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In this paper, we identified factors that can affect seizure suppression via electrical

stimulation by an integrative study based on experimental and computational approach.

Preferentially, we analyzed the characteristics of seizure-like events (SLEs) using

our previous in vitro experimental data. The results were analyzed in two groups

classified according to the size of the effective region, in which the SLE was able

to be completely suppressed by local stimulation. However, no significant differences

were found between these two groups in terms of signal features or propagation

characteristics (i.e., propagation delays, frequency spectrum, and phase synchrony).

Thus, we further investigated important factors using a computational model that was

capable of evaluating specific influences on effective region size. In the proposed model,

signal transmission between neurons was based on two different mechanisms: synaptic

transmission and the electrical field effect. We were able to induce SLEs having similar

characteristics with differentially weighted adjustments for the two transmission methods

in various noise environments. Although the SLEs had similar characteristics, their

suppression effects differed. First of all, the suppression effect occurred only locally

where directly received the stimulation effect in the high noise environment, but it

occurred in the entire network in the low noise environment. Interestingly, in the same

noise environment, the suppression effect was different depending on SLE propagation

mechanism; only a local suppression effect was observed when the influence of the

electrical field transmission was very weak, whereas a global effect was observed with a

stronger electrical field effect. These results indicate that neuronal activities synchronized

by a strong electrical field effect respond more sensitively to partial changes in the entire

network. In addition, the proposed model was able to predict that stimulation of a seizure

focus region is more effective for suppression. In conclusion, we confirmed the possibility

of a computational model as a simulation tool to analyze the efficacy of deep brain

stimulation (DBS) and investigated the key factors that determine the size of an effective

region in seizure suppression via electrical stimulation.

Keywords: seizure suppression, electrical stimulation, computational model, in vitro experiment, seizure

propagation mechanism, electrical field effect
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INTRODUCTION

Recently, deep brain stimulation (DBS) for refractory epilepsy
has been receiving attention as an innovative treatment method.
It is a method used to control epileptic seizures by directly
applying an electrical stimulation to an epileptogenic lesion.
Numerous clinical studies have shown a marked reduction in
seizure frequency by DBS (Osorio et al., 2005; Boon et al.,
2007; Fisher et al., 2010; Boëx et al., 2011; Valentín et al., 2013;
Heck et al., 2014). However, it is still difficult to optimize the
stimulation conditions for each patient, thereby limiting efforts
to improve the efficacy of this therapy. Accordingly, research
on DBS for epilepsy is actively pursuing multiple avenues
simultaneously.

An experimental approach has been developed to assess the
seizure suppression effect by electrical stimulation and identify its
mechanism. Many groups have reported experimental results of
in vivo and in vitro environments. In vivo experiments are largely
carried out in chronic epilepsy models and have demonstrated
alterations in seizure frequency or suppressive effects for on-
going seizures due to stimulation (Wyckhuys et al., 2010; Rajdev
et al., 2011; Rashid et al., 2012; Chiang et al., 2013; Cymerblit-
Sabba et al., 2013; Huang and van Luijtelaar, 2014). In vitro
experiments have mainly been conducted on brain slices using
a bath application of convulsant drugs (Bikson et al., 2001; Lian
et al., 2003; Schiller and Bankirer, 2007; Su et al., 2008; Jiruska
et al., 2010). This method enables researchers to measure changes
in specific ion concentrations, the characteristics of single
neurons, as well as the local field potential of neuronal networks
in a precise location, thus making it possible to elucidate the
mechanisms of stimulation. We have also reported in vitro
experimental data that support a convincing mechanism for
the seizure suppression phenomenon: a neuronal depolarization
blockade due to the accumulation of extracellular potassium ions
(Ahn et al., 2017).

Meanwhile, a computational approach through computer
modeling and simulation has also been employed in recent years.
Most computational studies have focused on understanding
the etiology of epilepsy and replicating epileptiform activities
(Fröhlich et al., 2010; Jiruska et al., 2013; Jirsa et al., 2014; Ahn
et al., 2016; Wendling et al., 2016), while others have sought
to describe seizure control effect and its mechanisms (Colic
et al., 2011; Volman et al., 2011; Beverlin li and Netoff et al.,
2013; Mina et al., 2013; Taylor et al., 2015; Liu et al., 2016).
Especially, Taylor and Baier proposed a neural field model to
mathematically understand seizure dynamics (Taylor and Baier,
2011), the proposedmodel predicted that spike-wave seizures can
be successfully abated by single pulse stimulation when applying
real-time estimation to find optimal stimulation parameters
(Taylor et al., 2014, 2015). In addition, by using the modified
Taylor’s model considered disinhibitory function (Fan et al., 2015,
2016), Liu and her colleagues presented that the onset of seizures
can be delayed by the enhanced GABAA inhibition to excitatory
population (Liu et al., 2016). Meanwhile, Beverlin li and Netoff
proposed a neuronal networkmodel composed of single neurons,

which descried the desynchronization of seizure activity by high-

frequency stimulation based on a synaptic depressionmechanism

(Beverlin li and Netoff et al., 2013). Lastly, Mina and her
colleagues presented a macroscopic model that replicated the
modulatory effect of epileptic activity according to stimulation
frequency (Mina et al., 2013).

Various studies have indicated that electrical stimulation can
control seizure activity. In particular, responsive stimulation, in
which stimulation is applied to an epileptic region when seizure
activity has been detected or predicted, is capable of suppressing
on-going seizure activity, even though the suppression effect
occurs stochastically or locally. Nevertheless, integrated studies,
which merge the advantages of experimental and computational
studies, have been insufficient to increase the efficacy of DBS and
optimize the stimulation protocol for seizure suppression.

In this paper, we elucidated factors that can affect seizure
suppression due to electrical stimulation. Specifically, we
investigated how the size of the effective region changes in
response to these factors under the same stimulation conditions.
The effective region refers to an area where seizure activity
is completely suppressed by local electrical stimulation. For
the purposes of this study, we classified in vitro experimental
data (Ahn et al., 2017) into two groups according to the
size of the effective region. We then compared characteristics
of seizure-like events (SLEs) including propagation delay,
frequency spectrogram, and phase synchrony between the two
groups. Subsequently, we conducted computational modeling
based on biological mechanisms that can reproduce seizure
propagation and suppression phenomena due to electrical
stimulation. Through simulations in various environments, using
the proposed model, we were able to predict important factors
that affect seizure suppression by stimulation.

MATERIALS AND METHODS

Analysis of in vitro Experimental Data
Classification According to the Size of the Effective

Region
Our previous study reported that electrical stimulation is able to
suppress SLEs induced by a convulsant drug (Ahn et al., 2017).
In the study, we continuously monitored local field potentials
in entorhinal cortex (EC)-combined hippocampal slices of rats
brains using a micro-electrode array (MEA). Then, we applied
high-frequency stimulation to EC regions when a spontaneous
SLE occurred and observed the changes in the network activities
after the stimulation. Figure 1 presents a schematic of the
experimental method. The upper two figures show an EC-
combined hippocampal slice on an MEA and the field potentials
recorded by each electrode at the onset of the SLE. The bottom
figure shows the stimulus waveform we used with the following
specifications: frequency, 130Hz; pulse width, 1ms; amplitude,
500 uA; duration, 3–5 s; and cathodic first biphasic rectangular
pulses. A detailed experimental procedure is described in the
previous paper (Ahn et al., 2017).

In our previous study, electrical stimulation showed a mostly
local suppressive effect; however, during bicuculline (BCC)
bath application, the size of the effective region, where SLEs
could be completely suppressed, varied (Ahn et al., 2017).
Specifically, in ∼50% of trials, only SLEs in the part of the EC
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FIGURE 1 | Experimental method. (Left) An EC-combined hippocampal slice on MEA. The slice consisted of sub-networks of EC, DG, CA3, and CA1. Black dots

represent the recording electrodes, and the sharp point represents the stimulation electrode. (Right) Local field potentials recorded by electrodes corresponding to

the positions shown in the figure to the left. The figure shows an abrupt SLE initiation and its propagation characteristics. When an SLE was clearly identified, a

high-frequency stimulus with specific conditions (bottom figure) was applied within 5 s in order to suppress the synchronous activity.

region near the stimulating site were suppressed (Figure 2A).
On the other hand, in ∼25% of trials, all of the SLEs
within the EC region, including those that were quite far
from the stimulation site, were completely suppressed, despite
using the same stimulation conditions (Figure 2B). Therefore,
we aimed to explain which factors affected the size of the
effective region. We first preferentially sorted 20 clear data
samples recorded in different slices; 8 samples from the “whole
EC suppression” group and 12 samples from the “local EC
suppression” group.

Analysis of the SLE Characteristics of the Two Groups
First, we assumed that the SLE characteristics between the two
groups would be different. Thus, we analyzed them in terms
of three different measures using MATLAB software (2015b,
Mathworks). We used 3–5 s of SLE data prior to stimulation from
each of the samples.

Propagation delay
SLEs were initiated by an abrupt change in the field potential
and entered a stable state within 1–2 s, which was comprised
of regular spikes with a frequency of 5–10Hz. We chose three
adjacent electrodes from the same layer of EC and calculated
the propagation delays between them based on the peak time
differences. We selected multiple peaks between 2 s and 3 s from
the time of onset and used the average peak time differences to
represent the propagation delay.

Frequency spectrum
We applied the spectrogram function in MATLAB in order
to obtain short-time Fourier transform (STFT) results, which
showed continuous results in the time and frequency domains.
For the analysis, we used a 256 Kaiser window with an 85%
overlap and a 213 discrete Fourier transform (DFT) length for
high resolution. Additionally, we calculated the mean power
according to specific frequency bands of δ, θ, α, β, and γ, so as
to confirm the dominant frequency band for the SLEs in each
slice.

Phase synchrony
We calculated the phase locking value (PLV) to investigate the
level of synchronization. The PLV is defined as a value between 0
and 1 that represents the phase synchrony between two signals,
with 1 signifying complete synchronization (Lachaux et al.,
1999). For the analysis, we chose the signals from four adjacent
electrodes within the same layer of EC and narrowly filtered the
signals at frequencies corresponding to each band (δ, θ, α, β, and
γ). Next, the phases of the filtered signals were calculated by the
Hilbert transform, and we determined the PLV by averaging the
exponential values of the phase differences between 6(4C2) signal
pairs according to Equation (1):

PLVt =

∣

∣

∣

∣

1

N

∑

ei[ϕj(t) − ϕk(t)]

∣
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∣

∣

(1)
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FIGURE 2 | Difference in the size of the effective region due to electrical stimulation. (A) Examples from the “local EC suppression” and (B) “whole EC

suppression” groups. Signals in each box were recorded by MEA simultaneously in the EC area. Orange-shaded regions show the generation of abrupt SLEs, black

regions denote simulation artifacts, and the blue-shaded regions depict changes in local field potentials after stimulation. Red circles represent the positioning of the

external stimulation electrode. Electrical stimulation was able to suppress on-going SLEs, even though the sizes of the immediately suppressed areas varied. After

stimulation, only SLEs near the stimulating site were suppressed, while SLEs in other regions persisted (A). SLEs in whole EC areas were completely suppressed

simultaneously (B).

Computational Modeling
We constructed a neuronal network model using MATLAB in
order to reproduce the SLE suppression effect due to electrical
stimulation observed in in vitro experiments and to predict
important mechanisms. We modeled a small-world network
(Netoff et al., 2004), which consisted of 200 excitatory neurons
and 40 inhibitory neurons. The characteristics of the neurons
were replicated using Izhikevich’s model (Izhikevich, 2003),
which can reproduce various forms of neuronal activity with
relatively simple computation. We selected parameters that
enabled the description of spiking and bursting activity in
excitatory neurons and fast spiking activity in inhibitory neurons,
including a small perturbation for heterogeneity (Izhikevich,
2003; Izhikevich et al., 2004). To model signal transmission
between neurons, we considered not only synaptic transmission
(Izhikevich et al., 2004), but also electrical field transmission
via the endogenous field (Fröhlich and McCormick, 2010;
Qiu et al., 2015) (Figure 3A). The synaptic current consisted
of conductance-based AMPA, NMDA, GABAA, and GABAB

currents and was controlled by short-term and long-term
plasticity. The detailed equations are described in a previous
paper (Ahn et al., 2016). Meanwhile, the electrical field induced
by a change in the membrane voltage of some neurons can affect
the activity in surrounding neurons through volume conduction.
Also, the effect can be even stronger in the case of SLE because
the field strength due to hyper-synchronization is stronger than
in the normal state. A recent study reported that the electrical
field transmission plays an important role in the propagation of
epileptiform activity (Zhang et al., 2014). Thus, we modeled the
electrical field effect by adding a small current to the neuronal

input, which was determined instantaneously by the change in
the membrane voltage of neighboring neurons. As a result, the
input current of a single neuron is represented by Equation (2),
where Isyn represents the synaptic current, which is the sum of
the excitatory and inhibitory currents of pre-synaptic neurons.
The Ifield indicates the current due to the electrical field effect,
which is proportional to the membrane current over the distance
from other neurons (Qiu et al., 2015). The α symbol represents a
parameter that controls for field transmission strength.

I = Isyn + Ifield (2)

Isyn =

∑

IAMPA +

∑

INMDA +

∑

IGABAA +

∑

IGABAB

Ifield = α
∑ Im

r

Figure 3B shows the network structure of the principle neurons.
We induced SLEs by applying abrupt random inputs to part of
neurons in group 1 while blocking the GABAA current in order
to replicate the experimental BCC effect. Neuronal activities
initiated by the trigger input were synchronized spontaneously
and propagated to other groups by signal transmission between
neighboring neurons. Then, we modeled the SLE suppression
effect by electrical stimulation based on a neuronal blockade
mechanism via the accumulation of extracellular potassium ions.
The detailed modeling method for this mechanism will be
described in the Results section along with the simulation data.

Finally, we modeled the local field potential by integrating
the membrane potential of neurons in order to directly compare
the simulation results with the experimental data. We obtained
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FIGURE 3 | Modeling of the signal transmission between neurons (A), network structure (B), and the local field potential (C). To model neuronal signaling, both

the synaptic and electrical field transmissions were considered. Each principle neuron received synaptic current from five excitatory neurons over short and long

distances and two inhibitory neurons. Also, the neurons received some current through electrical field transmission, which was proportional to membrane currents of

neighboring neurons. The entire network was composed of 200 excitatory neurons and 40 inhibitory neurons, based on a small-world network structure. Meanwhile,

the local field potential was obtained from the integration of neuronal activities. We calculated the average of the membrane potentials of 50 neurons after shifting,

then applied low-pass filtering with a 50-Hz cutoff frequency to model the local field potential.

an average of 50 excitatory neurons’ membrane potentials after
appropriate adjustment to approximately 0mV. We were then
able to acquire voltage signals in a manner similar to the
recording data by calculating the average with 50-Hz low-pass
filtering (Figure 3C). Consequently, the four local field potentials
modeled from each group could be directly compared with the
recorded data from four adjacent electrodes.

RESULTS

Comparison of SLE Characteristics
between the Two Groups
We conducted data analysis to identify differences in the SLE
characteristics between the two groups using three different
features: propagation delays, frequency spectrum, and phase
synchrony.

Propagation Delay
We determined the propagation delay for the SLE based on
the peak time differences between three adjacent electrodes.
Figure 4A shows the data recorded in a slice belonging to the
“whole EC suppression” group. Each color represents voltage
signals recorded simultaneously in three different electrodes
within the same layer of EC at a distance of 500 um. The SLE,
initiated by an abrupt change in the field potential, stabilized
gradually, and each signal generated regular waveforms with
uniformmagnitudes. As shown in the expanded plot, time delays
of 7 and 10 ms were observed when measuring the distance
between the positive peaks of the signal pairs, with an average
of an 8.5 ms delay between peaks. We calculated the propagation

delays for each slice as the average time differences for several
peaks during the stable state. Figure 4B depicts histograms for
the propagation delays and a normally-distributed curve for
each group; 8 values were used in the “whole EC suppression”
group, and 12 values were used in the “local EC suppression”
group. In the “whole EC suppression” group, the mean was
12.9944ms, and the standard deviation was 5.0238ms. In the
“local EC suppression” group, the mean was 12.4925ms, and
the standard deviation was 5.7574ms. There was no significant
difference between the two groups in terms of propagation delay
even though the time delays of the “local EC suppression” group
were relatively short.

Frequency Spectrum
Figure 5 shows spectrograms of the SLEs from onset to ∼3 s
and the ratio of the mean power per frequency band. The
left column results (Figures 5A–C) were obtained from the
“whole EC suppression” group, and the right column results
(Figures 5D–F) were acquired from the “local EC suppression”
group. According to the spectrograms, most SLEs had a range of
frequency components, from 0 to ∼25Hz, in the onset region.
However, as time passed, the activities converged to mainly the
θ or α band frequencies. Also, upon comparison of the average
power during the first 3 s of each frequency band, the power of
the θ and α bands constituted ∼75%, whereas high-frequency
components, corresponding to the β and γ bands, presented at
a considerably lower percentage. Upon analysis of the frequency
results in the two groups, we were unable to detect significant
differences in the features of the spectrogram or in the mean
power ratios.
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FIGURE 4 | SLE propagation delays in the “whole EC suppression” and “local EC suppression” groups. (A) Signals recorded from three adjacent

electrodes. The SLEs were initiated by an abrupt change in the field potential, followed by a stable state characterized by regular waveforms. The single positive peak

that occurred during the stable state showed an average time delay of 8.5 ms. We calculated the SLE propagation delay by averaging the time differences of several

peaks during the stable state. (B) Histogram representation of the propagation delays. ∼12.99ms and ∼12.49ms delays were observed on average in the “whole EC

suppression” and “local EC suppression” groups, respectively. There were no significant differences between the two groups despite the observed variations.

FIGURE 5 | SLE spectrograms and the mean power ratio per frequency band. These figures represent the time-frequency characteristics of SLEs, which were

derived using data ∼3 s after onset. Results from the “whole EC suppression” group (A–C) and the “local EC suppression” group (D–F) are presented. In the

spectrograms, the frequency components converged around the θ and α bands with time, even though a wider range of frequency components was observed in the

SLE onset region. Meanwhile, the bar graphs show the percentage of mean power of each frequency band. The powers of the θ and α bands were relatively high,

whereas the powers of the β and γ bands were extremely low. Considering the overall tendency, there was no marked difference between the two groups.
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Phase Synchrony
We determined the PLV using four signals recorded in the
same layer of EC, i.e., six signal pairs were used for each slice.
The PLV showed some fluctuation after the SLE was initiated.
However, because the changes did not show a consistent trend,
we calculated the average PLVs for 3 s starting at the time of
onset. Figure 6A shows the PLVs in each frequency band, and
different colors represent data obtained from different slices; 8
slices from the “whole EC suppression” group and 12 slices from
the “local EC suppression” group. Also, Figure 6B presents mean
PLVs for each frequency band in two groups. Although the PLVs
from each data sample showed some variation, the PLVs acquired
from higher frequency bands had lower values overall in both
groups. The mean PLVs sequentially in the δ through γ bands
were 0.9952, 0.6308, 0.5844, 0.5499, and 0.4878, respectively,
in the “whole EC suppression” group. The mean PLVs in the
same bands of the “local EC suppression” group were 0.9895,
0.6864, 0.6044, 0.5172, and 0.4520, respectively. These results
suggest that higher-frequency SLE components, as measured in
adjacent electrodes, were less synchronized than low-frequency
components. Moreover, comparing the mean PLVs of all of the
frequency bands did not reveal any distinct differences between
the two groups.

Prediction of the SLE Suppression Effect
Using a Computational Model
In the previous section, we investigated the differences in the SLE
characteristics between the two groups. Nevertheless, the SLEs in
the two groups did not show significant differences in any of the
three aspects of propagation delay, frequency spectrum, or phase
synchrony. Consequently, it was impossible to predict how large
areas of SLE could be suppressed by local electrical stimulation
by analyzing only SLE waveforms. Thus, we approached this
question using a computational model to predict which factors
affected the size of the effective region.

Modeling of the SLE Suppression Effect Based on a

Biological Mechanism
We modeled a neuronal blockade due to an accumulation of
extracellular potassium ions in order to replicate the suppression

effect due to electrical stimulation. Assuming that a neuron fires
continuously at a high frequency, the reversal potential of sodium
ions (ENa) decreases and the reversal potential of potassium (EK)
increases due to an influx and efflux of each ion, respectively.
Figure 7A shows the change in the reversal potentials of each ion,
as calculated by theNernst equation, when the ion concentrations
inside and outside of the neuron are linearly regulated. The
resting membrane potential (Em) obtained via the Goldman-
Hodgkin-Katz equation is also shown. Conductance of the
sodium channels is reduced in response to an increase in the
membrane potential or the potassium reversal potential, and
this voltage dependence has been previously reported (Kim and
Chung, 1999; Carlin et al., 2008). In other words, the sodium
channel is inactivated, i.e., there is no inward flow of current, if
the neuron is excessively depolarized.

In order to reflect this neuronal blockade mechanism in our
model, first, we assumed that high-frequency stimulation makes
neurons more excitable, leading to an accumulation of potassium
ions in the extracellular region. We then added two other
variables: vEk, which represented the potassium reversal potential
in the neuron, and vc, signifying the sodium conductance. The
value of vEk increased logarithmically during the stimulation,
and vc decreased as a function of vEk. Finally, we included vc
as a factor in the neuronal input current equation (2) to control
the quantity of the input current. The modified equation was as
follows:

I = vc(vEk) · (Isyn + Ifield) (3)

Figure 7B presents the simulation result, themembrane potential
of a single neuron. The neuron was activated by abrupt random
input and generated sustained activities, with ∼8Hz of main
frequency. Next, after 4 s, the stimulation effect was applied
to the neuron by gradually increasing vEk. Then, vc was
automatically reduced in accordance with vEk. Although the
neuron continuously received input at the same level, it could
only accept a small amount of current due to vc. Consequently,
spikes could not be generated after vEk was increased beyond a
specific value.

FIGURE 6 | PLVs of SLEs in each frequency band. (A) The PLVs obtained from different slices in the “whole EC suppression” and “local EC suppression” groups,

respectively. (B) The mean PLVs with standard deviations; red represents the whole suppression group, and black represents the local suppression group. The values

of the δ to γ bands in sequence were 0.9952 (0.9895), 0.6308 (0.6864), 0.5844 (0.6044), 0.5499 (0.5172), and 0.4878 (0.4520), respectively, for the “whole EC

suppression” group (“local EC suppression” group). A decreasing trend according to increase in frequency band was observed; i.e., higher-frequency components of

SLE were less synchronized than low-frequency components. Comparison of the mean PLVs for the two groups did not yield any appreciable differences.
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The simulation results showed that SLEs can be suppressed
by neuronal blockade from an accumulation of extracellular
potassium ions. At the same time, they also implied that the
suppressive effect would occur locally, i.e., only the neurons near
the stimulating site that were strongly affected by the stimulation
could be suppressed. However, in our previous experimental
study, we observed that SLEs could be suppressed in a whole
EC region, including areas far from the stimulation site, in
a considerable number of slices under the same stimulation
conditions. This indicates that a partial change in the network
due to local stimulation could affect the entire network.

Prediction of the Factors that Affect the Size of the

Effective Region Through Network Simulation
We conducted a network simulation in order to compare the
SLE suppression effects due to local stimulation under different
conditions. First, we triggered an SLE by injecting ∼1 s of
abrupt random input into 25 excitatory neurons in group 1
(Figure 3B). The neuronal activities initiated by trigger input
were spontaneously synchronized and propagated to neurons in
other groups through signal transmission between neighboring
neurons after a time delay (Figures 8, 9). During this signaling,
both transmission by chemical synapses and the electrical field
were involved simultaneously. We controlled the weight of the
two transmission methods to replicate the SLE propagation.

Specifically, we induced several SLEs having similar frequencies
and propagation delays by maintaining a total input current
similar to that of the neurons, but that differed in the ratio of
synaptic and electrical field currents used. Ratios of synaptic
current:electrical field current of 70:30–90:10 were used in order
to simulate SLEs with similar characteristics. After the SLEs
achieved ∼3 s of stability, the stimulation effect was applied
only to neurons in group 1, the initial group, to reflect a local
stimulation effect. Then, we observed the changes in the activity
of the entire network. We performed the same simulations in
multiple noise environments.

Figure 8 shows spectrograms of two SLEs produced by the
model from onset to 4 s. Figures 8A,B depict the results of
the 85:15 and 75:25 synaptic current:electrical field current
ratios, respectively, in which the noise variance was 1 µA2.
In both simulations, the main frequencies of the SLEs were
∼8Hz, and their spectrograms appeared quite similar to each
other. The orange boxes display expanded plots of the local
field potentials in each group, which is focused on a single
peak in stable state. They show similar time delays between
peaks; the synchronous activities initiated in group 1 (red) were
propagated to other groups with an average delay of 10 ms.
In addition, the mean PLVs sequentially in the δ through γ

bands were 0.9863 (0.9815), 0.7912 (0.7809), 0.7901 (0.7636),
0.5403 (0.3697), and 0.2848 (0.2685) for the 85:15 ratio (75:25

FIGURE 7 | Neuronal blockade due to an accumulation of extracellular potassium ions. (A) Reversal potentials for each ion and the resting membrane

potential. When a neuron generates a lasting action potential with a high frequency (after 2 s), the reversal potentials of the sodium and potassium ions decrease and

increase, respectively, according to the influx and efflux of each ion. The resting membrane potential also increases due to the change in reversal potentials. (B)

Simulation results of our model representing the activity of a single neuron considering the neuronal blockade mechanism. Abrupt trigger input and signaling between

neighbors prompted the neuron to generate lasting burst activity with a frequency of ∼8Hz. However, the activity was gradually blocked by the application of the

stimulation effect after 4 s, which resulted from a decrease in the neuronal input current dependent on vEk .

FIGURE 8 | Reproduction of SLEs by a computational model. An SLE induced using an 85:15 ratio of synaptic current:field current (A) and another SLE induced

using a 75:25 ratio (B) with a noise level of 1 µA2. Spectrograms and the expanded plots of local field potentials for each SLE are shown. In both cases, the SLEs

exhibited dominant frequencies of ∼8Hz and propagation delays of ∼10ms between groups, based on positive peaks differences. These results indicate that similar

SLEs can be induced via different neuronal signal transmission mechanisms.
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FIGURE 9 | SLE suppression effects through network simulation. (A) The size of the suppressed region due to the local stimulation effect differed depending on

noise level and SLE propagation mechanism. In the high-noise environment, only partial inhibition was observed, whereas in the low-noise environment, whole

suppression was observed. In the same noise environment, the suppression effect was different according to the ratio of the two propagation mechanisms. As the

ratio of electrical field current increased, whole suppression became prominent over local suppression. (B–C) Propagation delays and mean PLVs of simulated SLEs,

classified by the size of the suppression region in (A). The propagation delay was 10.22ms (9.92ms) on average, and the mean PLVs of the δ to γ bands in sequence

were 0.9825 (0.9850), 0.7996 (0.7839), 0.7871 (0.7785), 0.4547 (0.4696), and 0.2562 (0.2792) in the whole suppression group (local suppression group). These

results indicate that there was no appreciable difference in the signal characteristics between the two groups. (D–E) Neuronal activities and local field potentials in

each group obtained from the 85:15 and (F–G) 75:25 ratios, with a noise level of 1 µA2. When the stimulation effect was applied to neurons in group 1 at 4 s,

neuronal activities in that region were suppressed after a delay in both cases. However, from the perspective of the whole network, the suppression effect occurred

locally and only involved the group directly stimulated using the 85:15 ratio, while a global effect in the entire network was achieved using the 75:25 ratio.

ratio). Statistical data of multiple simulations are shown in
Figures 9B,C. Consequently, SLEs with similar characteristics
could be produced, despite being generated though different
signal transmission mechanisms. Moreover, these results show
that our model is able to replicate SLEs that include propagation
characteristics similar to experimental data, allowing comparison
between simulation results and measured data.

Although the SLEs had similar characteristics, their
suppression effects differed in terms of the entire network.
Figure 9A presents the suppression effect according to noise
level and ratio of two SLE propagation mechanisms. At first,
as the variance of noise was larger, the suppression effect was
limited to the local network directly receiving stimulation.
On the other hand, as the variance of noise was smaller, the
suppression effect occurred throughout the entire network. In
the same noise environment, the suppression effect was different
depending on the ratio of propagation mechanisms. When the
influence of electrical field transmission was very weak, only a
local suppression effect was observed. However, when the effect

of the electrical field transmission was a little stronger, partial
inhibition due to local stimulation could modulate neuronal
activities in the entire network; i.e., a whole suppression effect
was observed. Figures 9D–G present the neuronal activities
and local field potentials induced by each group using 85:15
and 75:25 ratios, respectively, in which the variance of noise
was 1 µA2. When the stimulation effect was applied to neurons
in group 1 at 4 s, the neuronal activities in that region were
suppressed after a delay in both simulations. The synchronous
activities in the other groups were sustained regardless of the
local suppression effect in Figures 9D,E, whereas they were
completely suppressed simultaneously in Figures 9F,G. These
results indicate that SLEs propagated by a strong electrical field
effect can respond sensitively to partial changes in a network
due to stimulation. In addition, these different simulation results
can also explain our experimental data. They show that, even
if basic environments including noise level are similar, the size
of the effective region can be determined differently by the SLE
propagation mechanism.
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Meanwhile, Figures 9B,C show propagation delays and mean
PLVs in each frequency band between the two groups, which
were categorized according to suppression effect of simulated
SLEs. They also confirmed that there was no significant difference
in the signal characteristics between the two groups as in
the experimental data analysis; 10.22ms (9.92ms) delays were
observed on average, and 0.9825 (0.9850), 0.7996 (0.7839), 0.7871
(0.7785), 0.4547 (0.4696), and 0.2562 (0.2792) mean PLVs in the
δ through γ bands, respectively, were derived from the whole
suppression group (local suppression group).

In addition to the internal environments such as noise and
signal transmission mechanisms, the network simulation was
able to investigate the SLE suppression effect according to
external factors such as stimulation site. When the stimulation
effect was applied to a non-initiating region, the suppression
effect did not occur to the entire network, even in a low noise
environment and even though the SLE was propagated by the
stronger electrical field effect. Figure 10 shows a simulation result
when the stimulation was applied to group 3 neurons (green)
in which the variance of noise was 1 µA2. The SLE was started
in the group 1 neurons and propagated to the entire network
consecutively, as shown in Figure 9. When group 3 neurons were
blocked, the synchronous activities of the group 4 neurons (blue),
which were propagated from group 3, were also suppressed over
time, while the activities in other groups that were activated
prior to group 3 were sustained. Simulation results applying the
stimulation effect to group 2 or 4 were similar. This signifies
that stimulating the focus region would be more effective for
seizure suppression, which is also in accordance with previous
experimental research (Chiang et al., 2013).

DISCUSSION

In this paper, we identified factors that can affect the size
of the effective region in seizure suppression by electrical
stimulation. After we classified in vitro experimental results into
two groups, “whole EC suppression” and “local EC suppression,”
we compared the SLE characteristics recorded in these groups.
However, there was no significant difference between the groups
in terms of propagation delay, frequency spectrum, or phase
synchrony. In other words, the propagation characteristics and
specific features of the SLEs themselves showed no obvious

distinctions. This indicates that it would be difficult to predict
the extent of seizure suppression expected with local stimulation
applied to a particular region from an analysis of recorded signal
waveforms from patients.

Using a computational approach, however, we were able to
predict important factors. First, we built a neuronal network
model with a small-world network structure. In the model, the
SLEs were initiated in some part of the neurons by abrupt random
input and BCC effect and were then propagated to other areas
spontaneously by signal transmission to neighboring neurons. In
order to model signaling between neurons, we considered both
chemical synaptic connections and the electrical field effect. We
were able to induce similar SLEs while differentially adjusting
the contributions of these two methods, on multiple noise
environments. The SLEs showed similar propagation delays and
time-frequency characteristics. Also, the characteristics of the
SLEs generated by the model were similar to experimental data.
The simulation results indicate that the seizure activities initiated
in a particular region can be propagated to other areas with
similar patterns, despite different propagation mechanisms. This
also confirms that the propagation speeds conducted through
local synaptic connections and via electrical field effects are not
significantly different, as noted in previous studies (Bao and Wu,
2003; Zhang et al., 2014; Fehérvári et al., 2015).

Although the SLEs had similar features, the suppression
effects due to stimulation were distinct. At first, in the high-
noise environment, the suppression effect was limited to the
local network that directly received the stimulation effect. On
the other hand, in the low-noise environment, the suppression
effect occurred throughout the entire network including a region
far from the stimulation site. These results can be interpreted
to indicate that large noise can help sustain the synchronous
activity by compensating for the reduction of input currents
in neurons near the inhibited region. Meanwhile, interestingly,
under the same noise environment, the size of the effective region
was different according to the ratio of the two SLE propagation
mechanisms. When the influence of electrical field transmission
was very weak, only local suppression effects occurred. However,
when the effect of the electrical field transmission was stronger,
the suppression effect occurred globally to the entire network,
i.e., partial suppression induced by local stimulation affected
neuronal activities in the entire network. We speculate that these
results are caused by differences in the characteristics of the two

FIGURE 10 | Simulation results of an SLE suppression effect via applied stimulation to a non-focus region. (A,B) Local field potentials and spectrograms

for SLEs induced by a 75:25 ratio of synaptic current:field current. As in Figure 9, the SLE was initiated in group 1 (red) and propagated to other groups with a ∼9.7

ms delay, with similar spectrogram results. When the stimulation effect was applied to neurons in group 3, which was not an SLE focus, only neuronal activities in

groups 3 and 4 were suppressed, i.e., the activities in the previously initiated regions, groups 1 and 2, persisted irrespective of local suppression.
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propagation methods. The effects of the electrical field are more
instantaneous than those of synaptic transmission, which involve
the chemical operation of a neurotransmitter. Thereby, if the
neurons are synchronized by a stronger field effect, inhibition
of part of a neuron can control the neuronal activities even in
distant regions because the input current of neurons adjacent
to the inhibited region is immediately reduced. Through these
simulation results, we predict that the propagation mechanism
of SLE can determine the size of an effective region by local
stimulation. However, it is still unclear which conditions affect
the propagation mechanism. This uncertainty might be due to
multiple intrinsic properties of the network, such as connectivity,
synaptic plasticity, and tissue conductivity. Future work to clarify
these causalities should be conducted. Moreover, studies aimed at
analyzing seizure propagation mechanisms in different patients
are also important.

Additionally, another simulation using this model could also

show the importance of the stimulating site. The results showed

that stimulation of the focus region increases the size of the
effective region due to local stimulation. Furthermore, this
underscores the importance of localization studies to determine
the precise seizure focus in each patient.

In this paper, we showed the possibility of a computational
model as a simulation tool to analyze the efficacy of DBS.
In particular, we showed the strength of a computational
model by predicting important factors through simulation,
which were not revealed by experimental results. In this
model, we used a neuronal blockade mechanism in order to
describe the SLE suppression effect by electrical stimulation.
Especially, we modeled the blockade via the accumulation of
extracellular potassium ions, which is considered the one of
the convincing mechanisms to explain the suppression effect
(Lian et al., 2003; Fröhlich et al., 2008; Ahn et al., 2017).
Apart from this mechanism, several important mechanisms have
been reported through clinical and experimental researches, they
include synaptic inhibition, synaptic depression, and disturbance
of pathological network activity (Dostrovsky et al., 2000;
Montgomery et al., 2000; McIntyre et al., 2004; Schiller and
Bankirer, 2007). In addition, a computational study has identified
that different mechanisms could work depending on stimulus
frequency (Mina et al., 2013). In the reported model, seizure
suppression effect occurred by feedforward inhibition and short-
term depression mechanisms in low-frequency stimulation,
whereas it occurred by direct activation of interneurons that
control excitatory neurons in high-frequency stimulation (Mina
et al., 2013). Consequently, the working mechanism may differ
according to neuronal network structure, signal pathways of
target, causes of seizure activity, stimulus frequency used, etc.
Thus, systematic studies are required to identify the appropriate
mechanisms for each patient’s condition and to derive optimum
stimulation parameters through simulation.

Meanwhile, in this model, we focused on the dynamics of a
small network, specifically, the EC region. However, our results
can be applied to larger networks, such as the hippocampal
network, which is composed of some sub-networks, or even
whole-brain networks, considering the connections between the

hippocampus and other parts of the brain. In medial temporal
lobe epilepsy, it is well known that most seizure activity is
generated in a specific part of the EC region and propagated
to the entire EC area, other sub-networks of the hippocampus,
and the other brain areas. Generalizing our findings to a larger
network with moderate noise, only seizure activity propagated
from the focus region via a strong electrical field effect would be
completely suppressed by local stimulation of the focus region.
However, the effect of synaptic transmission would be dominant
in the propagation between the sub-networks or other brain areas
because the effect of electrical field effect is rapidly reduced with
distance, and relatively distant networks are connected by axon
bundles. This indicates that global seizure suppression is difficult
to achieve by local stimulation after considerable propagation,
even if the stimulation is applied to the focus region. Thus, a
system design that could rapidly detect seizure onset, identify the
focus region, and automatically apply stimulation to the region
would be very significant. In addition, simultaneous stimulation
of multiple core sites obtained by data analysis may prove to be a
more effective therapy.
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