗K(TEA)n
4(V − VK); (9)

dm/dt = (1/(1+ exp(−0.4(V + 31)))−m)/0.0005; (10)

dh/dt = (1/(1+ exp(0.25(V + 45)))− h)/0.01; (11)

dn/dt = (1/(1+ exp(−0.18(V + 25)))− n)/0.015; (12)

The calcium transient voltage-dependent current is described by:

ICa = g∗Cam
2
Ca(V − VCa); (13)

dmCa/dt = (1/(1+ exp(−0.2V))−mCa)/0.01; (14)

The calcium stationary [Ca2+]in inhibited current is given by:

ICa−Ca = g∗Ca−Ca

1

1+ exp(−0.06(V + 45))

1

1+ exp(Kβ ([Ca]− β))
(V − VCa); (15)

d[Ca]/dt = ρ − ICa/2Fv− Ks[Ca]; (16)

where v = 4πR3/3 is the volume of the cell; [Ca] is [Ca2+]in
(mM), F is Faraday number (F = 96,485 Cmol−1), Ks is the
intracellular Ca-uptake rate constant and ρ is the endogenous Ca
buffer capacity.

This Hodgkin-Huxley type model displays the dynamical
richness observed in the spiking-bursting activity of several
neuron types (e.g., see Komarov et al., 2008; Latorre et al., 2013)
which underlies some of their rhythm negotiating properties.
The parameters used in our simulations are set for the chaotic
bursting regime (see Table 1). Figure 1 illustrates the irregular
bursting activity of the model in this regime, which resembles
the observed behavior in isolated CPG neurons (Abarbanel et al.,
1996; Elson et al., 1998).

2.2. Network Topologies
Synaptic asymmetries both in strength and duration are
known to be present in the mutual inhibition between CPG
neurons (Marder and Eisen, 1984). For our study on the
asymmetry factors shaping regular and irregular bursting
rhythms, we will use three different topologies of mutually
inhibitory neurons that we describe below.
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TABLE 1 | Parameters for the chaotic bursting regime used in our simulations, (see also appendix in Komendantov and Kononenko, 1996).

VNa(mV) VK (mV) VB(mV) VCa(mV) CmµF R(mm) Ks(1/s) ρ Kβ (1/mM)

40 −70 −58 150 0.02 0.1 50 0.002 15000

β(mM) g*
K
(µS) g*

Na
(µS) g*

Na
(V)(µS) g*

B
(µS) g*

Na(TTX)
(µS) g*

K(TEA)
(µS) g*

Ca
(µS) g*

Ca−Ca
(µS)

0.00004 0.25 0.02 0.13 0.18 400 10 1 0.01

FIGURE 1 | Chaotic bursting activity of a single Komendantov-Kononenko model neuron. Model parameters are specified in Table 1 (see also Komendantov

and Kononenko, 1996). V0 = −47.0.

2.2.1. Mutually Inhibitory Oscillator Circuit with

Symmetric Synaptic Temporal Dynamics
We first consider a half-center oscillator topology, i.e., a minimal
network built up with two model neurons connected with
mutually inhibitory chemical synapses that have symmetric
temporal characteristics but considering the possibility of
different maximal conductances in each synapse (see left panel in
Figure 2A). The associated synaptic currents have been modeled
with a fast graded synapse, a common type of chemical synapse
in many CPGs, as follows (Golowasch et al., 1999; Latorre et al.,
2002, 2006).

I
f
post =

g
f
prepost (Vpost − ESyn)

1.0+ exp(sf (V f − Vpre))
, (17)

where g
f
prepost is the maximal synaptic conductance of the

postsynaptic neuron, one of our control parameters. Vpost is
the membrane potential of the postsynaptic neuron, ESyn is

the synaptic reversal potential, V f determines the threshold of
the graded synapse, and Vpre is the membrane potential of
the presynaptic neuron. The values of the synapse parameters
used in our simulations are ESyn = −65mV , V f = −49mV ,

sf = 0.31mV−1. The mutually inhibitory connections in the
circuit lead the neurons to a rhythm negotiation in the form of
alternating bursting activity. The activity produced by the circuit
can be regular or irregular depending on the value of themaximal
conductances of the synapses as it can be observed in the right
panels of Figure 2A. In this paper we have considered that the
activity is regular if the coefficient of variation of the period Cv

during five consecutive bursts is <5%.

2.2.2. Mutually Inhibitory Oscillator Circuit with

Asymmetric Synaptic Temporal Dynamics
Temporal asymmetry is present between the LP and the PD
neurons in the crustacean pyloric CPG (Marder and Eisen, 1984).
For a further characterization of the role of asymmetry shaping
CPG spiking-bursting rhythms, one of the fast graded inhibitory
synapses in the previous circuit is replaced by a slow graded
inhibitory synapse (see right panel in Figure 2B). The slow
synaptic current is given in our model by Golowasch et al. (1999)
and Latorre et al. (2002, 2006).

Ispost = gsprepostm
s
post(Vpost − ESyn), (18)

where

dms
post

dt
=

k1(1.0−ms
post)

1.0+ exp(ss(Vs − Vpre))
− k2m

s
post (19)

Here gsprepost is the maximal synaptic conductance of the
postsynaptic neuron, k1 and k2 are time constants which
control the speed and duration of the synaptic current, and Vs

determines the threshold of the graded slow synapse. We used
Vs = −49mV and Ss = 1.0mV−1. Below we will use k1 and k2
as additional control parameters to introduce asymmetry in the
temporal evolution of the synaptic currents. Examples of regular
and irregular alternating bursting activity generated by this type
of circuit are shown in the left panels of Figure 2B.

2.2.3. Topology with Gap-Junction Induced

Asymmetry
In addition to the asymmetric inhibitory connectivity in the
network, we considered a third circuit in which neuron 2 of
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FIGURE 2 | The three different topologies of mutually inhibitory spiking-bursting neural circuits considered in this study. The activity can be irregular or

regular depending on the maximal conductances of the synapses and the rest of parameters that control the asymmetry level in each circuit. (A) mutually inhibitory

oscillator circuit with temporal symmetric synapses. Black filled circles represent fast graded chemical synapses, see Equation (17). Parameters: Top panel g21 =

0.005 µS, g12 = 0.044 µS (irregular rhythm); Bottom panel g21 = 0.022 µS, g12 = 0.024 µS (regular rhythm). (B) Mutually inhibitory oscillator circuit with temporal

asymmetric synapses. The empty circle represents a slow chemical synapse, see Equations (18–19). Parameters: k1 = 0.6 ms−1, k2 = 0.27 ms−1, Top panel g21 =

0.0155 µS, g12 = 0.0255 µS; Bottom panel g21 = 0.0235 µS, g12 = 0.0055 µS. (C) Asymmetric topology with gap-junctions modeled with Eq. (20). Parameters: k1
= 0.6 ms−1, k2 = 0.27 ms−1, Top panel g21,31 = 0.05 µS, g12,13 = 0.03 µS; Bottom panel g21,31 = 0.035 µS, g12,13 = 0.055 µS.
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the previous circuit is replaced by two electrically coupled cells,
as it is illustrated in the left panel of Figure 2C. This topology
with electrical coupling is also present in several CPGs and in
particular in the crustacean stomatogastric ganglion (Selverston
andMoulins, 1987). The equation used to model the gap junction
was:

I
gj
post = g

gj
prepost(Vpost − Vpre), (20)

where the value for the gap-junction conductance used was

g
gj
prepost = 0.0045mS. Note that this third topology involves two
slow inhibitory graded synapses to neuron 1 (see Figure 2C),
and one fast graded inhibitory synapse to each of the electrically
coupled cells (neurons 2 and 3). Again, the values of the maximal
synaptic conductances determine the regular or irregular rhythm
in the circuit (see right panels in Figure 2C).

3. RESULTS

3.1. Regularized Activity in Mutually
Inhibitory Oscillator Circuits
As a departing point, we have considered a half-center
oscillator topology with symmetric fast temporal dynamics in
the synapse model (see left panel in Figure 2A). This temporal
symmetric circuit generates regular and irregular alternating
bursting activity depending on the values of synaptic maximal
conductances. Simulations were run to explore the synaptic
maximal conductances that resulted in regular or irregular
activity according to the criterion of having the coefficient of
variation Cv of this activity below a 5% threshold. Figure 3
illustrates the map of conductances g12 and g21 that lead
to regularized rhythms (black dots) consisting of alternating
bursting between the two neurons. White spaces represent
regions were irregular spiking-bursting activity exists. One can
observe that this map is nearly symmetric, i.e., regions that lead
to regularized spiking-bursting rhythms correspond to values
of maximal conductances g12 and g21 that do not differ much
beyond 0.02 µS. Thus, for temporal symmetric fast inhibitory
synapses, regularization occurs for closely symmetric maximal
conductance values.

The right panel in Figure 2 shows two examples of regular
and irregular alternating bursting activity for representative
values of g12 and g21 conductances. Note the symmetric phase
relationships of the regular spiking bursting rhythm, which
corresponds to the nearly symmetric values of the maximal
conductances.

3.2. Regularized Activity in Mutually
Inhibitory Oscillator Circuits with Temporal
Asymmetry
Here we focus on the analysis of amutually inhibitory circuit with
temporal synaptic asymmetry. In this case, we consider mutual
inhibition with a slow synapse in one direction and a fast synapse
in the other (see left panel in Figure 2B). This asymmetry is
present in half center oscillators that built up CPGs (Marder
and Eisen, 1984). Figure 4 represents the map of conductances
g12 and g21 that lead to regularized rhythms consisting of

FIGURE 3 | Map of conductances g12 and g21 that lead to

regularization of the spiking-bursting activity for the connection

topology with fast symmetric temporal dynamics. The incremental step

for both g12 and g21 is 0.0025 µS. Black circles represent values that lead to

regular activity (Cv < 5%). The symmetric distribution of the circles in the map

reflects the balanced temporal dynamics of the fast synapses, which in general

allows only moderate differences in the maximal conductances to achieve

regularity.

alternating spiking-bursting activity between the two neurons.
It is important to emphasize that in this case asymmetry in the
maximal conductances coexists with the temporal asymmetry
of the slow and fast synapses in the circuit. Note the reduced
size and the sparser distribution of maximal conductances that
lead to regularized spiking-bursting rhythms, which is caused by
the synaptic imbalance introduced by the temporal asymmetry.
Figure 2B illustrates two examples of regular and irregular
spiking-bursting activity, respectively, for representative values
of g12 and g21 conductances. One can see the asymmetric phases
of the regular rhythm as compared to the one depicted in
Figure 2A.

Next, we chose representative values of the maximal
conductances in the temporal asymmetric circuit (indicated by
red squares in Figure 4) and, using the same methodology,
we explored the parameter space of the time constants k1 and
k2, which control the temporal aspects of the slow synapse.
Figure 5 shows this analysis for fixed g21 = 0.03µS and g12
= 0.0125 µS, corresponding to a regularized activity regime
in Figure 4. Note the presence of k2 bands where regularity
occurs for large regions of k1 values for this particular selection
of maximal conductances. The size of these bands, and thus
the size of the regions with regular activity, depend on the
values of the maximal conductances of the mutually inhibitory
circuit.

Figure 6 shows the k1 vs k2 map for fixed g21 = 0.065
and g12 = 0.005 µS. Note that such conductance values also
correspond to regular spiking-bursting activity in the map
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FIGURE 4 | Map of conductances g12 and g21 of the temporal

asymmetric mutually inhibitory circuit that lead to regularization of the

spiking-bursting activity. The incremental step for both g12 and g21 is

0.0025 µS. Black circles represent values that lead to regular activity

(Cv < 5%). The map shows a reduced number of configurations of

parameters that leads to regular activity as a consequence of the temporal

asymmetry in the connection between the neurons. Parameters: k1 = 0.6

ms−1, k2 = 0.27 ms−1. Red squares correspond to specific values of g12
and g21 that will be used for subsequent analysis of k1 vs k2 maps.

depicted in Figure 4. In spite of the large maximal conductance
difference, the resulting combination of conductance and
temporal asymmetries in the mutual inhibition lead to a broad
region of regular spiking-bursting activity. Irregular regimes are
mostly in the region defined by k2 < 0.3

When we select from Figure 4 a set of maximal conductances
that correspond to irregular spiking-bursting activity (e.g.,
g21 = 0.065 and g12 = 0.015 µS), we obtain a k1
vs k2 map with reduced regularity bands (see Figure 7).
Nevertheless, one can observe that the temporal asymmetry
can compensate the conductance unbalance to achieve regular
regimes.

3.3. Regularized Activity in Mutually
Inhibitory Oscillator Circuits with
Gap-Junction Induced Asymmetry
Finally, in addition to the asymmetric connectivity in the
network, we have considered another source of asymmetry
common in many CPG’s (Selverston and Moulins, 1987) by
replacing one of the neurons in the former circuit with two
electrically coupled cells (see left panel in Figure 2C). The gap-
junction synchronizes the activity of neurons 2 and 3. It is
important to note that in this configuration there are two slow
and two fast inhibitory graded synapses. Note also the phase
asymmetry of the regular regimes in this configuration. To
analyze the contribution of this topological asymmetry to the
generation of regular and irregular rhythms, we have fixed the

FIGURE 5 | Map of slow synaptic time constants k1 and k2 of the

temporal asymmetric mutually inhibitory oscillator circuit which lead

to regularization of the spiking-bursting activity. Parameters: g21 = 0.03

µS, g12 = 0.0125 µS (see Figure 4 red squares). The incremental step for k1
and k2 is 0.025 ms−1 and 0.005 ms−1, respectively. Black circles represent

values that lead to regular activity (Cv < 5%).

synaptic time constants to k1 = 0.6 ms−1, k2 = 0.27 ms−1, and

the gap-junction conductance g
gj
23,32 = 0.0045 µS.

Figure 8 shows the map of conductances g12 and g21
that lead to regularized alternating bursting activity in this
configuration. One can observe that the regularity regions
are larger than in the corresponding case for the circuit
with only temporal synaptic asymmetry (cf. Figure 4). This
result hints that the gap-junction connectivity, with its
associated dynamical inertia, could contribute to enlarge the
regions of regular spiking-bursting activity in living half-center
oscillators.

4. CLOSED-LOOP EXPLORATION FOR
REGULAR BURSTING RHYTHMS

In the previous sections we have presented a modeling study
in minimal mutually inhibitory circuits of the asymmetry
factors that contribute to shape regular and irregular spiking-
bursting rhythms. How could the hypotheses drawn in this
paper be tested experimentally? Dynamic clamp can be
used to modify maximal conductances and synaptic temporal
characteristics by building hybrid circuits composed of living
neurons and artificial synapses (Sharp et al., 1993; Destexhe
and Bal, 2009). As the time to perform such experiments
is restricted and the number of configurations that can
be tested is typically small, we propose here a close-loop
exploration method to allow such study. The closed-loop
algorithm can control the dynamics by changing a set of
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FIGURE 6 | Map of slow synaptic time constants k1 and k2 of the

temporal asymmetric mutually inhibitory oscillator circuit which lead

to regularization of the spiking-bursting activity. Parameters: g21 =

0.065 µS, g12 = 0.005 µS (see Figure 4 red squares). The incremental step

for k1 and k2 is 0.025 ms−1 and 0.005 ms−1, respectively. Black circles

represent values that lead to regular activity (Cv < 5%).

parameters of the network to achieve a specific goal (e.g., the
regularization of the bursting activity). These set of parameters
are updated in every iteration according to a designed rule
(which should be simple due to time restrictions) until the goal
is achieved.

We validate the method in the context of the half-center
oscillator model with temporal asymmetric synapses and g21 =

0.065 µS, g12 = 0.005 µS. In this case, the closed-loop algorithm
updates the value of the synaptic time constants k1,2 according
to the difference between the current period P1 and the average
of the periods of the last five bursts 〈P1〉 trying to find a suitable
new set of values that lead to regular activity Cv < 5%, which
is the goal of this closed-loop exploration. The departing points
are different sets of configurations of the synaptic time constants
k01 and k

0
2 that drive the system into alternating irregular spiking-

bursting activity. Every time a new burst n is generated in neuron
1, the algorithm checks if the coefficient of variation of the
period calculated for the last 5 bursts Cv is below the established
regularity threshold 5%. Then, the value of the synaptic time
constants are updated as follows:

kn1,2 = kn− 1
1,2 − α ·

(

〈P1〉 − Pn1
)

where α is the rate for the synaptic time constant change, 〈P1〉
is the average period of neuron 1 calculated with the last five
bursts and Pn1 is the current period. In this study we set α = 0.01.
This value and the monitoring of the last five bursts provide a
good balance between a reasonable online measurement of the
regularity and a fast convergence to the closed-loop goal.

FIGURE 7 | Map of slow synaptic time constants k1 and k2 of the

temporal asymmetric mutually inhibitory oscillator circuit which lead

to regularization of the spiking-bursting activity. Parameters: g21 =

0.065 µS, g12 = 0.015 µS (see Figure 4 red squares). The incremental step

for k1 and k2 is 0.025 ms−1 and 0.005 ms−1, respectively. Black circles

represent values that lead to regular activity (Cv < 5%).

Figure 9 shows the evolution of three sets of departing time
constants k01 and k02 during the closed-loop protocol displayed
over a map of slow synaptic time constants that lead to
regularized rhythms (gray circles). In these three examples the
departing values are located in empty regions in the maps (Cv >

5%) and at the end of the protocol the new set of values k
f
1 and

k
f
2 are located within the gray circles area (Cv < 5%). Noting the
color code, one can observe that the changes in kn1,2 can become
quite large during the first few interactions since this change is
proportional to the difference between the current period and the
average of the periods of the last five bursts. The protocol is able to
find the regular spiking-bursting regimes in only a few iterations.
The departing irregularity and the achieved regularized activity of
the circuit after the closed-loop protocol are shown in Figure 10.

This close-loop protocol allows different configurations and
optimizations. The experimenter can choose to modify time
constants k1 and k2 simultaneously or one at a time, for example
only k2 to unveil the regularity bands shown in Figures 5, 7.
The protocol can also include a nonlinear dependence on the
difference between the current and the averaged bursting period,
as well as other search methods (e.g. gradient descent, stochastic
search) and alternative performance measurements to evaluate
online the regularization goal.

5. DISCUSSION

Using realistic conductance-based models of half-center
oscillator based CPG circuits, in this paper we have addressed
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FIGURE 8 | Map of conductances g12 and g21 of the circuits with

gap-junction induced asymmetry that lead to regularization of the

spiking-bursting activity where the incremental step for both g12 and

g21 is 0.0025 µS. Black circles represent values that lead to regular activity

(Cv < 5%). Parameters: k1 = 0.6 ms−1, k2 = 0.27 ms−1,

g
gj
23,32 = 0.0045 µ S.

the study of synaptic asymmetry to shape robust alternating
spiking-bursting rhythms. In particular, we focused on the
analysis of asymmetry of synaptic maximal conductances
and time constants in the reciprocal inhibition of half center
oscillators. We have mapped the regimes of regular and irregular
coordinated rhythms as a function of these parameters. We have
shown that asymmetry both in the maximal conductances and in
the temporal dynamics of mutually inhibitory neurons, including
modulation by gap-junction connectivity, can synergistically
contribute to shape large regions of regular spiking-bursting
regimes in central pattern generator circuits. Regular rhythms
resulting from realistic asymmetric synaptic configurations
display specific phase relationships that reflect the balance
among the distinct sources of asymmetry.

Irregularity regimes are typically disregarded both in
experimental and theoretical CPG research. One reason for this
is that regular rhythms, as recorded in experimental setups,
are more easily associated with observable rhythmic CPG
motor functions. Several theoretical studies have shown that
regular regimes could be more efficient for specific motor
tasks (Huerta et al., 2000, 2001; Stiesberg et al., 2007). However,
coordinated irregularity is also present in living CPGs under
normal and pathological circumstances and might mediate key
aspects of the rhythm negotiation in these circuits. Recent brute
force approaches to map the parameter space in half center
oscillators models inspired by the leech heartbeat CPG have also
pointed out the presence of irregular regimes (Doloc-Mihu and
Calabrese, 2011, 2016). In this paper, we have shown that the
asymmetric synaptic parameter space for the existence of regular

FIGURE 9 | Evolution of the synaptic time constants k1 and k2 of the

low synapse in a half-center oscillator during closed-loop exploration

for regular bursting rhythms. The figure shows the evolution of the values of

k1 and k2 in time (color bar in s) for three different departing values (coded in

black): squares points, k01 = 1.00ms−1, k02 = 0.63ms−1; triangle points, k01 =

0.70 ms−1, k02 = 0.25 ms−1; circle points, k01 = 1.80 ms−1, k02 = 0.27 ms−1.

Final values after the closed-loop exploration (coded in yellow): squares points,

kf1 = 0.92 ms−1, kf2 = 0.55 ms−1; triangle points, kf1 = 0.82 ms−1, kf2 = 0.37

ms−1; circle points, kf1 = 1.89 ms−1, kf2 = 0.35 ms−1. Gray circles in the

background represent the map of slow synaptic time constants k1 and k2 that

lead to regularization of the spiking-bursting activity. This map was generated

as explained in the previous sections and is depicted for the validation of the

closed-loop search. The incremental step for k1 and k2 is 0.05 ms−1 and 0.01

ms−1, respectively. The protocol searchers for a suitable value of both

synaptic time constants which drives the system into a regular bursting activity,

Cv < 5% (gray circle points). Parameters: g21 = 0.065 µS, g12 = 0.005 µS.

and irregular coordinated rhythms in a conductance-based
half-center oscillator is large. Previous modeling efforts that did
not explore synaptic asymmetry hinted that intrinsic neuron
irregularity easily disappeared under mutual inhibition in CPG
half-center oscillator circuits, (e.g., see Varona et al., 2001a,b).
Here we have seen how half-center oscillations can be modulated
and coordinated by asymmetrical factors in themutual inhibition
of its constituent neurons. The study of irregular regimes in the
case of realistic asymmetric synapses can shed further light to
understand the balance between robustness and flexibility in
central pattern generator circuits.

There are known asymmetries in the connectivity of CPG
half-center oscillators. However, their role in shaping the
circuit rhythm has not been explored in detail. In this
paper, we have shown that a closed-loop protocol adapting
online the synaptic parameters under a regularization goal
can be an effective methodology to map and characterize the
coordination properties that arise both from the connection
topology, including their asymmetry, and the individual neuronal
dynamics in these circuits. We believe that customized versions
of this protocol can be used in experimental setups, where there
is no time to explore the whole parameter space, to address the
hypotheses drawn by the discussed model.
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FIGURE 10 | Departing irregular regimes and closed-loop exploration for regular activity for the three cases discussed in Figure 9 in a circuit with

synaptic temporal asymmetry. Left panels show the departing irregular activity for the following slow synaptic time constants: k01 = 1.00 ms−1, k02 = 0.63 ms−1,

k01 = 0.70 ms−1, k02 = 0.25 ms−1 and k01 = 1.80 ms−1, k02 = 0.27 ms−1. Right panels show the regularization obtained through the closed-loop (cf. evolution of time

constants in Figure 9). Note that the protocol is able to find the regular regimes in a very short time. Maximal conductance parameters: g21 = 0.065 µS, g12 = 0.005

µS.
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