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This paper proposed a new method to determine the neuronal tuning curves for

maximum information efficiency by computing the optimum firing rate distribution. Firstly,

we proposed a general definition for the information efficiency, which is relevant to mutual

information and neuronal energy consumption. The energy consumption is composed

of two parts: neuronal basic energy consumption and neuronal spike emission energy

consumption. A parameter to model the relative importance of energy consumption is

introduced in the definition of the information efficiency. Then, we designed a combination

of exponential functions to describe the optimum firing rate distribution based on the

analysis of the dependency of the mutual information and the energy consumption on

the shape of the functions of the firing rate distributions. Furthermore, we developed a

rapid algorithm to search the parameter values of the optimum firing rate distribution

function. Finally, we found with the rapid algorithm that a combination of two different

exponential functions with two free parameters can describe the optimum firing rate

distribution accurately. We also found that if the energy consumption is relatively

unimportant (important) compared to the mutual information or the neuronal basic energy

consumption is relatively large (small), the curve of the optimum firing rate distribution will

be relatively flat (steep), and the corresponding optimum tuning curve exhibits a form of

sigmoid if the stimuli distribution is normal.

Keywords: neuronal tuning curve, information efficiency, optimum firing rate distribution, mutual information,

energy consumption

INTRODUCTION

Neuronal systems are assumed to be optimized for information encoding after millions of years of
natural selection, in the sense that the capacity of the neural systems (or channels in the language
of information society) for information transmission is occupied as much as possible, leaving as
little as possible the “power” of the channels being unutilized. This is the “redundancy reduction”
hypothesis proposed by Barlow (1959, 1961). Based on this assumption, the optimum models of
the neural systems are obtained using information theory (Atick and Redlich, 1990; Borst and
Theunissen, 1999; Bethge et al., 2003; Nikitin et al., 2009; McDonnell et al., 2011; Rolls and Treves,
2011; Wei and Stocker, 2016). These optimum models coincide with the existing results well,
implying that the way how neural systems process information can be understood and the models
of the neural systems can be constructed by the information theory.

As energy consumption of the brain occupies a large part of the total energy consumption
of organisms (Erecinska et al., 2004), some studies optimized neural systems by maximizing
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the information efficiency, i.e., maximizing the ratio of the
mutual information to the energy consumed by the neuron
for emitting spikes (Levy and Baxter, 1996; Wang and Zhang,
2007; Torreal dea Francisco et al., 2009; Berger and Levy, 2010;
Sengupta and Stemmler, 2014; Sengupta et al., 2014). Some
studies (Levy and Baxter, 1996; Attwell and Laughlin, 2001)
further elaborated the definition of the information efficiency by
taking account of two parts of energy consumption of a neuron.
Besides the part of the energy consumed by the neurons to fire
spikes (Yu and Liu, 2014), they considered another part of energy
consumption, called basic energy consumption, which is relevant
to themetabolic cost required to support the living of the neurons
or the sub-threshold activity of the neurons. Evidently, the first
part of energy consumption is proportional to the number of the
spikes, while the second part of the energy consumption has no
relationship with the number of the spikes.

Tuning curve describes the relationship between the stimulus
and the output of the neuron, which plays a very important
role in neuronal information encoding (McDonnell and Stocks,
2008; Nikitin et al., 2009; Yaeli and Meir, 2010; Day et al., 2012;
Wang et al., 2013; Han et al., 2015; Yarrow and Series, 2015).
Tuning curve is optimized for information encoding to test the
“redundancy reduction” hypothesis at the single neuron level
(Laughlin, 1981). Considering the energy consumption, tuning
curves should be optimized to enable the neurons to encode
information efficiently, i.e., to have high ratio of information to
energy consumption. To obtain tuning curves in this way, the
following three elements need to be considered: the calculation
of energy consumption (Levy and Baxter, 1996; Wang and
Zhang, 2007; Torreal dea Francisco et al., 2009; Berger and Levy,
2010; Sengupta and Stemmler, 2014; Sengupta et al., 2014), the
definition of the information efficiency (Levy and Baxter, 1996;
Moujahid et al., 2011; Kostal and Lansky, 2013; Sengupta et al.,
2014), and the probability distribution of inputs (Dayan and
Abbott, 2001; Nikitin et al., 2009). Most of the existing methods
for determining optimum tuning curves assumed simplified
situations of above-mentioned three elements, especially the first
two. In some methods, energy consumption was not taken into
account. For example, early work on the optimization of the
tuning curve (Laughlin, 1981) by entropy maximization validates
the “redundancy reduction” hypothesis; a general method for
determining tuning curves for maximizing mutual information
was proposed in McDonnell and Stocks (2008); the optimum
tuning curve for maximizing mutual information was found
to have a discrete structure (Nikitin et al., 2009); the optimal
tuning functions for minimummean square reconstruction from
neural rate responses were derived in Bethge et al. (2003). In
other methods the number of spikes was regarded as the energy
consumption, and the ratio of the mutual information to the
number of the spikes was used as the information efficiency
(Moujahid et al., 2011; Kostal and Lansky, 2013). However,
in real neural systems, things seem to be more complex. For
example, two parts of the energy consumption rather than
only spikes should be considered as discussed in the previous
paragraph. As for the definition of the information efficiency,
one should consider the fact that in some situations, mutual
information is more important than energy consumption, while

in some other cases, energy consumption should be underlined.
The information and the energy consumption should also
be measured in the same scale when calculating information
efficiency, despite that information is measured on logarithm
scale while energy on linear scale in most existing studies.
Furthermore, the probability distribution of the inputs in many
cases may take a complex form other than normal distribution.
How can we determine the neuronal tuning curves with these
complex situations considered?

It is usually difficult to obtain analytical solutions to the
tuning curves when the complex situations discussed in the
previous paragraph are considered. This paper proposes a new
computer algorithm to deal with these complex situations when
optimizing neuronal tuning curves. Firstly, the optimum spike
count response distribution (the probability distribution of the
numbers of the spikes emitted by the neuron for different
inputs, which is explained in details in Section The model for
information-efficiency in neuronal encoding system) is analyzed
in terms of full entropy and energy consumption, and a
combination of exponential-based functions is designed for it.
Then the optimum firing rate distribution (see the detailed
explanations in Section The model for information-efficiency
in neuronal encoding system) for the information efficiency is
explored. Based on the analysis of the relationship between the
optimum spike count response distribution and the optimum
firing rate distribution, a combination of exponential-based
functions is designed for the optimum firing rate distribution,
after the dependency of the noise entropy on the shape of the
functions of the firing rate distribution is analyzed. A forward–
backward rapid algorithm with variable step size is proposed for
searching the optimumneuronal firing rate distribution function.
It is found with the rapid algorithm that a combination of
two different exponential functions with two free parameters
can describe the optimum firing rate distribution accurately.
The rapid algorithm is then used to search the two parameter
values of the optimum neuronal firing rate distribution function.
Finally, the neuronal tuning curves are calculated based on
the optimum neuronal firing rate distribution and the stimuli
probability distribution. The paper is organized as follows. The
basic concept of the optimum neuronal encoding scheme is
described in Section The model for information-efficiency in
neuronal encoding system. A newmethod to search the optimum
neuronal firing rate distribution is proposed in Section Search
for the optimum neuronal firing rate distribution. The optimum
tuning curves are calculated based on the optimum neuronal
firing rate distribution in Section The tuning curves based on
the optimum neuronal firing rate distribution. Finally, a brief
summary is provided in Section Conclusions.

THE MODEL FOR
INFORMATION-EFFICIENCY IN
NEURONAL ENCODING SYSTEM

A neuron receives inputs from the environment and encodes
them in the spikes of the neuron. For each input s, the neuron
responses with n spikes within time window T (we suppose that

Frontiers in Computational Neuroscience | www.frontiersin.org 2 February 2017 | Volume 11 | Article 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Han et al. Determine Neuronal Tuning Curves

neurons must complete the encoding process within this short
time period to get a rapid response to the external stimulus)
(Bethge et al., 2003). Since neuronal responses are naturally
random, the value of n is different trial by trial even the same
input s is provided, i.e., n is a random variable, which is often
assumed to obey Poisson distribution for simplification (Dayan
and Abbott, 2001; Bethge et al., 2003; Nikitin et al., 2009). The
rate of this Poisson distribution is called the firing rate of the
neuron. Let r = g(s) be the tuning curve of the neuron, which we
want to determine according to information theory in this paper.
Suppose the input s appears with probability P(s), which can often
be measured by recording the frequency of the occurrence of
the stimulus s (The frequency of the occurrence of the stimulus
between s and s + 1s is recorded for P(s) if the stimulus is
continuous). If we know the probability density of the firing rate
p(r), i.e., the firing rate distribution, then we can calculate the
tuning curve, r = g(s), numerically (see the details in Section
The tuning curves based on the optimum neuronal firing rate
distribution). How can we get the firing rate distribution p(r)?
We now discuss this according to the assumption that a neuron
is an optimum encoding system (In some situations, the spike
sequence emitted by the neuron could be recorded and used to
calculate p(r). This p(r) could be used to validate the redundancy
reduction hypothesis by comparing it with the p(r) that is got by
information efficiency maximization).

As we discussed in the previous section, the assumption that
a neuron is an optimum encoding system means that the neuron
can convey a large amount of information on one hand, while
consume a small amount of energy on the other hand. Stated in
other words, the neuron exhibits optimum information encoding
efficiency. The amount of information conveyed by the neuron
(mutual information) (Kostal, 2010; Gao et al., 2014) can be
described by Im = Sfull − Snoise, where Sfull is the full entropy of
the neuronal response (see Equation 2) and Snoise (see Equation
3) is the noise entropy. As for the energy consumption, the basic
energy consumption of the neuron within the period T is Eb and
the energy consumed by the neuron to emit spikes is Es, with
total energy consumption E = Eb + Es. We measure the energy
consumption in units of number of spikes. For example, Eb = 2
means that the basic metabolic cost required to support the living
of the neuron within T is equivalent to the energy consumed by
the neuron to emit 2 spikes.

A simple but widely used definition of the information
efficiency, IE, is the ratio of mutual information to the energy
consumed by neurons to emit spikes, i.e., IE =

Im
Es

(Levy and
Baxter, 1996; Moujahid et al., 2011; Sengupta and Stemmler,
2014). This definition is extended in this paper, which is described
by Equation (1).

IE = (2Im − 1)/(Es + Eb)
c (1)

This extension ismotivated by the following three considerations.
The first is that energy consumption is composed of two parts
in real neurons as discussed previously. Thereby E = Es + Eb
(Levy and Baxter, 1996; Attwell and Laughlin, 2001) instead of
Es is used in the calculation of IE. The second is that in some
situations, mutual information (energy consumption) may be

considered more important than energy consumption (mutual
information). The exponential c in Equation (1) is used to model
this relative importance in these situations. When c < 1,
mutual information is considered more important; when c >

1, energy consumption is more focused on. The third is that
mutual information is measured in bits, therefore it should be
transformed into linear representation as energy consumption.
That’s why we use 2Im − 1 for calculation of IE.

Suppose the inputs are discretized as s(i) = i1s, where i =
1,2...M, 1s= 0.0001 andM = 10,000 (the stimuli are normalized
in this paper). The probability of the occurrence of s (i) is P(s(i))
= (p(s)|s(i))1s. The firing rates of neurons are discretized as r(i)
= r(i − 1) + 1r, i = 1,2...N, 1r = 0.1 and N = 5, 000. The
probability of the occurrence of r(i) is P(r(i)) = (p(r)|r(i))1r .
Suppose the probability that the neuron emits n spikes within
time window T is P(n) (we name P(n) the spike count response
distribution in this paper), then the full entropy of the neuron
response is

Sfull =
∑

n

P(n)log2 P(n), (2)

and the noise entropy of the firing rate of the neuron is

Snoise =
∑

j

∑

n

P(s(j))P(n|s(j))log2 P(n|s(j))

=
∑

j

∑

n

P(r(j))P(n|r(j))log2(P(n|r(j)), (3)

where P(n|s(j)) is the conditional probability and r(j) = g(s(j)).

SEARCH FOR THE OPTIMUM NEURONAL
FIRING RATE DISTRIBUTION

If the optimum firing rate distribution for information efficiency
and the input distribution are given, one can calculate the tuning
curve numerically (it will be discussed in Section The tuning
curves based on the optimum neuronal firing rate distribution).
In this section, we will discuss how to determine the optimum
firing rate distribution for information efficiency. To achieve this,
we first explore the optimum spike count response distribution
for the entropy efficiency (entropy efficiency considers full
entropy and energy consumption) in Section Optimum spike
count response distribution for entropy efficiency. In Section
Optimum neuronal firing rate distribution for entropy efficiency,
we determine optimum neuronal firing rate distribution for the
entropy efficiency based on the assumption that the number
of the firing of the neuron obeys Poisson distribution when
firing rate is fixed. We find using the non-linear least square
method that the optimum firing rate distribution for the entropy
efficiency has the same form of function as the optimum
spike count response distribution but having different parameter
values. In Section Optimum neuronal firing rate distribution
for information efficiency, to extend the entropy efficiency to
information efficiency, the noise entropy is included in the
framework (note that entropy efficiency considers full entropy
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but information efficiency considers mutual information) and
we found that the form of the firing rate distribution function
for the maximum information efficiency is the same as that for
entropy efficiency. Finally, in Sections Algorithm for searching
the optimum neuronal firing rate distribution and Searching the
optimum neuronal firing rate distribution, a rapid algorithm is
proposed to calculate the optimum firing rate distributions.

Optimum Spike Count Response
Distribution for Entropy Efficiency
Let us begin with a simple case, entropy efficiency, which only
considers full entropy of the spike count neuronal response and
energy consumption. Similar to the information efficiency, we
define entropy efficiency, IS, as IS = (2Sfull − 1)/(Es + Eb)

c. As
we know, the neuronal response should be uniformly distributed
for the maximum entropy, i.e., P(n) = 1/nmax where nmax is
the maximum spike number of the neuron within the measuring
time window T. But maximum entropy does not meanmaximum
entropy efficiency, because the value of energy consumption is
relatively large if P(n) = 1/nmax because Es =

∑
n
P(n)n. As

dEs
dP(n) = n, to reduce energy consumption, the function f (n) =

P(n) should be smaller with larger n. Namely, to decrease the
energy consumption, the function f (n) should decrease hardly to
0, i.e., f (n) should decrease monotonously, and the rate of the
decrease should also decrease with the increase of n. Thereby
we can conceive that exponential-like function can describe
such functions that lead to small energy consumption and large
entropy. Since

∑
n
f (n) = 1, the simplest function of f (n) is

f (n) = αe−αn. (4)

The entropy will be smaller when f (n) deviates more from
uniform distribution. Therefore, if the parameter α is large
then f (n) will decay rapidly, which will result in less energy
consumption (Es) but small full entropy (see Figure 1); otherwise
if α is small, then f (n) will decay slowly, which will result in large
energy consumption (Es) and large full entropy (see Figure 1). If
α is very small, f (n) will be almost flat leading to maximum full
entropy. Therefore, both energy consumption and full entropy
decrease with the increase of α, but the rates of the decrease
are different, which enables the optimum value of α leading
to maximum information efficiency (see Section Algorithm for
searching the optimum neuronal firing rate distribution for
details).

The functions f (n) = αe−αn have only one free parameter
α. This restrains the possible shapes of the spike count response
distribution functions. To make the possible shapes of the
distribution functions more various, we use a function that
is a combination of two exponential functions with two free
parameters as Equation (5).

f (n) = (αe−αn + βe−βn)/2. (5)

We can also use a function with three free parameters as
Equations (6) or (7).

f (n) = (αe−αn + βe−βn + γ e−γ n)/3, (6)

f (n) = αe−αnγ + βe−βn(1− γ ). (7)

FIGURE 1 | Dependency of full entropy and energy consumption on the

parameter α.

Note that n is an integer, the values of γ in Equation (7) lie
between 0 and 1, and for all these functions,

∑
n
f (n) = 1. We

design the function as such a form that both full entropy and
Es decrease monotonically with the increase of either α or β .
This allows us to design a rapid algorithm (see Section Algorithm
for searching the optimum neuronal firing rate distribution) to
search the optimum parameters.

Optimum Neuronal Firing Rate Distribution
for Entropy Efficiency
If the response of the neuron is non-random, then average spike
number over multiple observations (firing rate) is identical to
the spike number measured in a single observation. Thereby,
firing rate distribution is identical to the spike count response
distribution. However, neuronal response is random, which
usually follows Poisson distribution (Dayan and Abbott, 2001;
Bethge et al., 2003; Nikitin et al., 2009). It is interesting to see
that the function of firing rate distribution takes the same form
as that of spike count response distribution but with different
parameters, when this randomness is taken into account. That
is, if we use a two-free-parameter function, the function of firing
rate distribution may be described by Equation (8) [note that
unlike the neuronal response function of Equation (5) where n
is an integer, r is a continuous variable in Equation (8)]:

f (r) = (αe−αr + βe−βr)/2. (8)

This can be confirmed by the nonlinear least square method.
For example, the curve with blue dot in Figure 2 is the spike
count response distribution produced by Equation (5) with
parameters α = 0.1 and β = 0.5. We denote this curve as
f (n). We search the best firing rate distribution denoted as f (r),
which can produce a spike count response distribution fitting
the blue dot curve (f (n)) most perfectly using the nonlinear
least square method. We got a function of Equation (8) with
α = 0.0935 and β = 0.5882 for the firing rate distribution,
which is shown by the curve with green star in Figure 2. The

curve with red square, which we denote as f̃ (n), is the spike
count response distribution that is produced by this firing
rate distribution (note that if the firing rate r is fixed, the

Frontiers in Computational Neuroscience | www.frontiersin.org 4 February 2017 | Volume 11 | Article 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Han et al. Determine Neuronal Tuning Curves

neuronal spike count response n obeys Poisson distribution).

Red square curve (f̃ (n)) fits blue dot curve (f (n)) perfectly,
implying that the optimumfiring rate distribution for the entropy
efficiency can also be described by the continuous version of

Equation (5), i.e., Equation (8). We use Err =
∑
n
(f (n)− f̃ (n))

2

to characterize the distance of the two neuronal spike count
response functions. It is shown from Err = 1.88 × 10−5 for
the red square curve and blue dot curve that the two curves are
almost identical. More experimental results are shown in Table 1.
The first line of Table 1 shows f (n) described by Equation
(5) with various parameter values of α and β ; the second
line shows f (r) which is described by the continuous version
of Equation (5) (Equation 8) but having different parameter
values of α and β ; and the third line shows Err (note that
Err is not the distance between f (n) and f (r), instead it is

the distance between f (n) and f̃ (n)). The results in Table 1

confirm that if the optimum neuronal spike count response
can be described by Equation (5), the optimum firing rate
can also be described by continuous version of Equation (5)
(Equation 8).

Optimum Neuronal Firing Rate Distribution
for Information Efficiency
Since mutual information of the neuronal response is the actual
amount of information encoded in the output of the neuron,
it is more important to discuss information efficiency than
entropy efficiency. Based on the entropy efficiency discussed in

FIGURE 2 | The optimum spike count response distribution (blue dot)

described by Equation (5) and the firing rate distribution (green star)

searched by the nonlinear least square method which produces the

spike count response distribution (red square) fitting the optimum

spike count response distribution perfectly.

the previous two subsections, we consider the noise entropy
in the following study and discuss the optimum firing rate
distribution for information efficiency, i.e., determine the form
of the function of the neuronal firing rate distribution that results
in more mutual information but less energy consumption. Let
us first consider what kind of neuronal firing rate distribution
can lead to less noise entropy. We first divide the noise entropy
Snoise into components with each component associated with
individual firing rate r. According to Equation (3), Snoise =∑
j

∑
n
P(r(j))P(n|r(j))log2 P(n|r(j)). Let

Snoise =
∑

j

P(r(j))N(r), (9)

where N(r) represents the increase rate of the noise entropy to
the probability P(r(j)), we have

N(r) =
∑

n

P(n|r(j)) log2P(n|r(j)), (10)

where P(n|r(j)) is the possibility that the neuron emits n spikes
when the firing rate of the neuron is r(j). P(n|r(j)) follows Poisson
distribution as P(n|r(j)) = e−r(j)r(j)n/n!.

We compute N(r) with different r and plot the dependency
of N(r) on r in Figure 3. It can be seen from Figure 3 that
the noise entropy component N(r) increases with r. Therefore,
we can infer according to Equation (9) and Figure 3 that if
the value of P(r) decreases with the increase of r then Snoise
will be small, very similar to the fact that if the value of P(r)
decreases with the increase of r then energy consumption will be

FIGURE 3 | The dependency of increase rate of noise entropy on the

firing rate.

TABLE 1 | f(n) with various values of (α, β), f(r) with values of (α, β) and Err.

f (n) (0.10, 0.50) (0.20, 0.50 (0.30, 0.50) (0.40, 0.50) (0.20, 0.60) (0.30, 0.80) (0.30, 0.90)

f (r) (0.09, 0.59) (0.21, 0.62) (0.34, 0.64) (0.49, 0.65) (0.21, 0.76) (0.32, 1.12) (0.31, 1.27)

Err 1.9 × 10−5 8.6 × 10−7 1.1 × 10−7 8.5 × 10−8 3.9 × 10−6 4.4 × 10−6 1.1 × 10−5
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small. Thus, we conclude that a firing rate distribution function
capable of producing high full entropy, low noise entropy and less
energy consumption should have a shape like that in Figure 1 (or
Figures 7–9). Namely, we can use the functions of Equations (4)–
(7) to describe the optimum firing rate distribution function for
the maximum information efficiency.

It is worthy of noting that by treating the noise entropy in this
way, we can see the effect of the noise entropy on the shape of the
optimum firing rate distribution clearly, thereby we can extend
the application of our method to other neural response models.
Our method applies for any neural response models as long as
N(r) has a shape like Figure 3, i.e., N(r) increases rapidly and
then slowly with the increase of r. For example, we found that
a Poisson process with a stochastic refractory period (Bair et al.,
1994) and a negative binomial distribution (Goris et al., 2014)
produce N(r) that have similar shape as Figure 3. Thereby our
method is also applicable to these two neural response models.

Algorithm for Searching the Optimum
Neuronal Firing Rate Distribution
We first give a short summary of our discussion in previous
sections. Our idea is to determine the shape of the optimum firing
rate distribution by heuristically analyzing the effect of the full
entropy, energy consumption and noise entropy on the shape of
the optimum firing rate distribution. As it is relatively easier to
observe the effect of the full entropy and energy consumption
on the shape of the optimum spike count response distribution,
we first determine the shape of optimum spike count response
distribution with only full entropy and energy consumption
taken into account and use a combination of exponential
functions to describe the optimum spike count response
distribution. Then we confirm by using the nonlinear least square
method that the optimum spike count response distribution
described by the combination of exponential functions can be
produced by a firing rate distribution which can also be described
by a combination of exponential functions. We further discuss
the effect of the noise entropy on the shape of the optimum
firing rate distribution by calculating N(r) described in Section
Optimum neuronal firing rate distribution for information
efficiency. Thus, the shape of the optimum of the firing rate
distribution is determined. It is interesting to see by numerical
calculation in Section Searching the optimumneuronal firing rate
distribution that the combination function of a pair of exponents
can describe the optimum firing rate distribution well enough
when Poisson process is adopted, therefore we use a family of
low-parametric functions (combination functions of a pair of
exponents) in this paper. Of course, the combination functions
of two exponents may not be good enough when other neuronal
response models are adopted. Three exponents or other kinds of
functionsmay need to be used to describe the optimumfiring rate
distribution in other cases.

Poisson process is adopted for the neuron response, therefore
optimum firing rate distribution can be described by the
functions of Equations (4)–(7). It is worthy of noting that
although a family of low-parametric functions is used in
the paper, it is difficult to solve the problem analytically.

This is because the object to be optimized (maximized) is
Equation (1), i.e., the optimum firing rate distribution is
searched to achieve both high exponential-weighted information
and low power-weighted energy consumption concurrently.
This optimization problem is different from that of mutual
information maximization when energy consumption is fixed.
Therefore, we next discuss how to design algorithms to search
the parameter values of the optimum firing rate distribution
functions for the maximum information efficiency in this
subsection. Firstly, let us consider the simplest neuronal firing
rate distribution function with only one parameter α. If α gets
larger, p(r) decreasesmore sharply with the increase of r, resulting
in a smaller amount of energy consumption, full entropy [note
that the flatter of the curve of p(r), the larger the full entropy], and
noise entropy [note that noise entropy is small if p(r) is small for
large values of r according to Figure 3]. Figures 4, 5 show that the
values of mutual information and energy consumption decrease
monotonically with increasing the parameter α. The larger α

gets, more slowly these quantities decrease with α. Finally, they
approach to their limits, respectively. Therefore, we can design
a variable step size scheme to search the optimum parameters.

FIGURE 4 | The change of mutual information with the parameter α.

FIGURE 5 | The change of energy consumption with the parameter α.
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Specifically, we can use small step sizes when α is small, but use
relatively large step sizes when α is large. In this paper, we let
α(i) = α(i− 1)+ α(i− 1)/log2(200× α(i− 1)) and α(1) = 0.01.

Furthermore, it can be seen that although both mutual
information and energy consumption decrease with the increase
of α, the decrease rates are different. This is shown in Figure 6.
When α is small, the decrease rate of energy consumption
is more rapid, meaning that information efficiency increases
with the increase of α. With the increase of α, the difference
between the decrease rates of energy consumption and mutual
information becomes smaller and smaller, finally vanishes.
Accordingly, the increase rate of information efficiency becomes
smaller and smaller, and finally reaches the maximum value
as shown in Figure 6. To search this maximum point and the
corresponding parameter α, we develop a forward–backward
algorithm with forward phase and backward phase described as
follows.

Forward phase: starting from the initial point α(i) and the
corresponding information efficiency IE|α = α(i), we evaluate
the information efficiency when α = α(L + i) with
L > 1, IE|α = α(L + i). If IE|α = α(L+i) > IE|α = α(i), then
evaluate IE|α = α(2L+i), and so on. This process is repeated untill
IE|α = α(QL+i) < IE|α = α((Q−1)L+i).

Backward phase: Starting from the point α(QL + i),
which is obtained in the forward phase, we calculate
IE|α = α (QL+i− 1). If IE|α = α (QL+i− 1) > IE|α = α(QL+i), then
calculate IE|α = α(QL+i− 2), and so on. This process is repeated
until IE|α = α (QL+i−U) < IE|α = α(QL+i−U+1). We then get
the optimum parameter αopt = α(QL + i − U + 1) and the
maximum information efficiency IEmax = IE|α= α(QL+i−U+1).

For a firing rate distribution function with two free
parameters, α1 and α2, another feature of the distribution
function, the symmetry of the distribution function (see Equation
5), can be used to further reduce the computational complexity.
Therefore, the algorithm of the search for the two parameters for
the optimum information efficiency can be described as follows
(the algorithm for a firing rate distribution function with three
free parameters is similar to that with two free parameters).

FIGURE 6 | The change of information efficiency with the parameter

α; c = 1 and Eb = 1.

Step 1: Discretize α1 and α2 using variable step size scheme
discussed in the first paragraph in this subsection. We get
discretized values, α1(1) = α2 (1) = 0.01, α1(2) = α2 (2)
= 0.02,..., α1(4) = α2 (4) = 0.042,..., α1(65) = α2 (65) =
51 (we suppose that the values of the parameters are less
than 51) for both α1 and α2.

Step 2: Let i= 1;
Step 3: Set α1 = α1(i);
Step 4: Set the initial value of α2 = α2(i) (note we do not set

α2 = α2(1) due to the symmetry property);
Step 5: Use the forward and backward scheme for the parameter

α2. Record the largest information efficiency and the
corresponding parameter values of α1 and α2.

Step 6: Let i← i+ 1. If i ≤ 64 then goto Step 3.

Searching the Optimum Neuronal Firing
Rate Distribution
We use the proposed algorithm to search the optimum firing rate
distribution for the maximum information efficiency. Among the
four classes of firing rate distribution functions (Equations 4–7),
we first determine which one is the best for searching the
maximum information efficiency. It is found from Figures 7–9
that the maximum information efficiency searched using firing
rate distribution functions described by two free parameters is
much higher than that using the functions described by only
one free parameter. But the maximum information efficiency
searched using firing rate distribution functions with three free
parameters [see Figures 7, 8 where Equation (6) is used and
Figure 9 where Equation (7) is used] is almost the same as that
searched using the functions with two free parameters. Therefore,
we believe that firing rate distribution functions described by two
free parameters are good enough to describe the optimum firing
rate distribution, and additionally they are of light computational
complexity due to the few numbers of free parameters. Thus,
we use the firing rate distribution of Equation (5) with two free
parameters in the remainder of this paper.

FIGURE 7 | Comparisons of the three kinds of firing rate distribution

functions with different numbers of free parameters. Equation (6) is used

for the firing rate distribution with three free parameters. Eb = 2 and c = 1.
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As the optimum firing rate distribution is different when a
different definition of the information efficiency is used, we next
explore the dependency of the optimum firing rate distribution
on the parameters of the information efficiency. Figure 10 shows
that when exponential index c becomes smaller, the optimum
firing rate distribution will become flatter. This can be explained
as follows. A firing rate distribution being relatively flat will result
in large mutual information. Therefore, considering that small
value of c means that energy consumption is not very important
in evaluating the information efficiency, this relatively flat firing
rate distribution will lead to maximum information efficiency,
though this relatively flat distribution implies large amount of
energy consumption [note Es =

∑
n
P(n)n]. Table 2 shows the

dependency of the parameter values of the optimum firing rate
distribution functions, α and β , on the parameter value of the

FIGURE 8 | Comparisons of the three kinds of firing rate distribution

functions with different numbers of free parameters. Equation (6) is used

for the firing rate distribution with three free parameters. Eb = 1 and c = 1.

information efficiency c. Figure 11 shows that if basic energy
consumption of neurons (Eb) is increased, the optimum firing
rate distributionwill become flat. This is not strange because large
value of Eb means that the energy consumed by the neurons to
emit spikes is relatively not important. Therefore, the optimum
firing rate distribution is close to the one that leads to maximum
mutual information, i.e., the optimum firing rate distribution is
somehow flat. Table 3 shows the dependency of the parameter
values of the optimum firing rate distribution functions, α and β ,
on the parameter values of the information efficiency Eb.

THE TUNING CURVES BASED ON THE
OPTIMUM NEURONAL FIRING RATE
DISTRIBUTION

We can numerically compute the tuning curve g(·) (r = g(s))
easily if the probability distribution of the stimuli s, P(s(i)),

FIGURE 10 | Dependency of the optimum firing rate distribution on the

parameter of the exponential index (c) of the information efficiency

Eb = 2.

FIGURE 9 | Comparisons of the three kinds of firing rate distribution functions with different numbers of free parameters. Equation (7) is used for the

firing rate distribution with three free parameters. Eb = 2 and c = 1.
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TABLE 2 | Dependency of the values of α and β (parameters of the

optimum firing rate) on the value of c (parameter of the information

efficiency).

c 0.65 0.70 0.75 0.80 0.90 1.0 1.1 1.2

(α, β) (0.06, 47) (0.07, 41) (0.09, 38) (0.11, 33) (0.14, 28) (0.16, 26) (0.20, 24) (0.23, 22)

IE 0.546 0.484 0.434 0.392 0.324 0.273 0.232 0.198

FIGURE 11 | Dependency of the optimum firing rate distribution on the

parameter of the basic energy consumption (Eb) of the information

efficiency. c = 1.

TABLE 3 | Dependency of the values of α and β (parameters of the

optimum firing rate) on the value of Eb (parameter of the information

efficiency).

Eb 0 0.2 0.4 0.6 0.8 1.2 1.4 1.8

(α , β ) (0.98,20) (0.51,19) (0.38,20) (0.32,20) (0.28,20) (0.23,22) (0.20,22) (0.16,24)

IE 0.633 0.504 0.442 0.400 0.370 0.326 0.310 0.283

and the distribution of the firing rate r, P(r(j)), are given.
Let us make a summation of the probability of the stimuli,
P(s(1)), P(s(2)), . . . , P(s(M)), one by one untill we get a number

d1 (d1 > 1) such that
d1∑
i=1

P(s(i)) ≤ P(r(1)) but
d1+1∑
i=1

P(s(i)) >

P(r(1)). Then r(1) = g(s(d1)); similarly, we get d2 (d2 > d1) such

that
d2∑

i=d1+1

P(s(i)) ≤ P(r(2)) but
d2+1∑

i=d1+1

P(s(i)) > P(r(2)). Then

r(2) = g(s(d2)); repeat this process and we obtain numerically
the tuning curve r(j) = g(s(dj)), j = 1, 2, . . . ,M.

Using the method discussed in the previous paragraph, we
calculate the tuning curves given different stimuli distributions
and different firing rate distributions. Suppose the stimuli obey
normal distribution, and the firing rate distributions are taken
to be the two curves in Figure 12, we get corresponding
two tuning curves in Figure 13. We can see from Figures 12,
13 that if energy consumption is not important compared
to the mutual information (see the red curve in Figure 12,
which is the optimum firing rate distribution with c =

0.6 in the definition of information efficiency), the tuning
curve takes a sigmoid form (see red curve in Figure 13),
which has been widely used in computational neuroscience.

FIGURE 12 | Firing rate distributions used to calculate the neuronal

tuning curves.

FIGURE 13 | The neuronal tuning curves corresponding to the firing

rate distributions in Figure 12 and normal stimuli distribution.

In the case where energy consumption is underlined (see
the blue curve in Figure 12 which is the optimum firing
rate distribution for the information efficiency with c =
1.2), the tuning curve (the blue one in Figure 13) take a
form that it is below the one (the red one in Figure 13)
that corresponding to the case when energy consumption
matters little, and the top part of the sigmoid function is cut
off.

As a matter of fact, the tuning curves can be calculated for
any stimuli distributions. Figure 14 shows two arbitrary curves
of stimuli distribution, and the two curves in Figure 15 are the
corresponding tuning curves.

CONCLUSIONS

Neural systems are assumed to be optimized through biological
evolution for millions of years for information processing, i.e.,
they are optimized to achieve highest information efficiency.
Using this assumption, one can study many features of neuronal
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systems. The input–output relationships (tuning curves), r =
g(s), have been explored in this paper. As one can calculate the
tuning curve numerically if optimum firing rate distribution for
information efficiency and the stimuli distribution are given, we
focused on exploring the optimum firing rate distribution for the
information efficiency in this paper. Firstly, a new definition for
the information efficiency, IE = (2Im − 1)/(Es + Eb)

c, has been
given. The energy consumption consists of two components,
the basic energy consumption Eb and the spike emission
energy consumption Es. The relative importance of the energy
consumption in the definition of the information efficiency is also
modeled by the parameter c. Then, four main results concerning
the optimum firing rate distribution have been obtained. (1)
Contrast to the fact that the spike count response distribution
should be flat for the maximum full entropy, the function of
the spike count response distribution should decrease rapidly
to 0 for the minimum spike emission energy consumption (Es).
Therefore, the function of the optimum spike count response
distribution for the entropy efficiency should exhibit a shape that
decreases gradually to 0. This kind of functions can be described
by a combination of the exponential functions. (2) Using the

FIGURE 14 | Two arbitrary generated stimuli distributions.

nonlinear least square method, we found that the optimum
firing rate distribution function for the entropy efficiency has
the same form of function as the optimum spike count response
distribution. In other words, the function of the optimum firing
rate distribution for the entropy efficiency can also be described
by the combination of the exponential functions. Furthermore,
we found that the dependency of the noise entropy on the shape
of the firing rate distribution function is similar to that of the
spike emission energy consumption, i.e., the function of the firing
rate distribution should decrease rapidly to 0 to achieve the
minimum noise entropy. Therefore, it can be concluded that a
firing rate distribution function capable of producing high full
entropy, low noise entropy and less energy consumption should
have a shape decreasing gradually to 0, which can be described
by a combination of exponential functions. (3) We developed
a rapid algorithm with variable step size and forward-backward
scheme to search the parameter values of the optimum firing
rate distribution function. It has been found by this algorithm
that firing rate distribution functions described by two free
parameters, f (r) = (αe−αr + βe−βr)/2, are accurate enough
to describe the optimum firing rate distribution. Due to the
small number of free parameters, they are of light computational
complexity for the search for the optimum parameter values.
(4) The dependency of the optimum firing rate distribution
functions on the parameters of the information efficiency has
been explored. It has been found that if exponential index c is
decreased (the energy consumption is relatively neglected), the
optimum firing rate distribution will become relatively flat. And
if the basic energy consumption of neurons (Eb) is increased,
the optimum firing rate distribution will also become relatively
flat. On the other hand, if exponential index c is increased (the
energy consumption is relatively underlined) or Eb is decreased,
the optimum firing rate distribution will become relatively steep.
Finally, we designed an algorithm to calculate the tuning curves
when the firing rate distribution and an arbitrary stimulus
distribution are provided. By this algorithm, we found that
in the case of normal stimuli distribution, the tuning curve
exhibits a form of sigmoid if energy consumption is relatively

FIGURE 15 | The neuronal tuning curves corresponding to the red firing rate distribution in Figure 12 and the stimuli distributions in Figure 14.
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neglected or the neuronal basic energy consumption is relatively
large.
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