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Amajor function of central nervous systems is to discriminate different categories or types

of sensory input. Neuronal networks accomplish such tasks by learning different sensory

maps at several stages of neural hierarchy, such that different neurons fire selectively to

reflect different internal or external patterns and states. The exact mechanisms of such

map formation processes in the brain are not completely understood. Here we study the

mechanism by which a simple recurrent/reentrant neuronal network accomplish group

selection and discrimination to different inputs in order to generate sensory maps. We

describe the conditions and mechanism of transition from a rhythmic epileptic state (in

which all neurons fire synchronized and indiscriminately to any input) to a winner-take-all

state in which only a subset of neurons fire for a specific input. We prove an analytic

condition under which a stable bump solution and a winner-take-all state can emerge

from the local recurrent excitation-inhibition interactions in a three-layer spiking network

with distinct excitatory and inhibitory populations, and demonstrate the importance of

surround inhibitory connection topology on the stability of dynamic patterns in spiking

neural network.

Keywords: neuronal spiking network, phase transition, learning and memory, Winner-take-all (WTA), neural

computation, Robotics

1. INTRODUCTION

Facing with vast amount of multi-sensory information, Central Nervous System (CNS) seems
to process only a small subset of those inputs at any given time, no matter whether they come
from external or internal sources. How brain selectively processes such large number of inputs
and maintains a unified perception remains a mystery. At the level of neuronal networks, a
network in which all neurons respond the same to all stimuli would convey no information about
the stimulus. In order to be useful, neurons must come to respond differentially to variety of
incoming signals. Many neural models and theories have been proposed to account for such ability.
Winner-Take-All (WTA) network is one of such proposed mechanisms for developing feature
selectivity through competition in simple recurrent networks, and it has received much attention
on both theoretical and experimental grounds. The primary theoretical justification is the ability
of such networks to explain how the maps, which are ubiquitous in the cerebral cortex, can arise
(Kohonen, 1982; Goodhill, 2007). WTA networks can also explain how a network can come to
make useful distinctions between its inputs. WTA networks coupled with synaptic learning rules
and homoestatic plasticity can explain how this takes place in a self-organized fashion from an
initially undifferentiated state. Finally, WTA models are often employed at the behavioral level in
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theoretical models of higher-level cognitive phenomenon such
as action-selection, attention (Itti and Koch, 2001; Walther and
Koch, 2001) and decision making (Wang, 2002; Furman and
Wang, 2008).

Another mechanism proposed for feature selectivity is the
phenomenon of spatially localized bumps in neuronal networks
(Somers et al., 1995; Laing and Chow, 2001; Wei et al., 2012). If
we view multiple neurons within a bump as mulitiple-winners of
excitatory and inhibitory competition, bump activity in spiking
networks can be treated as a soft WTA or k-Winner-Take-
All phenomenon (see Maass, 2000 for their definition). In this
paper we use Winner-Take-All (WTA) and “bump activity”
inter-changeably to describe the same stable group activity
that arises from inter-connected excitatory-inhibitory neuronal
networks. On a more general level, both bump activity and
WTA phenomenon can be viewed as a type of pattern formation
process in networks of excitatory and inhibitory neurons (for
example, patterns of stable grid in Wilson and Cowan, 1973;
Ermentrout and Cowan, 1979), and an example of activity
dependent neuronal group selection process (Edelman, 1987).

Population rate-based WTA models have been extensively
studied and are well understood (Dayan and Abbot, 2001). But,
the connections between rate models to the real biological neural
systems are not direct, because they are different from the real
nervous systems whose neurons are spiking. So it is necessary to
study the networks of spiking neurons, such that the biological
interpretation of spike models can be more directly linked to real
nervous systems. Modeling and understanding spiking networks
is not simple because spiking neurons are highly nonlinear and
their action potentials are discrete. As a result, it is always more
difficult to obtain analytical solutions for spiking firing properties
than rate models.

Analysis has shown conductance-based spiking models can be
approximated by simple rate models under certain conditions
(such as in an asynchronous state in Shriki et al., 2003).
This approach has been applied to the study of hyper-column
in a spiking model of visual cortex (Shriki et al., 2003).
The orientation selectivity in their study, is modeled as the
appearance of a unimodal “bump”-like spiking activity in a ring-
connected spiking network, similar to an earlier study (Laing and
Chow, 2001). Both approaches applied approximations from the
rate models and used Fourier analysis to calculate the conditions
for the appearances of bump activity. Recent work specifically
studied recurrent spiking WTA networks, which are closer to
real biological systems than previous rate models (Rutishauser
and Douglas, 2009; Rutishauser et al., 2011). Even though these
newer network models can receive spike input and generate
spike output, their network structures are still very simplified.
For example, excitatory and inhibitory neurons are modeled into
one single population (Laing and Chow, 2001), and inhibitory
population are reduced into one unit (Rutishauser et al., 2011), or
removed altogether andmodeled as direct inhibitory connections
among excitatory neurons (Oster et al., 2009).

In a recent report we presented a robust and more
biologically-realistic WTA network structure with distinct
excitatory and inhibitory populations with arbitrary number
of units (Chen et al., 2013). This WTA network has been

implemented into a robot that accomplished a sequence learning
and mental rotation task (McKinstry et al., 2016). In our spiking
models each neuron type has very detailed biological parameters
to model different neuronal transmitters and receptor types
similar to previous work (Izhikevich and Edelman, 2008). We
showed that surround inhibition and longer time constants
from NMDA and GABAb conductances are sufficient to achieve
stable “bump” spiking activity in a selected winner neuronal
group while all the other neurons are inhibited and quiet.
However, detailed biological properties, such as STSP (short-term
synaptic plasticity), NMDA voltage gating etc., prevented a
formal analytical analysis of the whole model. Also, it is not
clear any of those biological details or a specific type of synaptic
connections are crucial for the emergence of bump activity.

To identify the most important mechanistic factors for the
spiking WTA networks, here we study a simplified spiking
network after some biological details are removed. For example,
based upon what we have noticed previously, turning off STSP,
NMDA voltage-gating and excitatory-to-excitatory connections
does not change the overall properties of WTA phenomenon. On
the other hand, we preserve some important biological features
such as the four different synaptic connections and conductance
types (AMPA, NMDA, GABAa, and GABAb), because we found
that these four individual conductance types contribute to
different aspects of the “bump" stability. By examining functions
of these individual conductances and the topologies of excitatory-
inhibitory connectivity, we provide a detailed analysis of the
conditions on which a stable bump activity can emerge from
this recurrent spiking network. Our analysis thus provide a
mechanistic analysis on how a neuronal group selection process
can occur in an activity dependent manner in neural systems.

2. METHODS

2.1. Network Structure
Here we analyze a basic 3-layer spiking neuronal network with
different neuron types with realistic biological parameters. The
first layer of excitatory neurons (IN – input cells) takes input
signals (e.g., arbitrary analog patterns) and translates them into
spiking activity. The input signal we considere here in this paper
is a type of unstructured random currents evenly distributed
within a certain range and injected into the 100 input neurons
(IN). IN cells are randomly connected to the next excitatory
layer (E) with initial weights evenly distributed between 0 and
a maximal value. The random input currents and random
connections to the excitatory layer we analyzed here provide a
baseline condition in which we test how the recurrent/reentrant
connectivity between excitatory and inhibitory neurons by
themselves can accomplish winner-take-all competition to
random but unstructured input patterns (without obvious firing-
rate differences among input neurons) and without synaptic
modifications. The successful WTA network structure then can
be trained to discriminate more complex and structured patterns
through spike-timing dependent learning rules such as STDP.
Such learning process will modify the synapses between these
two excitatory types so that a selected E and I neurons (the
WTA group) will respond to preferred input patterns more
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quickly for practical applications. We have demonstrated these
in previous reports (Chen et al., 2013; McKinstry et al., 2016)
where the same WTA network structures were implemented
in a humanoid robot to process real world complex visual
inputs, to learn visual-motor association and sequencing, and
to accomplish a “mental rotation" and delayed-match-to-sample
task.

We also implemented the above network using adaptive
exponential spiking models and obtained similar results.
For simplicity the analysis below uses the Izhikevich model
(Izhikevich and Edelman, 2008), and excitatory (E) and
inhibitory (I) neurons use the same parameters in the following
equation:

Cv̇ = k(v− vr)(v− vt)− u− Isyn (1a)

u̇ = a{b(v− vr)− u} (1b)

Parameters in these equations are the same as explained before
(Izhikevich and Edelman, 2008). That is, v is the membrane
voltage in millivolts (mV), C is the membrane capacitance, vr is
the neuron’s resting potential, vt refers to its threshold potential,
u represents the recovery variable defined as the difference of
all inward and outward voltage-gate currents. Isyn is the synaptic
current (in pA) originated from spike input from other neurons.
a and b are different constants. When the membrane voltage
reaches a threshold, i.e., v > vpeak, the model is said to generate a
spike, and two variables in Equations (1a, 1b) are reset according
to v ← c and u ← u + d while c and d are parameters for
different cell type.

We use a simplified synaptic current form with four
basic conductances from AMPA, NMDA, GABAA, and GABAB

channels. For simplification, voltage-gating of NMDA channel is
reduced to a constant factor. This is done through calculating
an average number for the voltage-gating term for the NMDA
conductance (i.e., [(v + 80)/60]2/[1 + ((v + 80)/60)2] on
Page 11 of the Supplementary Information in (Izhikevich and
Edelman, 2008)) for the normal range of voltages: v =

[−60, 60] , and the result is equivalent to a voltage-independent
NMDA channel with smaller gain factor than AMPA channels
(see Appendix for the individual conductance gain factors we
used). So synaptic current Isyn is composed of four different
current types originated from those four conductancesmultiplied
with the voltage differences between their individual reversal
potentials:

Isyn = gAMPA (v− 0) + gNMDA (v− 0) + gGABAA (v+ 70)

+ gGABAB (v+ 90). (2)

Shown in the above equation, reversal potentials of AMPA
and NMDA channels are 0 and reversal potentials for
GABAA and GABAB channels are −70 and −90mV
respectively.

As described before, each conductance has exponential decay
with different time constants in millisecond (ms):

ġ = −g/τ , (3)

while τ = 5, 150, 6, and 150 for the AMPA, NMDA, GABAA, and
GABAB channels respectively.

To simplify the analysis, there are equal numbers (400 in
all the subsequent analysis) of excitatory (E) and inhibitory
(I) neurons in our basic network model in Figure 1, although
their numbers can be in any ratio. In fact, in our previous
published full models (Chen et al., 2013; McKinstry et al., 2016)
the ratio of E and I neurons were set at 4:1 to more closely
resemble the real cortex. We also explored different types of
connection topologies in the connections from excitatory to
inhibitory neurons (E to I), the reentrant inhibition from basket
cells to pyramidal neurons (I to E) and the inhibitory connections
within basket cells themselves (I to I). In our study, Inhibitory
to Excitatory and Inhibitory to Inhibitory connections are kept
the same topological type and total weights are kept equal.
Throughout the simulation the total connection weights to each
neuron are normalized to be a constant for each connection type.
The total weights for each connection type (E to I and I to E)
are two parameters we explored systematically. As a first step, we
firstly only consider one type of inhibitory conductance (GABAA)
to obtain analytical solutions for the conditions of Winner-Take-
All state. GABAB conductances are added after an analytical
solution is found, a comparison of the transition plots can be
found in the Appendix.

...... 

...... 

...... 

IN 

E 

I 

FIGURE 1 | Structure of the basic 3-layer spiking network and a

schematic plot of the “surround inhibition” connectivity that supports

winner-take-all phenomenon. IN – thalamo-cortical input neurons, E –

Excitatory pyramidal neurons, I – Inhibitory neurons. We chose 100 input (IN)

cells, 400 E cells, and 400 I cells for total of 900 neurons in the analysis model

presented here. Input layer to excitatory layer (IN to E) are all-to-all random

connected, excitatory to inhibitory layers are narrow and were simplified into

one-to-one connection in our analysis. Inhibitory connections are surround

type, that is, I cells do not inhibit its nearest neighboring I and E cells, but only

distant surrounding neurons. This connectivity is implemented as two cosine

peaks with a flat gap (zero value connectivity) in between. We call this specific

network connectivity as surround inhibition type for the one dimensional case

and it is a simplified version of the two-dimensional Central-Annual-Surround

(CAS) type of topology we described before (Chen et al., 2013).
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3. RESULTS

To classify different types of spike dynamics for the surround
inhibition network in Figure 1, for each neuron, we record the
number of spikes between 2 and 3 s after the simulation had
reached steady state without synaptic plasticity (STDP off). We
then characterize the behavior of the network by the maximum
number of spikes generated by any excitatory neuron. Figure 2E
plots this maximal firing rate for every combination of the E to I
weights vs. the I to E weights. The analysis is repeated and plotted
in Figure 2F for the inhibitory population.

Figure 2 shows different types of dynamic firing patterns
in the 2-dimensional parameter space. When only one type
of connection weight (excitatory or inhibitory) is high but the

other weight is low, either excitatory or inhibitory neurons
are in a quasi-random/rhythmic state in which one group of
neurons fires in high Gamma frequency range (>40Hz, see
Figures 2A,G). When both connection weights are relatively
high (see Figure 2C), both excitatory and inhibitory neurons
have high maximal firing rates where excitatory neurons have
a maximal firing rate larger than 35 Hz and inhibitory neurons
have a maximal firing rate of larger than 100 Hz. If we look at
the corresponding spike raster plot in Figure 2C, only a subset of
excitatory and inhibitory neurons maintain such high firing rates
while majority of other neurons are silent. We call this Winner-
Take-All (WTA) state in which only a small subset of neuronal
groups persistently fire high frequency and keep the rest of
neurons from firing using surround inhibition. The region of the
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FIGURE 2 | Classification of different dynamic spiking patterns in the surround inhibition network we defined in Figure 1 and the phase diagram for

the transition between different firing states. (A–C,G–I) Are raster plots which show all spikes within a half second interval for each neuron in the network. (E,F)

are maximal firing rates of excitatory and inhibitory neurons in the 2-d parameter space (total excitatory weight in y-axis and total inhibitory weight in the x-axis). Red

Points in (D) are transition curves constructed from (E) where maximal firing rate of excitatory neurons changed from below to above 40 Hz. (A–C,G–I) Are example

spiking patterns under their specific parameter combinations which are marked on the 2-d plot in (D). Subplot (C) represents a winner-take-all (WTA) state where only

a small group of excitatory and its corresponding inhibitory neurons fire persistently while others are silent. Black curves on the middle row–(D,E,F) are the same

analytic transition condition for the WTA region based upon the analysis described in the Appendix (Equation A.14). Basically it is a curve where SE · SI equals to a

constant defined by Equation (A.14), and it delineates the Winner-Take-All region (i.e., max firing rate large than 40 Hz for only a selected group of excitatory neurons)

in the parameter space very well for both the excitatory and inhibitory neurons.
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parameter space with such WTA states is delineated by the right
curve in Figure 2D where the maximal firing rate of excitatory
neurons increased to greater than 35 Hz from lower firing rates
in the middle region (from the blue area in Figure 2E transition
to the red area on the top right), and roughly corresponds to
a similar increase of maximal firing rate to above 100 Hz for
inhibitory neurons in Figure 2F.

Subplots Figures 2A,B,H,I all belong to an intermediate
region in the parameter space in Figure 2B between two curves
where maximal firing rates for both excitatory and inhibitory
neurons are relatively low. Within this parameter range,
excitatory and inhibitory neurons are either quasi-synchronized
(Figure 2A) or precisely synchronized and firing rhythmically
(Figure 2H), or exhibit moving bump activity (Figure 2I) or as
combinations of rhythmic and moving bump activity. In all these
cases, single excitatory neuron cannot maintain a stable high
gamma frequency spiking activity unless connection weights are
changed, moving to the WTA region on the top-right of the
second curve in Figure 2D. Figure 2D thus provides a phase
diagram for the neuronal network defined in Figure 1.

Notice that this maximal firing rate is not the neuron’s
instantaneous firing rate, but is the total number of spikes within
a 1 s window. This definition is useful to discriminate a stable
high firing rate neuron vs. a neuron firing a short burst less than
1 s and then becoming quiet (especially for stable vs. traveling
activity, see Figure 2C vs. Figure 2I).

Figure 3 summarizes patterns of spike dynamics with
different connection topologies. Compared to the surround
inhibition type analyzed above, all the other connection types
do not support a Winner-Take-All state manifested as stable
bump activity shown in Figure 2C. This is because under those
connection types, excitatory and inhibitory neurons cannot
maintain high maximal firing rates when both excitatory and
inhibitory weights are high and did not have a red area on the
upper-right region shown in Figures 2E,F. The most common
firing patterns for those connection types are quasi-rhythmic
firings in the 10–20Hz range for excitatory neurons resembling
an epileptic state while some short burst of unstable bump
activity in inhibitory neurons. Our results suggest that, among
different types of connectivity topologies we analyzed, only

All-to-All Random Connectivity 

Narrow excitation / Wide inhibition 

Surround excitation / Gaussian inhibition 

FIGURE 3 | Spiking dynamics under different connection types other than the surround inhibition type defined in Figure 1. Each row represents a

connectivity type and the middle and right columns are maximal firing rate of excitatory and inhibitory neurons under specific connectivity. These plots were calculated

the same way as Figures 2E,F. Notice that all three connectivity types here do not support a winner-take-all (WTA) region in the parameter space (no red region in the

upper-right corner). It exists in Figures 2E,F as a red region representing a high individual maximal firing rate state when both excitatory and inhibitory weights are

relatively high, but it is always absent here on the top right of the 2-d parameter space.
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surround inhibition can generate a stable bump spiking activity
and maintain a WTA state.

3.1. Mechanism of Winner-Take-All
Neuronal Group Selection and Emergence
of Bump Activity
Our above analysis suggests that surround inhibitory topology
supports emergence of bump activity. To explore the mechanism
of WTA and which neuronal properties are essential for
such behavior, we applied the same analysis as in Figure 2

to neuronal network in Figure 1 when Short-Term-Synaptic-
Plasticity (STSP) or NMDA voltage-gating is on, or change
excitatory and inhibitory neurons’ parameters to different type.
In all cases, a similarWTA region was found for every conditions,
even though the transition curves that delineate the emergence
of stable bump activity are shifted to different positions in the
parameter space (see results in Chen et al., 2013). We also
analyzed the same neuronal network with a different set of
individual spiking models, i.e., the adaptive exponential models
and found the similar WTA region as long as the topology of
the inhibitory connections are surround type. These analyses
suggest that detailed neuronal properties such as exact models
of the spiking neuron, STSP or NMDA gating etc., are likely not
fundamental for the existence of stable bump activity, but the
type of connectivity topology (i.e., surround inhibition) is more
important for such behavior.

Both the Izhikevich neural model and the adaptive
exponential model we used are conductance based with
models of inhibitory and excitatory currents of different time
scales. So we suspect that different time constants of NMDA,
AMPA, GABAa, and GABAb channel conductance might play
some role for the emergence of bump activity. To demonstrate
this, Figure 4 shows the time evolutions of AMPA, NMDA,
and GABAa currents along with the spiking activity in the
simplified network in Figure 1 starting from a zero conductance
initial condition. It demonstrates the detailed transition from a
rhythmic synchronized firing state into a stable bump activity.
Looking at detailed dynamic changes of the individual excitatory
and inhibitory currents should shed light on how the transition
is occurred.

From Figure 4 we can see, differences in time constants will
determine how fast a specific channel conductance returns back
to zero after a burst of spiking activity. For excitatory neurons
specifically, because of its short time constants (6 ms), AMPA
current fluctuates around a similar level with large variances.
NMDA currents, on the other hand, are accumulating to higher
levels because of longer time constant (150 ms) even though
both currents are generated by the same spiking input from the
input neurons. Similar phenomenon can be seen for inhibitory
neurons. When those neurons fire rhythmically before about 300
millisecond, AMPA conductance jumps to high level (from 7 to
9 nS) after each spike then drops down to zero very fast (red
curve in Figure 4D), while NMDA conductance only drops a
small amount each cycle and overall level still increases to much
higher value (red curve in Figure 4E). Initially inhibitory neurons
fire after excitatory neurons in each rhythmic cycle and they

synchronize to each other with a time delay. If excitatory to
inhibitory weights (E to I) are larger than a certain value, such
that NMDA currents for inhibitory neurons increase faster than
excitatory neurons (Figure 4E), the delay between inhibitory
and excitatory neurons diminishes and GABAa currents become
effective within the same cycle to inhibit other neurons. As
a result some inhibitory and excitatory neurons stop firing in
the rhythmic cycle, eventually lead to a winner group that
persistently fires and shuts off their surrounding neighbors.
Notice that in the simplified model in Figure 4, GABAb (with
longer time constant of 150 ms) currents are omitted and set
to zero, which lead to a moving bump activity for this specific
parameter set. If GABAb conductance is restored to the original
level as in the full model, bump activity becomes stable. It implies
that time constant of GABAa and GABAb channel conductance
is related to the stability of the bump activity.

As a summary, we think the combinations of long and short
time constants from excitatory and inhibitory conductance plus
the surround inhibitory connectivity support a mechanism for
emergence of bump activity and winner-take-all phenomenon
in this basic spiking neuronal network. This neuronal group
selection mechanism provides a basis for modeling learning and
map-formation process for sensory motor integration and other
higher cognitive processes.

4. ANALYTICAL ANALYSIS OF THE
TRANSITION CURVE FOR WTA
PHENOMENON

4.1. Differentiation in Inhibitory
Conductances Lead to Spiking Activity
Pattern Transition and Neuronal Group
Selection
To identify the mechanism of bump activity in spiking networks,
based upon the transition plots shown in Figure 4, we look
at voltages, conductances of all 400 excitatory neurons at
one specific time point (t = 980ms. in Figure 4). Figure 5

shows AMPA, NMDA, and GABAa conductances along with
voltages for all those excitatory neurons at this specific time
point. From the network structure defined in Figure 1, we
know that the excitatory conductances (AMPA and NMDA) are
determined by excitatory synapses from the input layer (because
we omitted self-excitation), where inhibitory conductances
(GABAa and GABAb) are only determined (triggered) by
spikes from inhibitory neurons onto those excitatory neurons.
Because of the uniform random connection from input layer,
AMPA and NMDA conductances are around the same level
and undifferentiated for all excitatory neurons. From Figure 5,
voltages are above threshold and neurons fire only at locations
where GABAa conductances below a certain value. So in order
for a bump to emerge and a subgroup of neurons selected to be
active, GABAa or GABAb conductances have to be differentiated,
i.e., they have to be small for some neurons and remain high for
all other neurons. We suspect this condition can only be met by
surround type of inhibitory connectivity. It is obvious that lowest
GABA conductances lead to highest firing rate for excitatory
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A B C

D

G

E F

FIGURE 4 | Transition from a synchronized rhythmic firing state to a winner-take-all bump spiking activity–(G). In this simplified surround inhibition

network, short-term synaptic plasticity (STSP) and NMDA gating effects are removed, GABAb conductance is set to be zero and individual excitatory and inhibitory

spiking models are changed to have the same biological parameter set. First row shows the 1-s spatial-temporal evolutions of individual conductance for AMPA–(A),

NMDA–(B), and GABAa–(C). Second row (D–F) show the averaged conductance over time for excitatory and inhibitory cells separately. Notice that bump activity in

AMPA and NMDA conductance appear in inhibitory neurons first (see A,B), while both conductances are spatially uniform even after spiking bump activity emerged

after about 400ms. The fact that spatial uniformity is destroyed in GABAa conductance first in (C) suggests that inhibitory neurons might show transition into

winner-take-all state early and then bias the transition in excitatory cells.

neurons. Since we have local feedforward excitation to inhibitory
neurons in our network, the bump area in inhibitory neurons
with highest firing rate should also have lowest inhibitory
conductances. This difference in GABA conductances is true
for both excitatory and inhibitory neurons because GABA
conductances are determined by the same inhibitory spikes. This
suggests that in order for a bump to emerge, local inhibition to
the nearest neighbors should be lower than inhibition to neurons
outside of the bump. Notice the three other inhibition topology
in Figure 3 all have peak (or flat) inhibition locally, so even if
a neuronal group emerge with highest firing rate, the strong
local inhibition will force their firing rates to decrease, and let
the other sub-threshold neurons to fire. So this is likely the
reason why we did not obtain stable bump activity using those
inhibition connectivities. On the other hand, surround inhibition

type defined in Figure 1 might be the most simple form of
inhibition topology that could let a bump emerge and stabilize.
Below analysis will further prove this point.

In contrast with models using negative weights to represent
inhibitory connections, our spiking models’ synaptic weights
and excitatory/inhibitory conductances are all positive (which
obviously is more biologically realistic). From Equation (2)
we can see, it is only because of the differences in reversal
potentials between excitatory and inhibitory channels, the
current generated by excitatory and inhibitory conductances
could have different signs (excitatory current coming into the
neuron and inhibitory current coming out of neuron). In order
for a neuron to fire, synaptic current has to be below a threshold
Isyn < −Ith where Ith is about 100pA (Isyn has to be negative
for a neuron to fire because it was defined as an outward
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FIGURE 5 | AMPA,NMDA,GABAA conductances and voltages for all

excitatory neurons (cell index 101–500 in Figure 1) at one specific time

point (t = 980ms. in Figure 4). AMPA and NMDA conductances are

basically flat across all excitatory neurons here, while GABAA conductances

are close to 0 for neurons around number 101 and 500, and reach high values

else where. Pink dashed lines are analytic GABA conductances from

Equation (A.6) in the Appendix and derived from surround inhibition topology,

and is a good match for the actual numerical simulation. Notice that excitatory

neurons fire spikes and have above threshold voltage values (blue lines) only

within neighborhood of neurons having GABAA conductances close to 0 and

below a certain value.

current in Equation 1a). Firing threshold Ith can be found from
calculating F-I curve for the specific spiking neuron model
we used. Figure A.3 (in the Appendix) plots the firing rates
vs. amount of injected current (equivalent to −Isyn) for the
Izhikevich neuron model result from numerical simulations. It
shows that neurons start to fire when absolute value of the
injected current is above 100 pA and then increase their firing
rate approximately linearly until above 100 Hz. we can use this
information to simplify the spiking activity into a rate model. As
indicated on the last paragraph, AMPA andNMDA conductances
are approximately uniform for excitatory neurons and they can
not contribute to the differences in firing rates, so in order for the
excitatory population to fire differentially, the difference between
highest and lowest GABA conductances for individual neurons
has to be larger than a certain value. This value can be estimated
using Equation (2). If min(gGABAA) is 0, for a resting potential
of vr = −60mV , GABAA conductance has to be larger than the
following value so injected synaptic current −Isyn will be below
the firing threshold Ith:

gGABAA > (−Ith + 60 ∗ (gAMPA,E + gNMDA,E))/10. (4)

In Figure 5, gAMPA,E + gNMDA,E for excitatory neurons is around
4nS (Appendix will show how this value can be estimated
analytically), so gGABAA has to be larger than 14 nS to keep sub-
threshold neurons from firing. This number is consistent with the
result plotted on Figure 4, 5 that neurons fire and form a bump
area where GABA conductances are below 14 nS and areas with
GABA conductance larger than 14 nS are completely quiet.

If we consider both the GABAA and GABAB conductances
based upon Equation (2) and using the same idea as above,
conditions for inhibitory conductances will be the following for
the winner-take-all state:

10 · gGABAA + 30 ·gGABAB > (−Ith + 60∗ (gAMPA,E + gNMDA,E)).
(5)

Equations (4, 5) can be used further to identify the exact
condition for the WTA state and to locate the transition curve
in Figure 2. Using two cosine bumps as surround inhibitory
connection weights, Appendix gives the analytic form of GABA
distribution of a bump solution for neurons connected one
dimensionally and uses it to obtain analytic conditions for the
WTA state in the parameter space (see Equations A.13, A.14).
Such analytic conditions are expressed as formulas combining
single neuron property and the conductance parameters (such
as time constants, gain factors for different inhibitory and
excitatory conductances). Based upon these formulas we can
locate the Winner-Take-All and bump activity in the parameter
space fairly precisely (see black curves in Figure 2 and the
white curve in Figure A.4 in the Appendix), thus provide a
mechanistic explanation for the emergence of winner-take-all
state and stationary bump activity in this 3-layer spiking network
we analyzed here.

4.2. Origin of Traveling Wave and Instability
of Bump Activity – Driven by AMPA
Conductances
Parameters in Figure 4 are located very near the transition curve
in the parameter space (see Figure 2), so the bump is not spatially
stable and moves across different neurons. To identify the origin
of such instability, we selectively set AMPA gain of excitatory
or inhibitory neurons to 0 in order to see their effects on the
bump stability. This is equivalent to selectively block AMPA
conductances in either excitatory or inhibitory neurons in real
biological neural systems. We found that if AMPA conductances
in inhibitory neurons are set to 0 but not in excitatory neurons,
bumps become more or less stable. On the other hand, when
AMPA conductances are blocked and set to 0 in excitatory
neurons but not in inhibitory neurons, we can have a moving
bump with a constant spatial speed (see Figure 6). In fact, we can
estimate the moving speed of bumps based upon the parameters
we defined in Figure 2. So we believe the source of the bump
instability is from the AMPA conductances in inhibitory neurons.
Previous studies have associated stabilities of bump activity
with dynamic synapses (Fung et al., 2009). Notice that AMPA
conductances have much shorter time constants than others thus
more associated with faster synapses (similar to GABAa), so in
this sense there might be a connection and some agreement
between our observation on Figure 6 and dynamic synapses
analyzed by Fung et al. (2009).

5. CONCLUSION AND DISCUSSION

In this paper we derive global properties of spiking neuronal
networks related to bump activity and Winner-Take-All state
mainly through analysis of the dynamics of excitatory and
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inhibitory conductances. To achieve the analysis of collective
behavior, individual spiking properties are approximated by its
firing rate property such as the conductance/firing rate curve
(Figure A.3 in the Appendix) or F-I curves. In this regard,
detailed properties of individual spiking model might not be
crucial for global activity such as the emergence of bump and
WTA state. For example, if we use different parameter sets
for excitatory and inhibitory neurons such as changing the
inhibitory neurons to be basket cell type, we can still found
the WTA region in the parameter space in Figure 2D, but the
exact location of the transition curve is shifted to a different
place because basket neurons have different conductance/firing
rate curve and different Ith, gth, k values in Equation (A.13). This
could explain the transition curve in our full model with more
detailed biological properties has the same functional form, but
in different location in the parameter space (see Chen et al.,
2013) because it included more detailed single neuronal spiking
properties such as NMDA voltage gating and STSP etc. In fact,
we used adaptive exponential spiking model to substitute the
Izhikevich neuron models and obtained similar phase plot and
transition curve for the bump activity and the WTA state.

We suggest that all conductance-based spiking models with
distinct excitatory and inhibitory populations could have the

similar collective Winner-Take-All behavior as analyzed here.
Detailed spiking model properties such as F-I curve and firing
threshold (Ith and gth) would determine the exact location of the
transition curve in Figure 2. Global connectivity topology and
different time constants (dynamics) of excitatory and inhibitory
conductances are likely to be the determinant of system-wide
spiking activity patterns.

5.1. Importance of the Inhibitory Topology
The most important feature of our winner-take-all network is
its surround inhibition topology. The reason we chose two sine
function peaks as surround inhibitory connection weights is just
because of its mathematical convenience, since convolutions of
sine/cosine functions are much easier to solve than other types
of functions. In fact, connection topologies using Gaussian peaks
or torus (for two-dimensional neuronal arrays) were used in
our previous model (Chen et al., 2013) and similar stable WTA
results were obtained. We believe using other type of function for
inhibitory connection would also work, as long as there is a low
inhibitory weight locally. Comparing four different connection
topologies from Figures 2, 3, the reason why only surround-
inhibition supports stable bump activities is because its maximal
inhibitory connection weight is not to the nearest neighbors,
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but to slightly distant neurons. This gap of zero inhibitory
weight can be very small (e.g., w down to 0 and equivalent to a
no-self-inhibition case), and we can still find solutions for stable
bump or bumps (in fact, w determines how many bumps can
emerge and we will have a 2-bump solution when w is close
to 0, see Appendix and Figures A.1, A.2). So as long as there
is a local valley of inhibitory weight, stationary bumps could
emerge because only decreasing inhibition could allow a bump to
sustain.

Mechanistically it appears that the most important
requirement for a bump solution is the stable differentiation
in inhibitory (GABAA or GABAB) conductance distributions
across the neuronal population. That is, for some neuronal
groups, GABA conductances should be low to allow bumps
to emerge and for the other neurons, they need to be high
enough to keep the rest of neuronal population from firing
spikes. As long as this condition is met, more detailed biological
properties such as local self-excitation, short-term synaptic
plasticity (STSP), voltage-gating of NMDA channels etc. can
be added to the model without destroying the overall bump
stability.

5.2. Why Traditional Center-Surround
Topology Might Not Lead to Stable Bumps
in Models with Distinct Excitatory and
Inhibitory Populations
Previous rate-based population models (Dayan and Abbot,
2001) had most often used center-surround type of connection
topology as shown in the middle row of Figure 3 (Narrow
excitation/Wide inhibition). Similarly, many spikingmodels with
excitatory/inhibitory conductances on the same units used the
same topology (Laing and Chow, 2001). By simple subtraction,
narrow excitation and wide inhibition can lead to a “Mexican
Hat” type of effective connectivity which supports winner-take-
all in previous firing rate models. But, as we see from the
analysis above, in biologically more realistic spiking models with
distinct excitatory and inhibitory neuronal populations, multiple
types of conductances cannot cancel each other easily because
they are generated by precise spike timing and have different
time constants. The “classical” center-surround topology can
not guarantee a stable “Mexican Hat” type of net connectivity
because sensitive spike timing differences between different
neurons prevent easy subtraction of excitatory and inhibitory
weights at every time point. In fact, as shown in Figure 4, the
emergence of winner-take-all in spiking networks is a direct

result of precise spike-timing–the coincide of excitatory and
inhibitory population firing spikes lead to a sub-population
of inhibitory neurons fire earlier than the rest of populations
which then let them suppress and shut off the other neurons
in the network (see Figure 4G). This is the reason that we
believe a surround-type of inhibitory topology is essential for
a stable spiking WTA network because it can support the
emergence of a winner-group without shutting off themselves
too early.

In summary, WTA network analyzed here demonstrates how
variability and randomness in spiking time of individual neurons
can lead to global pattern changes and phase transition in
collective neuronal groups. Analytic solutions for the phase
transition curve provided in this paper will help to increase our
understandings of different functional roles of excitatory and
inhibitory neural connections on the emergence and stability of
firing patterns in the brain.
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