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Repeated, precise sequences of spikes are largely considered a signature of activation

of cell assemblies. These repeated sequences are commonly known under the name

of spatio-temporal patterns (STPs). STPs are hypothesized to play a role in the

communication of information in the computational process operated by the cerebral

cortex. A variety of statistical methods for the detection of STPs have been developed

and applied to electrophysiological recordings, but such methods scale poorly with

the current size of available parallel spike train recordings (more than 100 neurons).

In this work, we introduce a novel method capable of overcoming the computational

and statistical limits of existing analysis techniques in detecting repeating STPs within

massively parallel spike trains (MPST). We employ advanced data mining techniques to

efficiently extract repeating sequences of spikes from the data. Then, we introduce and

compare two alternative approaches to distinguish statistically significant patterns from

chance sequences. The first approach uses a measure known as conceptual stability,

of which we investigate a computationally cheap approximation for applications to such

large data sets. The second approach is based on the evaluation of pattern statistical

significance. In particular, we provide an extension to STPs of a method we recently

introduced for the evaluation of statistical significance of synchronous spike patterns.

The performance of the two approaches is evaluated in terms of computational load

and statistical power on a variety of artificial data sets that replicate specific features

of experimental data. Both methods provide an effective and robust procedure for

detection of STPs in MPST data. The method based on significance evaluation shows

the best overall performance, although at a higher computational cost. We name the

novel procedure the spatio-temporal Spike PAttern Detection and Evaluation (SPADE)

analysis.

Keywords: spike patterns, data mining, multiple testing, cell assemblies, higher-order correlations, spike

synchrony
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1. INTRODUCTION

An open question in neuroscience is whether neuronal activity
is organized in spatio-temporal patterns (STPs) of millisecond-
precise spikes to represent and process information. Theoretical
studies have shown that input spikes arriving synchronously at
a neuron are most effective in generating output spikes, making
the neuron behave like a coincidence detector (Abeles, 1982).
The existence of coincidence detectors was shown in a number
of experimental studies (e.g., Roy and Alloway, 2001; Bender
et al., 2006; Fino et al., 2010). Different types of network models
have been suggested that build on this fact to represent and
process information. The synfire chain model, suggested by
Abeles (1991), is composed of layers of groups of neurons that are
feed-forward connected with large convergence and divergence,
typical for cortical connectivity. If a group of neurons is activated
simultaneously, synchronous activity is elicited and propagates
to the next group of neurons, where it arrives simultaneously
due to identical propagation delays. This group in turn sends
synchronous spikes to the next and so on, such that volleys of
synchronous spikes travel through the chain-like structure. This
propagation is stable for a large range of parameters, such as the
number of active neurons or the temporal precision (Diesmann
et al., 1999). Bienenstock (1995) suggested a more general model,
the synfire braid, which also builds on coincidence detectors
but does not require the propagation delays between successive
groups of neurons to be identical. Each neuron in the model still
receives an abundance of synchronous spikes, but these may be
generated at different times and yet arrive synchronously at the
same target neuron due to different, compensating propagation
delays. Izhikevich (2006) later rediscovered this idea under
the name polychrony and proposed practical implementations
of braid models. Common to both the synfire chain and the
synfire braid/polychrony models is the fact that the activity
they produce is characterized by specific STPs, which reoccur
upon re-activation of the same network (chain/braid). The
organization of the cortex may well support these or similar types
of processing schemes that exploit spike coordination at a fine
(millisecond precise) temporal scale, as opposed to or alongside
with temporally loose rate-based coding schemes (Kumar et al.,
2010; Ainsworth et al., 2012). In an electrophysiological study on
few simultaneously recorded neurons, Prut et al. (1998) showed
the occurrence of millisecond-precise STPs beyond the level
expected on the basis of the neuronal firing rates, computed
instead on a slower time scale of tens or hundreds ofmilliseconds.
These patterns also showed tuning to behavior. Nevertheless, the
existence of time-coding schemes in networks of several tens to
hundreds of neurons remains debated due to the long-standing
lack of data and of analysis tools suited for this investigation.

Recent progress in electrophysiological recording technology
has enabled the simultaneous recording of hundred or more
neurons, thus, increasing the chance to sample cells involved in
complex dynamics, for instance those produced by synfire chains
and braids. Analysis tools are, therefore, needed to identify this
complex dynamics within such large data sets. Tools developed
in former studies for the analysis of STPs in small populations
of neurons (e.g., Prut et al., 1998; Nadasdy et al., 1999) scale

poorly with the size of the data and thus cannot be applied to
massively parallel spike trains (MPST). The core problem lies
in the number of possible interactions (i.e., correlations in the
spiking activity, here STPs) that need to be investigated without a-
priori information on the structure of the network (as typical for
experimental data). The number of patterns grows exponentially
with (i) the total number of neurons observed, (ii) the pattern
size (number of composing spikes: 2, 3, . . .) investigated, and (iii)
the temporal relationships (lags between spikes of a pattern) one
aims to focus on (e.g., synchrony or specific temporal sequences).
The occurrences of each of these patterns have to be counted,
and non-chance patterns have to be distinguished from chance
patterns based on properties such as the number of composing
spikes or the number of pattern repetitions. These factors lead
to computational issues—even just storing all patterns and their
occurrence counts in memory on a desktop computer may
be impossible, and their analysis may be computationally not
affordable. Furthermore, a severe multiple testing problem arises,
i.e., the huge number of statistical testsmay lead to a large amount
of false positives or of false negatives after standard statistical
corrections.

A number of techniques have been introduced in the last
decade to analyze correlations in MPST by circumventing these
issues. Population measures for synchrony detection (Grün
et al., 2008; Louis et al., 2010; Staude et al., 2010a,b) have
been introduced to assess the presence and magnitude (i.e.,
the order) of synchrony in MPST, without resolving individual
spike patterns or groups of neurons possibly responsible for
these correlations. Conversely, maximum entropy methods
(Schneidman et al., 2006; Shlens et al., 2006; Pillow et al., 2008;
Tang et al., 2008) have been successfully applied to identify
groups of neurons participating in synchronous firing, at the
expense of the correlation order, which can be analyzed (typically
involving few neurons in the population). Shimazaki et al.
(2012) introduced an analysismethod that identifies higher-order
correlation and their order based on information geometry and
a state space approach, but is limited to a small number of
neurons. For large number of simultaneously recorded neurons,
previous studies on large data sets have typically limited the
search to an heuristically determined subset of candidate patterns
based on pairwise correlations (Gansel and Singer, 2012) or to
patterns with a limited selection of specified inter-spike intervals
(see Ayzenshtat et al., 2010, for a methodology applied to data
from voltage sensitive dye imaging) or derived statistical tests
for patterns significance on restricting assumptions, such as
Poissonianity of firing rates (Abeles and Gerstein, 1988; Russo
and Durstewitz, 2017).

To overcome these limitations, Torre et al. (2013) developed
a method, named SPADE (synchronous pattern detection and
evaluation), to assess the presence of statistically significant
patterns of synchronous spikes. This approach should not to
be confused with a sequential pattern mining algorithm, which
shares the same acronym (Zaki, 2001). SPADE exploits frequent
item set mining techniques (see e.g., Borgelt, 2012) to remove
those spike patterns (usually the majority), which either occur
too infrequently to be of interest in a subsequent statistical
analysis (according to the criteria defined by the investigator)
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or which are trivially explained by other patterns in the data
and, therefore, convey no additional information. SPADE retains
only frequent, non-trivial patterns, and further assesses their
statistical significance by a hierarchy of tests. This approach
greatly diminishes the number of total tests to a level which is
easily handled with standard statistical corrections, such as False
Discovery Rate (Benjamini and Hochberg, 1995). Using SPADE
on motor cortex spike train data from behaving monkeys, we
demonstrated in Torre et al. (2016b) the presence of groups
of excess synchronous spike patterns in populations of up to
150 simultaneously recorded neurons and demonstrated the
specificity of these patterns to different motor tasks and different
behavioral epochs therein. Differently from previous techniques,
the analysis covers correlations of any order and resolves their
neuronal composition.

In this study, we provide an extension of SPADE to spatio-
temporal patterns, i.e., patterns not restricted to synchronous
spiking. The resulting methodology has, thus, the potential
of identifying STPs like those produced by the synfire chain
or synfire braid model or by other expressions of assembly
processing that rely on precise spike time coordination. Due to
the temporal dimension taken into account here, the analysis of
STPs has to deal with a much (possibly orders of magnitude)
larger number of possible patterns compared to the analysis of
spike synchrony. In Yegenoglu et al. (2016), we addressed this
problem by a new approach based on Formal Concept Analysis
(FCA; see Ganter and Wille, 1999) to efficiently find STPs in
MPST data, count their occurrences, and evaluate their stability
(see Kuznetsov, 2007) as a measure for non-randomness. We
successfully applied the method to artificial test data of up to 50
parallel spike trains with an average firing rate of about 15Hz
each simulated for 1 s. The analysis was computationally too
expensive to be applied on larger data sets.

Here, we improve the methodology introduced in Yegenoglu
et al. (2016) in three respects. First, we use frequent item
set mining on a suitably restructured format of the data as
an equivalent but computationally more efficient alternative to
currently available FCA algorithms. This shift of paradigmmakes
the method equivalent to SPADE from a procedural point of
view. Second, we approximate exact stability with the Monte-
Carlo approach suggested by Babin and Kuznetsov (2012), which
reduces the cost of stability computation (previously the runtime
bottleneck) by several orders of magnitude. This also allows us
to compute different types of pattern stability and to develop
different criteria to filter patterns on the basis of these types
improving further the performance of pattern detection. Third,
we extend to STPs the evaluation of pattern significance originally
introduced in Torre et al. (2013) and compare it with the
approach based on pattern stability.

Section 2 presents the various steps of our novel method
and links them to previous methods, mainly to the work we
presented in Yegenoglu et al. (2016) and Torre et al. (2013).
Section 3 compares the performance of the stability-based and
significance-based (SPADE) approaches for patterns filtering,
and provides selection criteria for candidate patterns. We
demonstrate the efficacy of the extended SPADE method
in detecting STPs, while largely avoiding false positive

detections in simulated MPST with different features typical for
electrophysiological data, such as firing rates varying over time
and across neurons. Finally, Section 4 discusses the advantages of
SPADE over existing techniques for the analysis of correlations
in MPST and proposes future studies.

2. METHODS

The problem we are concerned with in this work is the extraction
of spatio-temporal spike patterns in massively parallel spike
trains and the classification of these STPs into those that occur
reliably and those which do not, i.e., non-chance vs. chance
events. Here we first review a state-of-the-art method based on
Formal Concept Analysis (FCA) which we recently introduced
to address this problem, and then we improve this method
in various respects. The following sections describe the three
main steps of the novel method, namely pattern extraction
(2.1), identification of reliable patterns by means of various
stability measures (2.2), and statistical assessment of pattern
significance (2.3).

2.1. Extracting Non-trivial Patterns from
Large-Size Data
In our setting, an STP is defined as a pattern of spikes, emitted
from a given collection of neurons, that have the same temporal
relationship with each other across different occurrences. As an
example, the red lines in Figure 1A form an STP composed of
three spikes from neurons (in temporal order) 1, 3, and 2. Given
N neurons, there can be up to 2N sets of neurons participating
in such a pattern. Each of them can form patterns with infinitely
many different inter-spike intervals. Discretizing time into bins
of short length (e.g., dt = 1ms), as done in Figure 1A, makes
the number of combinations finite for a finite-sized data set, but
still immense even for relatively short recordings and few parallel
neurons. Thus, the total number of possible STPs is too large for
an exhaustive search. Of these, however, only a minority occurs
multiple times (is frequent) and cannot be extended without
sacrificing occurrences (is closed). Only frequent, closed patterns
are of interest to us. Next, we introduce Formal Concept Analysis
(FCA) for extracting closed frequent patterns from large data sets,
adapting the methodology to parallel spike train data, and then
relate Frequent Item set Mining (FIM) to FCA.

2.1.1. Formal Concept Analysis (FCA)
A mathematical formalization of closed patterns was provided
earlier by Wille (1982) in the theory of Formal Concept Analysis,
whose basic notions we now introduce. Following the standard
definitions (Ganter and Wille, 1999), we define a formal context
as a triple C = (G, M, I) comprising a set of formal objects
G, a set of formal attributes M, and a binary relation I between
the objects in G and the attributes in M. In our application, G
contains the start times t of space-time windows (see Figure 1)
and M the spike coordinates m in such windows. If (t,m) ∈ I
with t ∈ G, m ∈ M, then window t contains a spike at m. We
denote the set of all attributes shared by a set of objects A ⊆ G as
A′ = {m ∈ M|∀t ∈ A : (t,m) ∈ I}, i.e., A′ is the set of all attributes
m such that for all objects t in A, there is an entry in I which
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A

C

B

FIGURE 1 | Turning spike recordings from multiple neurons into a formal context. (A) We discretize the time axis of parallel neuronal recordings from multiple

neurons into bins of duration dt. The lines indicate spikes at their time of occurrence. The red spikes are members of an STP, whereas gray spikes belong to the

background. We then chop time windows of length 1t = K × dt out of the recorded data stream. (B) The window contents are then concatenated, for each neuron

horizontally. (C) Each spike of (B) is replaced by a cross, yielding the incidence table representation of a formal context. The objects of this formal context are the time

windows, indexed by their start time. The attributes are the spike time-indexes relative to the window start, combined with the neuron identities. The figure is adapted

from Yegenoglu et al. (2016).

contains both t and m. Likewise, the set of all objects which have
all the attributes in B ⊆ M is B′ = {t ∈ G|∀m ∈ B : (t,m) ∈ I}.
A formal concept is a tuple (A,B) with extent A ⊆ G and intent
B ⊆ M such that A′ = B and B′ = A. Let B(C) be the set of all
concepts of C.

To gain an intuitive understanding of these definitions,
consider the example in Figure 1. Figure 1A depicts spike
recordings from three neurons and two space-time windows
labeled by their starting times tA and tB, i.e., tA, tB ∈ G. The
vertical ticks denote spikes. The red ticks are spikes that form
an STP, whereas the gray ticks represent background spikes.
The attributes in M are pairs (neuron index, time index) of the
neuron from which a given spike was recorded, and of the spike
time index relative to the window’s start. Here, the red ticks
correspond to the attribute set H = {(1, 1), (2, 7), (3, 4)} in both
windows.

A standard way of depicting the relation I in the FCA literature
is an incidence table (c.f. Ganter and Wille, 1999). Figure 1
illustrates the process of constructing such an incidence table
from spike data. In Figure 1A we discretize the time axis into
contiguous bins of duration dt. Then, we slide a time window
of duration 1t = K × dt across these data, in increments
of dt. tA and tB in Figure 1A indicate two instances of this
sliding window. The bin width dt is chosen depending on the
resolution of the recording device and on the analysis needs, and
determines the precision at which spatio-temporal patterns are
resolved. We set dt = 1ms throughout this paper, which ensures
that there is at most one spike from the same neuron in each
bin. The number of time bins K per window is selected on the
basis of the expected maximal duration of an STP. We choose
K as explained below. The incidence table representation of I is

constructed by horizontally concatenating the contents of each
window instance (Figure 1B), and finally converting the spikes
into crosses (Figure 1C). The resulting table will have N × K
columns.

We can then apply FCA to compute B(C). The intents of
the concepts in B(C) are candidate STPs, while their extents
are the sets of time indexes of window starts. For example, the
data depicted in Figure 1A contain a concept U = (A,H) with
extent A = {tA, tB} and intent H = {(1, 1), (2, 7), (3, 4)}. Another
concept in this example is V = (E, F), with E = {tA} and
F = {(1, 1), (1, 3), (1, 8), (2, 2), (2, 5), (2, 7), (3, 1), (3, 4), (3, 7)}. By
“candidates” we mean that the intents of the concepts in B(C)
comprise not only the STPs we are interested in, but also time-
shifted version thereof. Consider the windows starting one bin
before tA and tB. They, too, contain the STP comprised of the
three red spikes, but shifted by one time step, leading to the
corresponding attribute set Q = {(1, 2), (2, 8), (3, 5)}, which will
become the intent of a concept after FCA. Thus, for a chosen K,
the intents of the concepts inB(C) contain all shifted copies of an
STP. These copies form an equivalence class, which we represent
by the STP whose first spike falls into the first bin of the window.

2.1.2. FP-Growth as an Equivalent Alternative to

Fast-FCA
In Yegenoglu et al. (2016), we employed our pure Python
implementation of the fast-FCA algorithm (Lindig, 2000). This
algorithm creates the concepts in an order which simplifies
the subsequent exact evaluation of stability used for isolating
stable patterns from noise (see below). Unfortunately, the
runtime of the computation of exact stability (see Roth et al.,
2008) scales roughly with the fourth power of the number
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of spikes, as illustrated in Figure 2. This leads to a slow
computation preventing the application to data sets of several
tens of neurons. In Yegenoglu et al. (2016) we extrapolated
the computation time to > 60 days on a data set of 15 s
duration composed of simultaneous recordings of 100 neurons.
However, when one does not compute stability, or computes
it approximately rather than exactly (see below), the concept
order is not needed, as explained in Babin and Kuznetsov
(2012). Modern FCA algorithms exist that only compute the
concepts and are, therefore, considerably faster, such as In-
Close (Andrews, 2009) which is currently the fastest one to our
knowledge. Unfortunately, at the time of writing, the state-of-
the-artC implementation of In-Close exited because of amemory
overflow when we input our data. The C implementation
solving this problem will be provided soon (Kodoga, personal
communication).

Instead, we explored another option for implementing a faster
search for concepts. We exploited a known correspondence
between FCA and (closed) frequent item set analysis (Zaki and
Ogihara, 1998; Pisková andHorváth, 2013): formal objects can be
mapped onto transactions, formal attributes onto items, intents
onto closed itemsets and extent sizes onto supports, see also

FIGURE 2 | Profiling results for different components of the methods.

In the top panel the runtimes as a function of the number of spikes in a data

set are shown for pattern mining using fast-FCA (red, asterix) and FP-growth

(brown, filled circles). We also compare the run times for the stability analyses,

exact stability (green, diamonds) and approximate (aquamarine, triangles) and

of PSF (blue, squares). The solid lines are fitted functions quantifying their

characteristics. The bottom panel shows the same data in log-log scaling: the

computational times follow approximately different power laws.

Table 1. This allows us to compute the concepts based on the FP-
growth algorithm known in the data mining community (Han
et al., 2004). FP-growth is a frequent item set mining algorithm
widely used to mine closed frequent item sets in large data sets.
Specifically, we use a C implementation of FP-growth (Borgelt,
2012) to mine closed frequent patterns. We already used the
algorithm in Picado-Muiño et al. (2013) to mine patterns of
synchronous spikes in MPST data. The re-formatting of the data
used here (“attribute scaling” in the terminology of FCA, see
Ganter and Wille, 1999) allows us to extend the application of
the FP-growth algorithm to the search for more general spike
patterns, i.e., STPs.

2.1.3. Closed vs. Non-chance Patterns
By use of fast-FCA/FP-growth algorithms, formal
concepts/closed frequent item sets can be efficiently collected.
Closed patterns can be understood as patterns, which are not
trivial subsets of other patterns in the data, and which, therefore,
may convey information not stored in any superset of them.
However, not all closed patterns are necessarily of interest.
Indeed, virtually any data set of simultaneous point processes
contains closed patterns, even when the processes are completely
independent of each other. Thus, many (usually the large
majority) of closed patterns are merely chance events. A critical

TABLE 1 | Summary of terms often used in this paper.

Entity Description

Spatio-temporal pattern (STP) Precise temporal sequence of spikes repeated

more often than expected under the hypothesis

of independent firing

Item set/attribute set Set of spikes that form an STP

Pattern size/attribute set size Number of spikes forming an STP

Occurrence times/object set Set of time points at which an STP repeatedly

occurs

Support/object set size Number of occurrences of an STP

Closed item set/intent of formal

concept

STP which is maximal in time and space, i.e.,

no larger set of time windows contains the STP,

and no spike could be added to the STP

without having to give up at least one

occurrence time window. Formally defined as

the pair of STP intent and STP extent.

Extracted from parallel spike train data by the

FP-growth/fast-FCA algorithm.

Support of closed item

set/extent size

Number of occurrences of a STP which is

maximal in time and space

Closed frequent item set/Intent

of frequent formal concept

STP which is maximal in time and space, and

occurs at least a given number of times.

Signature (z, c) Pair of parameters (z =pattern size,

c =support), that characterize each concept

and that are tested for significance with PSF

Stability Measure that quantifies how reliably a pattern

repeats identically across all its repetitions

P-value spectrum Matrix whose entries z, c contain the p-values

of pattern signatures (z, c), evaluated by PSF

When two alternative terms appear in the left column, the first one is from frequent item

set mining terminology and the second one from formal concept analysis terminology.
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task that remains to be solved is, therefore, that of identifying
non-chance patterns among the multitude of closed ones.

Several approaches can be taken to draw this assessment,
depending on the features of the patterns used to discriminate
interesting from non-interesting STPs. Simple pattern filtering
criteria are often based on pattern size (intent size) and pattern
occurrence count (extent size), see e.g., Prut et al. (1998). These
criteria are motivated by the following observations. First, the
larger a pattern is the less likely it will occur by chance if spikes
are independent events (Grün et al., 2002b). Likewise, under this
independence assumption, the probability that a chance pattern
has a given occurrence count decreases with increasing size
(Grün et al., 2008). We found that rejecting all patterns with less
than three spikes or less than three occurrences massively reduces
the false positive pattern detection in our data. Another classical
approach in the FCA community is to evaluate the (intensional)
stability of a pattern (Kuznetsov, 2007), which loosely speaking
can be understood as the tendency of a pattern to be an intent
among any subset of windows where the pattern occurred. Stable
patterns are of interest because they are unlikely to be produced
by independent processes or neurons. Another approach consists
in evaluating the statistical significance of the patterns found and
in retaining only those patterns, which are not to be expected
in the data given other statistics, such as the firing rates of
the individual neurons (Grün et al., 2002a). This approach is
commonwhen testing the two alternative hypotheses of temporal
coding (based on millisecond precise coordination of spikes
among cell assemblies) vs. rate coding (based on temporally less
precise spike coordination and characterized by the rate profiles
of the individual neurons). The next two sections are dedicated
to reviewing the approach based on stability computation and
the other based on evaluation of statistical significance and to
integrate them into the analysis framework derived so far.

2.2. Filtering Patterns by Stability
Conceptual stability (Kuznetsov, 2007), both intensional and
extensional, is a potential tool for separating chance patterns
from non-chance STPs. In this section, we review the definition
of conceptual stability, and we illustrate advantages and
computational issues thereof. We also show how recently
developed efficient Monte-Carlo techniques can be used to
approximate stability and, thus, make it applicable to large-size
data.

2.2.1. Intensional Stability
Given a formal context C and the set B(C) of all of its concepts,
the intensional stability of a concept (A,B) ∈ B(C) is defined by
Roth et al. (2008) as

σ (A,B) =
|{C ⊆ A|C′ = B}|

2|A|
(1)

where C′ is the set of all attributes shared by the objects in C
(see also section 2.1.1). In words, the stability of an intent is
the fraction of subsets of the extent (set of the indices of the
starting points of time windows), which share the attributes of the
intent (pattern). This can be viewed as a kind of cross-validation
(Kuznetsov, 2007): a pattern has a high stability index if it is

found as a concept intent in many time windows. In our earlier
work (Yegenoglu et al., 2016), we computed the stability with the
exact algorithm of Roth et al. (2008) and kept only those concepts
whose stability exceeded a threshold. However, we found that this
exact algorithm is too slow for application to large data sets due
to its quadratic runtime scaling in the number of concepts.

2.2.2. Approximation of Stability
Hence, we employ a fast Monte-Carlo approximation of the
stability suggested by Babin and Kuznetsov (2012). Instead of
iterating through all subsets of an extent in the numerator of
the right hand side of Equation (1) and checking whether the
attributes shared by a given subset equal the intent, one performs
this check only on a fixed number Z of randomly drawn extent
subsets. The denominator is then replaced by Z.

2.2.3. Extensional Stability
By definition, intensional stability only accounts for the
occurrence count of a pattern and not for its size. Therefore,
its value is unaffected (see also Yegenoglu et al., 2016) by the
number of spikes forming the pattern. This behavior is evident
in the statistical evaluation results shown below. This feature is
independent of the approach (exact or approximated) used to
compute the stability. However, pattern size should play a role
in determining whether a pattern is to be retained as a true
pattern or rejected as a chance event. Indeed, more independent
events (spikes) are less likely to re-occur in a specific temporal
sequence by chance than fewer events. To account for this fact,
we introduce here a filtering rule based on extensional stability,
which accounts for the pattern composition (size) rather than
the pattern occurrence count. Formally, extensional stability of
a concept (A,B) is defined by exchanging extent and intent on
the right hand side of Equation (1):

σ (A,B) =
|{C ⊆ B|C′ = A}|

2|B|
.

Extensional stability can be calculated—as intensional stability—
either in exact form or by approximation. A new filtering
criterion can be devised for closed patterns based on extensional
stability by retaining only those patterns whose extensional
stability exceeds some pre-defined threshold.

2.2.4. Choice of Stability Threshold
An issue that remains to be addressed is how to set the stability
threshold(s) used to distinguish STPs from chance patterns. In
Yegenoglu et al. (2016), we set the threshold for intensional
stability to 0.6 following an heuristic approach, as this choice
turned out to provide a good balance between FPs and FNs on
a broad range of simulated data with various parameters. Real
data, however, may need different thresholds depending on their
size (number of neurons and/or duration), the firing statistics
and other features of the spike trains. Because we are interested
in using stability as a measure to determine which patterns are
more stable than one would expect a chance pattern to be, an
appropriate threshold should be such that the stability of patterns
found in independent data, i.e., of chance events, would not
cross the threshold. We, therefore, propose here to estimate the
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appropriate stability threshold from independent surrogates of
the original data via the following Monte-Carlo approach.

First, surrogates of the original data that contain only chance
patterns need to be generated in such a way that other features
of the data characterizing the null hypothesis of independence
(importantly, the firing rate profiles) are preserved. A variety of
techniques exists to this end (see Grün, 2009; Louis et al., 2010).
Among them, we opt for spike dithering, which moves each
spike by a random amount (up to a few ms) around its original
position. STPs occurring above chance level, if existing are, thus,
destroyed, while firing rates - which are defined on a larger time
scale—are almost unaffected. Second, we extract patterns from
the surrogate data by use of FP-growth, compute their stability,
and thereby derive the distribution of pattern stability under the
null hypothesis. The stability threshold is finally set to a chosen
upper quantile of the null distribution. In our settings, a single
surrogate data set contains always several thousands of chance
patterns and is, therefore, sufficient to obtain close estimates of
small quantiles of the null distribution. We separately derive the
thresholds θint and θext for intensional and extensional stability,
respectively.

2.3. Filtering Patterns by Statistical
Significance
An alternative to stability-based filtering to identify non-chance
patterns among the closed frequent patterns extracted by FP-
growth is to test the statistical significance of STPs directly. The
null hypothesis of the test here is that the spike trains aremutually
independent and no patterns exist in the data except for chance
ones. The alternative hypothesis states that some patterns indeed
occur too many times to be considered as chance events.

Testing the statistical significance of all closed frequent
patterns one by one is not an option in applications to
large-size data such as MPST data from tens or hundreds of
neurons recorded simultaneously. Indeed, the immense amount
of occurring patterns and, therefore, of tests to be performed
raises severe multiple testing issues. We addressed this problem
in the context of testing for synchronous spike patterns in
Torre et al. (2013), where we developed an alternative statistical
approach, here named SPADE (Synchronous PAttern Detection
and Evaluation), that allows us to avoid such massive multiple
testing. In that publication, we employed FP-growth to extract
synchronous patterns, as we have done here for the more general
case of spatio-temporal spike patterns. Thus, we aim to employ
the statistical framework of SPADE to test for STPs. In the
following we summarize the various steps of the SPADE analysis
to assess pattern significance.

2.3.1. Pattern Spectrum Filtering
The first component of SPADE for assessing the significance
of closed frequent patterns found by FP-growth is Pattern
Spectrum Filtering (PSF). Instead of testing individually each of
the thousands of closed frequent patterns, statistical significance
is assessed for patterns of same size z and same number
of occurrences c, i.e., for each pattern signature (z, c). The
probability of having a pattern with signature (z, c) under the

null hypothesis H0 of independence is evaluated via a Monte-
Carlo technique on surrogate data which are generated from the
original data by dithering. By repeated generation of surrogates
and counting closed frequent item sets we implement the null-
hypothesis of independence. SPADE then determines the p-value
of each signature (z, c) as the fraction of surrogates that contain
closed frequent item sets with that signature, based on a large
total number K of surrogates. Here, differently from what was
necessary for the choice of the stability threshold, a large number
of surrogates is needed, because each one contributes with only
one instance (pattern of a certain signature (z, c) present or
not) to the Monte Carlo sampling. Since multiple tests are
performed (one per signature found in the original data), we
correct the significance level α using the false discovery rate
(FDR) correction (Benjamini and Hochberg, 1995). All patterns
mined in the original data with signatures (z, c) that have a p-
value smaller than the FDR corrected threshold are classified as
statistically significant.

2.3.2. Pattern Set Reduction
In Torre et al. (2013) we showed that the presence of repeated
occurrences of a real pattern A tends to increase the significance
of patterns resulting from the chance overlap of pattern A with
background activity. In other words, PSF correctly rejects FPs
entirely composed by chance patterns, but, in the presence of a
real pattern, it tends to overestimate the significance of patterns
resulting from chance overlap with background spikes. The
reason is that the size z and/or the occurrence count c of these
patterns are indeed not entirely due to chance, but are boosted by
the presence of the real pattern beyond the chance level that PSF
determined underH0.

Pattern Set Reduction (PSR), the last step of the SPADE
analysis, aims at removing these FPs by testing the patterns
filtered with PSF reciprocally for conditional significance. When
testing for a pattern A given a sub-pattern B of A (such that
zA > zB and cA < cB), PSR re-assesses the significance of A
through the p-value of the signature (zA|B = zA − zB + h, cA)
already stored in the p-value spectrum previously computed by
PSF. zA|B is a smaller value than zA, penalized by the presence
of B. Similarly, B is re-tested conditioning on the presence of A
by replacing its occurrence count cB with cB|A = cB − cA + k.
h and k are correction factors accounting for the fact that the
p-values of (zA|B, cB) and (zA, cB|A) are taken from the original
p-value spectrum, which is calculated over all time bins rather
than over the time bins only where A and B occur. In our study
we set h = 0, k = 2, which proved to be a good heuristical
choice in the validation of SPADE (see also Torre et al., 2013).
If only (zA|B, cA) is significant, the method retains A and discards
B, and vice versa if only (zB, cB|A) is significant. If both (zA|B, cA)
and (zB|A, cB) are significant, both patterns are kept. If neither
signature is significant, in light of the fact that PSF returned both
and, therefore, at least one of the two patterns should be a true
positive, PSR retains the pattern covering the largest number of
spikes, i.e., the patterns with the largest z × c score. For patterns
A and B that only partially overlap (A ∩ B 6= ∅, A 6⊂ B and
B 6⊂ A) the conditional tests are performed over the conditioning
pattern A ∩ B.
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3. RESULTS

We presented above two different techniques to distinguish
between chance patterns and selected STPs, based on stability
measures and based on statistical significance of signatures
(SPADE), respectively. Both of them take as input the concepts
mined with FP-growth and return those that are statistically
surprising because the assessed feature (stability or signature) is
significantly larger for these patterns than for chance patterns. In
this section we illustrate how each of the two methods performs,
both in terms of computational time and of false positives and
false negatives.

3.1. Computational Efficiency
We first compare the computational efficiency of the components
of the method by Yegenoglu et al. (2016) (fast-FCA, exact
stability) to the proposed components introduced in the section
above (FP-growth, approximate stability, PSF). Figure 2 shows
the runtimes of these components applied to simulations of
50 parallel, mutually independent Poisson spike trains with a
firing rate of 15Hz each. The runtime of these various analyses
components is evaluated on 10 data sets of different number
of spikes, achieved by data sets of different duration, increasing
from 1 to 10 s in steps of 1 s. The measured runtimes are marked
by symbols, and their fitting curves are shown as solid lines in
the same color. The profiling results were obtained on a compute
cluster with 32 nodes, each consisting of a 2 × Intel Xeon
E5 processor with 2.5 GHz processing speed and 8 × 16 GB
DDR4 RAM.

In Yegenoglu et al. (2016), we made use of the fast-FCA
algorithm introduced by Lindig (2000) after pre-processing the
data as described in 2.1.1. The runtime behavior of the fast-FCA
algorithm implemented in Python (same as used in Yegenoglu
et al., 2016) and shown in Figure 2 (red) is fitted by a function
which is quadratic in the number of spikes. Based on this function
we extrapolate the runtime of larger data sets, in particular to
the typical experimental data we aim to analyze, i.e., 100 parallel
neurons with an average firing rate of 15Hz of each neuron,
recorded for 15 s and, thus, containing a total of 22,500 spikes
on average. Mining the concepts in a data set of this size with
this implementation of fast-FCA would take about 68 days of
compute time. FP-growth (brown) is significantly faster and
exhibits a significantly slower and linear trend. For a data set of
the same size the runtime is 4.5 h instead. Thus, the speed up
gained by using FP-growth instead of FCA enables the extraction
of non-trivial patterns also from large-size data that were beyond
the reach of our previous approach. Therefore, we decide to base
our analysis on FP-growth.

The second step of our analysis is the computation of the
stability (intensional and extensional stability) of all non-trivial
patterns extracted by FP-growth, to filter out non trivial patterns
(2.2). The stability can either be computed exactly or can be
approximated by a Monte-Carlo approach (see 2.2.2). We show
here only the result for the intensional stability, since the runtime
for the calculation of extensional stability is approximately the
same (not shown here). The runtime necessary to derive the
stability as described in 2.2.4 is the sum of the time required

to compute the stability on the original, empirical data set for
each pattern and the time needed to compute its significance
threshold. The latter requires the generation of a surrogate data
set, the extraction of closed patterns, and the computation of
their stability. Thus, the total runtime of our stability-based
STP detection approach (see 2.2) is twice the time needed for
the calculation of the stability, plus twice the time consumed
by FCA (see 2.2.4). As shown in Figure 2, the computation
of the exact stability (green) dominates the total runtime,
increasing quartically with the number of spikes in the data. The
approximate stability (aquamarine), in contrast, has a runtime
which is several orders of magnitude smaller and shows a linear
trend.

Overall, replacing FCA by FP-growth and replacing exact
stability by approximate stability yields a compute time, which
is about three orders of magnitude smaller and, thus, enables
applications to data of unprecedented size.

The third and last step of the method that needs to be
investigated in terms of runtime is the calculation of the statistical
significance of the patterns bymeans of pattern spectrum filtering
(PSF) and pattern set reduction (PSR). To derive the p-value
for PSF for each signature, we need to generate at least 1,000
surrogate data, each of which requires to be analyzed by FP-
growth to extract closed frequent patterns in order to build up
the statistics for each signature. Therefore, PSF is quite compute
time intensive (Figure 2, blue—for a data set of 22,500 spikes
it would take about 1,366 days) if processed in a serial way
as shown here. Trivial parallelization (i.e., parts of the analysis
can be run independent from each other to save compute time)
of the analysis program can be applied to PSF, which absorbs
the majority of the computational load of the method and
reduces severely the computational time. To this end, the FIM
analysis on different surrogates can be distributed over different
computing cores and run in parallel. The independent results
(closed frequent patterns of each surrogate data set) are finally
collected to compute the p-value spectrum. The PSR runtime is
negligible (not shown here) since it is linear and it is applied
only to significant patterns which is typically a small number as
compared to the mined concepts. It does not directly depend
on the total number of spikes but on the actual significant
patterns. For this reason we do not consider it as a computational
component that might determine the computational feasibility of
SPADE.

3.2. Stochastic Models for Validation
The increased computational performance achieved by
combining FP-growth and approximate stability calculation
enables the application to larger data sets than previously
possible. We are, therefore, interested in generating ground
truth artificial data with comparable size and properties of data
typically obtained in electrophysiological recordings. To this end,
we follow the same approach taken in Yegenoglu et al. (2016)
and generate data consisting of a superposition of independent
background activity and repeated STPs. The background activity
is modeled by a set of N = 100 parallel independent Poisson
processes, each having a firing rate r which may be stationary or
variable over time, and identical or different across neurons, and
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lasts for a total period T = 1 s. An STP occurrence is modeled as
a temporal sequence of z spikes from the first z neurons (without
loss of generality) and with a constant time lag of 5ms between
successive spikes. Multiple occurrences of the STP are realized
by injecting the sequence at multiple, random times within the
simulation interval [0, T].

We first consider stationary data with three different constant
firing rates r ∈ {15, 20, 25Hz} for each of the 100 neurons.
Then, we test the performance of the method for a variety of
non-stationary data sets that mimic typical statistical features
of experimental data and have the tendency to generate FPs in
correlation analyses. In particular, we analyze artificial data that
include three different types of rate non-stationarity or variability
(see Figure 3):

1. Non-stationary firing rates over time by means of a sudden
rate jump, coherent across all neurons (Figure 3, top panel):
all neurons have the same firing rate, equal to 10Hz in the
intervals [0, 0.6 s] and [0.7, 1 s], and 60Hz in the interval
[0.6, 0.7 s];

2. Heterogeneity of the firing rates across neurons (Figure 3,
middle panel): firing rates are stationary over time but
different across neurons, and increase from 5Hz (for the first
neuron) to 25Hz (for the last neuron) in steps of 0.2Hz.
The spike trains in which the patterns are later injected are
randomly selected;

3. Short lasting, simultaneous, sequential rate jumps of subsets
of neurons (Figure 3, bottom panel): the 100 neurons are
grouped into 20 subsets of 5 neurons each. At two different
time onsets (50 and 550ms), the first group instantly changes
its firing rate from a baseline level of 14 to 100Hz for an
interval of 5ms. When group i goes back to baseline level
group i + 1 experiences the same rate jump (5ms later), i =
1, . . . , 19.

Models 1 and 2 were already used in Torre et al. (2013) to
explore the sensitivity of SPADE to rate variability. The third
model was introduced in Torre et al. (2016a) to validate another
method, called ASSET, designed for the analysis of sequences of
synchronous spike events in massively parallel spike train data.

In total, we use 6 different models of background activity,
three with different levels of stationary rates and three with
variable rates across times or neurons. We then vary, for each of
these models, the number z of neurons involved in an injected
STP and the number c of its repetitions from 3 to 10 in steps
of 1, for a total of (number of models × z × c) = (6 × 8 ×

8) = 384 parameter combinations. For each choice, we determine
the performance of our approaches in terms of the average
number of false positives (FPs) and false negatives (FNs), defined
below, obtained over 100 stochastic realizations of the respective
background model, yielding a total of 38,400 data sets to analyze.

3.3. False Positives and False Negatives
In pattern discovery, different definitions of false positives (FPs)
and false negatives (FNs) are possible. The identification of the
exact injected pattern is a clear example of correct identification
(true positive, TP), while the identification of a pattern being
completely disjoint from the injected pattern is a clear FP result.

FIGURE 3 | Different background models for non-stationary and

inhomogeneous data. Each row illustrates one model of the test data: top:

co-varying firing rates with a large rate step of all neurons; middle:

inhomogeneous but stationary rate of each neuron; bottom: coherent short

rate changes in subsets of neurons at consecutive time points. The columns

show from left to right: the underlying rate profiles, an exemplifying raster plot

of the spiking activity (one dot per spike), and a raster plot of the respective

background activity enriched with c = 5 injections of an pattern of size z = 5

(spikes in red).

Similarly, the complete non-detection of an inserted pattern
or subsets of it is an unambiguous FN outcome. Cases in
between are less clear and need to be defined. For instance, the
identification of a pattern whose spikes form a subset of the
real pattern may be considered, depending on the portion of
spikes of the found pattern relative to the true pattern, sufficient
for a correct identification (TP). Here we adopt the most strict
definition of a TP, i.e., classifying a found pattern as a TP if it
consists of all and only the spikes forming each occurrence of the
injected pattern. Otherwise, the pattern is detected as a FP and
the absence of TPs yields an FN outcome.

We compute two types of FPs. One is based on purely
independent data, i.e., we only realize the respective background
model without pattern injection. This provides us the FP level
which is purely resulting from the stochasticity of the processes.
The second type of FPs we are exploring are STPs that were
detected but were not the injected STPs. This is relevant if we
want to make sure that injected patterns are not forming new
patterns with the background activity. The results for the latter
ones are shown in figures below, the former ones will be just
mentioned.

For evaluation of FNs as a function of the signature (z,c)
of the injected pattern, we vary the parameters z, c between
3, . . . , 10 to get all combinations. For each signature we perform
R realizations of a given background rate model and insert a
pattern of size z and with c occurrences. We evaluate in how
many of the R realizations we detected the injected pattern. The
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resulting FN rate, i.e., the fraction of realizations in which we did
not detect the pattern divided by R, is entered in a matrix at the
signature z (x-axis) and c (y-axis). By varying the signatures and
performing this procedure again we fill the FN matrix.

For evaluation of the FP matrix, we use the same data as for
the FN evaluation. For each signature, we count the number
of realizations in which one or more patterns are detected as
significant that are not identical to the pattern injected. The ratio
of the realizations for which this occurred divided by the number
of realizations R is entered at the signature of the injected pattern.

In the next sections, we test the performance of our
approaches in terms of FPs and FNs on our artificial, simulated
test data.

3.4. Performance of Approximate Stability
In order to quantify the error introduced by the approximated
stability (2.2.2), we compute the exact and the approximate
intensional stability for all patterns extracted by the mining
technique (FP-growth) from synthetic data. We set the number
Z of subsets used for the Monte-Carlo approximation of the
stability to 500, while for the computation of the exact stability
all possible subsets are used. The data, already used in Yegenoglu
et al. (2016), comprised parallel spike trains from 50 neurons
firing independently of each other at a constant of rate r = 15Hz
each, for a total duration T = 1 s. In addition, we also generate
data sets containing in addition an injected STP. The STP consists
of z = 8 spikes from 8 different neurons, falling within a window
of duration w = 50ms. The STP is injected c = 9 times in
the data, at random positions in the simulation period [0, T].
We define the approximation error as the absolute difference
between the exact and the approximated stability values, both
computed for each pattern extracted by FCA. The distribution
of the errors greater than 0 is illustrated in Figure 4 (gray bars),
with an average error of 1.888 ∗ 10−3 and a maximum error of
0.14 (i.e., 14% of the max. stability value). However, no errors at
all (black bar in Figure 4) occur for the majority (282,510 out of
283,451, i.e., 99.67%) of the patterns. The results indicate that
approximating the intensional stability is a suitable alternative
to the computationally unaffordable calculation of exact stability
and, thus, allows one to apply approximate stability of data sets
of more than 50 neurons.

Furthermore, we test whether or not the (small) error
introduced by approximated stability does affect the performance
of STP detection. To that end, we compare the results gained
using exact stability and approximate stability to select significant
concepts applied to the very same data. The data are also identical
to the data analyzed in the previous study (Yegenoglu et al.,
2016) composed of 50 neurons, simulated for 1s with injected
patterns with parameters z, c varying between 3 and 10, with 100
realizations for each parameter combination. Significantly stable
concepts are detected if their stability crosses the threshold of
θint = 0.6, i.e., the same as used in Yegenoglu et al. (2016).
Figure 5 shows the results in terms of number of realizations
returning FPs (top) and FNs (bottom) out of 100 simulations
for each signature (z, c). The left column shows the results using
exact stability, the right column using the approximated stability.
The performances of both methods, both in terms of FPs and

FIGURE 4 | Error of approximate calculation of intensional stability. The

histogram shows the number of patterns (in logarithmic scale) as a function of

the absolute difference between the approximated and the exact intensional

stability of one simulated data set. The leftmost black bar represents the

number of patterns for which no difference occurs for the exact and the

approximated stability which is the majority of the patterns (99.67% ). The

largest absolute errors (rightmost bar) are in the range of 0.13–0.14 and occur

for 4 out of 283,451 total patterns. The average error (including also the error

equal to 0 , black bar) is 2.189× 10−4.

FIGURE 5 | Comparison of pattern selection based on exact and

approximate stability. The left column shows the FP matrix (top) and the FN

matrix (bottom) for FCA analysis followed by exact stability filtering. The right

column shows FP and FN after application of the approximate stability filter

instead. For both approaches the threshold for the stability was > 0.6 for

filtering the patterns. Each element of the matrices contains the FP or FN rate

for a particular signature (z, c) of pattern size z (horizontal axis) and occurrence

count c (vertical axis). The data analyzed are Poisson data (N = 50 neurons

with stationary rate r = 15Hz) with STPs injected with the respective

signatures. R = 100 simulations are performed for FP/FN extraction.

FNs, are qualitatively identical (maximum of the absolute value
difference of the two matrices smaller than 0.1 for the FP-rate as
well smaller than 0.5 for the FN-rate and randomly distributed
across the matrix entries), showing that the error introduced by
the Monte-Carlo approximation of the stability is negligible.
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3.5. Validation on Artificial Data
We assess and compare now the performance in terms of FPs and
FNs of the two variants of our analysis method, i.e., one that filters
patterns on the basis of their stability and the other based on
significance evaluation. We use the test data described in 3.2, i.e.,
data with a certain type of background activity (three different
types with stationary rates, and three types with time-varying or
inhomogeneous firing rates), and combined with injected STPs
of a certain signature (z, c). For each data model, we generate
R = 100 realizations (data sets), analyze each of them for the
occurrence of STPs surviving the filtering process.

3.5.1. Stability Based Filter Results for Stationary

Data
We first examine the performance of pattern filtering based on
intensional (or extensional) stability. After choosing one of the
two measures, this approach classifies patterns found by FP-
growth as stable (and, thus, retains them as reliably reoccurring
patterns) if their stability exceeds a pre-determined threshold θ .
As explained in 2.2.4, we derive θ as a chosen quantile of the
null distribution of stability values, obtained from independent
data. We set the overall significance level to α = 0.01 and set θ

to the percentile corresponding to the Bonferroni corrected level
αcorr =

α

total number of concepts tested
.

To obtain stable patterns by application of the stability
evaluation we make use of surrogate data, i.e., independent data
generated by dithering (see 2.2.4) from the original data, to
derive the null distribution and, thus, the stability threshold θ .
For our extensive validation of data containing injected STPs
we would have to derive the stability threshold for each of the
total 100 × 6 × 8 × 8 = 38, 400 (see Section 3.2) data sets. To
avoid suchmassive computations, wemake use of the assumption
that the few additional spikes injected by insertion of STPs do
not change the null distribution of the stability values under the
hypothesis of independence. Therefore, to evaluate FPs and FNs
across all these scenarios, we derive a single stability threshold
θ for all models with the same background rate as follows: we
generate 100 data sets with independent background activity
according to the rate model, and derive θ as the 95% quantile
of the empirical distribution of pattern stability values in this
case where no patterns were inserted. This threshold is then used
for the assessment of FPs and FNs in all 64 models with the
same background rate but containing STPs of different size and
occurrence count. This approach, was already used in Torre et al.
(2013) and was shown to be appropriate (see Yegenoglu et al.,
2016), since the distribution of θ is not affected by the insertion of
a few STP spikes. In addition, this approach makes our validation
considerably (64 times) faster.

3.5.1.1. Performance of intensional and extensional stability
We first analyze stationary data with constant firing rates, r ∈

{15, 20, 25Hz} containing injected STPs. We filter the patterns
found by FP-growth on the basis of either their intensional
or their extensional stability, and calculate the corresponding
significance thresholds θint and θext as explained above. In the
following, only the results for r = 25Hz are shown, as those
for r = 15Hz and r = 20Hz are comparable and lead to

identical conclusions. The FPs on purely independent data sets
(only background activity) as defined in 3.3 has a FP rate of 0.01,
i.e., in only 1% of the total realizations of the independent data
FPs are detected (not shown).

Then we evaluate the performances for data with injected
patterns. In the columns on the left of Figure 6, we show the FP
and FN matrix for the analysis using intensional and extensional
stability, respectively. Each entry in the matrices corresponds
to one signature (z, c) of the injected pattern, and the color-
coded value represents the FP (top panels) or FN (middle panels)
rate. The FP rates for both, the intensional (left column) and
the extensional stability (second column from left), are low,
but somewhat higher (some times at 0.05, marked by circles in
Figure 6) than for FPs in purely independent data.

The FN rates (Figure 6, middle row) are large (often close to
maximum) for about half of the matrix elements for both stability
measures but differ in respect to the signatures at which they
occur. For intensional stability, the FNs are large for the whole
range of z , but only for small c (about 3–6), and decrease abruptly
for larger c. In contrast, when filtering with extensional stability,
the FNs are high for all c, but only for small z (about 3-6) and
decrease for larger z. These results are not unexpected since, as
explained in 2.2, intensional stability is almost exclusively affected
by the number of occurrences of a pattern, while extensional
stability is emphasizing the number of spikes forming a pattern.
Nevertheless, these are undesired results, since in independent
data chance patterns decay with their number of occurrence
and the pattern size (see e.g., Torre et al., 2013) and, thus, we
expect that the border of selected patterns should also decay as a
function of the combination of both parameters.

3.5.1.2. Combined stability
Aiming at a method whose FNs decay with the size z and the
occurrence count c of the patterns, we combine the filtering
criteria based on intensional and extensional stability. This
approach keeps all concepts whose intensional or extensional
stability value is larger than the respective thresholds. This
procedure applied to independent data leads to a maximum FP
rate equal to 0.02 (not shown), and can be explained by the
application of two tests on the data. The results for the data sets
containing the STPs are shown in the third column from left
in Figure 6. The FP rate is again smaller than 0.05 for most of
the entries, and higher than 0.05 for entries in the right bottom
corner of the matrix, which result from data sets that contain
patterns of large size occurring only 3 times and easily combine
with background spikes and, therefore, become significant. The
FNs instead decrease gradually, both as a function of pattern
size z and of the pattern count c. Thus, the combined filter
retains large patterns due to their high extensional stability, and
patterns with a large occurrence count due their high intensional
stability.

3.5.2. Significance based Filter Results for Stationary

Data
For further comparison we analyze the same data as above using
FP-growth followed by PSF and PSR.We set the significance level
for the PSF to α = 0.01, corrected by the number of different
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FIGURE 6 | Performance in terms of FPs and FNs for stationary data. The results shown here are all for the data model in which all neurons have a stationary

firing rate of 25Hz. All data sets consist of 100 neurons simulated for 1 s. The parameters used for FP-growth are a bin size of 1ms and a window length of 50ms. We

show the results for all types of injected patterns entered at their respective signature [64 signatures, all possible combinations for the size z (x-axis) and the number of

occurrences c (y-axis)]. Size and number of occurrences are varied between 3 and 10. For each pattern signature we perform and analyze 100 realizations. Each

matrix element (signature) shows the fraction of realizations for which the filtered results contain one or more FPs (top row) / FNs (middle row). The bottom row shows

the maximum rate of either the FPs or the FNs. First column: Results of the intensional stability filter, using a significance level of α = 0.01 and Bonferroni corrected,

yielding a stability threshold of θint ≈ 0.55. Second column: Results of the extensional stability filter and stability threshold of θext ≈ 0.8 resulting from the same

significance level as for the intensional stability. Third column: Results of the combined stability filter, where the Bonferroni correction was adjusted by a factor 2 to

account for each concept being tested twice (once for the extensional and once for the intensional stability). Fourth column: Results of PSF. Significance level

α = 0.01, corrected with the FDR criterion. Fifth column: Results of PSF+PSR. Significance level α = 0.01, corrected with the FDR criterion. The PSR parameters are

set to h = 0, k = 2.

pattern signatures in the data using FDR correction. Note
that when setting the threshold for extensional and intensional
stability we use the more conservative Bonferroni correction
instead, because FDR did not provide an adequate compensation
(i.e., it leads to a large number of FPs, not shown here).

The FP rate of independent data is as for the stability
filtering smaller or equal to 0.01 (not shown). In the independent
data, PSF alone suffices to achieve this performance. PSR is
not necessary, because the probability that completely chance
patterns exceed the PSF significance threshold and overlap is
close to 0. In contrast, PSR is a critical step for data containing
non-chance patterns, where it is designed to remove the false
positives found by PSF due to the overlap of the true patterns
with the background activity. Without correcting for overlapping
patterns the results show very high FP rates for any combination
of size and number of occurrences of the patterns (Figure 6,
fourth column, top). Using PSR the FP rates for data with injected
patterns (Figure 6, right column, top) are similarly low as for the
other approaches, i.e., at the level of 0.05. Some FPs have a FP rate
larger than 0.05, and occur for data containing injected patterns
with large size and small number of occurrences (c = 3) . As for

the other methods, these FPs are due to combinations of injected
patterns and background activity. The FNs decay as a function
of z and c, but much faster than the combined stability approach
(Figure 6, right column, middle). The PSR moderately increases
the number of FNs for patterns with few neurons occurring often
or composed by many spikes and occurring few times. This is
due to the fact that these are the two conditions in which it is
more likely to have one or more spikes of the noise background
that overlap by chance with the injected pattern forming a larger,
more significant pattern. Such chance overlap may cause the
rejection of the injected pattern in the PSR.

Counting the number of STPs obtained after each step of
the of the method clarifies the impact of that step on the
overall performance. While these numbers change in magnitude
depending on the parameters (z, c) of the injected pattern,
their proportion between different steps of the method was
very similar across different values of (z, c). We can, therefore,
illustrate the results for one specific configuration (z = 10, c =

10). Each step is maximally effective if the number of STPs it
keeps as non-chance patterns is 1 and if this pattern is the single
injected pattern. For z = c = 10, we obtained on average:
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(a) 1089.92 STPs after FIM (which retains all frequent closed
patterns), (b) 2 STPs after either the combined or the intensional-
only filtering, and 1 STP after extensional-only filtering, (c)
24.41 STPs after PSF, and (d) 1.02 STPs after PSF+PSR (almost
exclusively the injected pattern).

In conclusion, based on the validation of stationary data,
the approach based on PSF and PSR, i.e., the SPADE method
extended to spatio-temporal patterns, performs best and has the
highest detection power as compared to the methods based on
stability analysis. Even the combined stability analysis that uses
the two stability measures independently has a smaller range
of signatures with low FNs and improves only if at least one
of the patterns’ parameters z or c is large enough. In contrast,
SPADE is also sensitive to the total number of spikes (z × c)
in the patterns. Thus, both approaches (stability or significance
based) show the desired feature of (a) small number of FPs,
(b) decreasing number of FNs for increasing (z, c). However,
SPADE produces a smaller total number of FNs for comparable
FP rate and, thus, has the best performance. We finally note that
the patterns found by extensional stability filtering were almost
always found by PSF+PSR too (which is slightly less conservative,
and which was less prone to false negatives). Thus, combinations
of these two selection criteria do not seem a valid option here. For
instance, retaining all patterns found by any of the two criteria
would be often identical to accepting the results from PSR+PSR.
Retaining only patterns found by both would most of the times
be equivalent to accepting the results from extensional stability.
Both options would additionally sum the computational costs of
the two methodologies.

3.5.3. Performance of SPADE in the Presence of

Multiple STPs
The experiments illustrated so far were performed on data
containing a single true STP, which the method was able to find
with high reliability. Real data, however, are likely to contain
STPs from more than one group of neurons. Experimental
studies (e.g., Riehle et al., 1997; Torre et al., 2016b) revealed,
for example, an abundance of synchronous spike patterns arising
during task execution. Torre et al. (2016b) used the original
version of SPADE, demonstrating its ability to retrieve multiple
synchronous patterns, when present. To demonstrate that our
extended method can achieve the same for STPs, we investigated
an additional scenario with data containing two different types of
injected STPs. Both STPs had size z = 5, were injected c = 10
times, and had an inter-spike delay of 5ms. We generated 100
realizations of this model. At each iteration, the neurons involved
in each STP were selected randomly, but such that they would not
form two identical sets. We obtained no FPs and no FNs. For the
realizations where the two patterns overlapped, PSR successfully
retrieved them, while correctly rejecting their intersection as a
FP. This demonstrates that SPADE can indeed cope well with
complex scenarios entailing multiple, even overlapping STPs.

3.6. Validation of SPADE on
Inhomogeneous Data
From the validation on stationary data we conclude that
SPADE performs better than filtering methods based on stability

measures. Therefore, we now concentrate on the SPADE method
only. We aim at evaluating the performance of SPADE on data
that mimic more closely features of experimental data, such as
non-stationarity of firing rates in time and inhomogeneous firing
rates across neurons. In particular, we study three cases (firing
rate co-modulation, rate hetereogeneity across neurons, and rate
change propagation, as introduced in 3.2) that are known to
be potentially strong generators of false positives for correlation
analysis methods for (see e.g., Grün et al., 2003; Grün, 2009; Louis
et al., 2010; Torre et al., 2016a). The results are shown in Figure 7.

The FP rate of the analysis of data with injected pattern is
generally low (less than 0.05), for all three types of data. For
firing rate co-modulation and rate inhomogeneity the FP rate
is often virtually zero (white squares) but is somewhat more
homogeneously at 0.05 for rate change propagation. This is
somewhat surprising that such successive increases of firing rate,
occurring repeatedly, do not elicit a higher level of FPs. The FNs
decay with z and c in all three scenarios and fastest for the rate
propagationmodel. Interestingly, these results are not worse than
for the stationary data, meaning that SPADE can deal well with
data that contain features that are typically generating FPs. In
conclusion, SPADE can tolerate coherent rate non-stationarities
and inhomogeneous rates and, thus, is qualified to be applied to
experimental data.

3.7. Summary of the Validation Results
Our validations highlight the following aspects:

• fast-FCA and FP-growth lead to identical mining results,
however, the better computational performance of FP-growth
allows one to mine concepts of real-sized data (100 or more
neurons recorded over several seconds).

• Stability (approximate) filtering and significance filtering (the
combination of PSF and PSR, i.e., SPADE) are efficient
statistical techniques to reject chance patterns in independent
(STP-free) data, as they all exhibit a small FP rate (< 1% for
PSF+PSR, intensional stability and extensional stability; < 2%
for the combined stability filter).

• FPs on data with injected patterns shows that all methods
perform about the same with FPs on the 5% level.

• Significance filtering (SPADE) is the technique that best
detects injected STPs in the data, exhibiting a FN rate below 5%
for patterns with lower size or occurrence counts than stability
filtering.

• These considerations for SPADE also hold for data with highly
variable firing rates over time and across neurons, which
suggests that the combination of FP-growth, PSF and PSR is
the best technique to detect STP in real recordings.

• At the same time the stability based analyses, which have an
equally low FP rate, although less sensitive to the presence of
STPs, is applicable to particularly long recordings for which
PSF is computationally not feasible.

4. DISCUSSION

The ever growing number of neurons that modern
electrophysiological techniques allow to record in parallel
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FIGURE 7 | Performance of SPADE on non-stationary and inhomogeneous data. SPADE is applied to stochastic simulations of different rate data models, left

column: rate coherence, middle column: rate heterogeneity, right column: rate propagation. For the FP rate (top row) and FN rate evaluation (middle row), patterns of a

given size z and number of occurrences c are inserted into the same background rates (given by the data model). In the bottom row, the maximum of FP or FN of

each (z,c) signature is shown. The same settings are used for FP-growth and SPADE as in Figure 6.

provides access to the coordinated spiking activity of neuronal
populations of unprecedented size. The investigation of
millisecond-precise spatio-temporal spike patterns (STPs) in
large scale recordings becomes, therefore, possible. However,
suitable analysis techniques have been lacking so far due to the
exponential growth of the number of STPs in such large data,
which yields severe computational and multiple testing issues.

Here we addressed this problem by introducing a method,
named SPADE (spatio-temporal Spike PAttern Detection and
Evaluation), that extracts STPs from massively parallel spike
train data and assesses their statistical significance under the
hypothesis of spike independence. SPADE builds on and brings
together two techniques that we had previously introduced for
the identification of STPs in massively parallel spike trains
(Yegenoglu et al., 2016) and for the statistical evaluation of
patterns of synchronous spikes (Torre et al., 2013). The latter
avoided the computational and multiple testing issues that
usually prevent applying such analyses to large data sets. The
underlying pattern mining algorithm FP-growth, however, was

implemented such that the technique was applicable for the
discovery of synchronous spike patterns only. A restructuring of
the input data format (“attribute scaling” in the language of FCA,
see Ganter and Wille, 1999) allowed us now to use FP-growth
(or similar frequent pattern mining techniques, see e.g., Borgelt,
2012) to extract more general STPs. Thus, FP-growth served
here the same purpose that fast-FCA served in Yegenoglu et al.
(2016), that is, counting the occurrences of non trivial repeating
patterns (there named “intents”). As known from the literature
(Zaki and Ogihara, 1998) FIM and FCA yield results that can be
mapped one to one onto each other: they extract closed frequent
itemsets / formal concept intents including their occurrence
count. Our implementation of FP-growth, however, proved to be
much faster than the state-of-the-art implementations of the FCA
algorithms available to our knowledge. Soon, a C implementation
of the FCA’s In-Close algorithm (Andrews, 2009) will be made
available by S. Andrews, N. Kodoga and colleagues, which may
provide a mathematically equivalent but computationally even
faster algorithm to mine re-occurring STPs.
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SPADE assesses the significance of the patterns identified by
FP-growth or equivalent algorithms via the same analysis steps
as in Torre et al. (2013). First, pattern spectrum filtering (PSF)
is used to determine the p-value of signatures (z, c), i.e., pairs of
pattern size z and occurrence count c, and retains patterns with
significant signatures only. The number of different signatures in
data is typically orders of magnitude smaller than the number
of different patterns. Thus, testing for the signatures reduces
the multiple testing problem to a size that can be handled with
standard statistical corrections, such as false discovery rate. Then,
pattern set reduction (PSR) is applied to test all patterns identified
by PSF, conditioned on the presence of any other pattern in the
remaining list. This allows one to distinguish, among overlapping
patterns, the genuine ones from those that can be explained
as a chance overlap of real patterns with background spikes.
Validation on test data generated by different stochasticmodels of
STPs injected into background activity demonstrated the ability
of the method to discriminate real and chance STPs, ensuring low
false negative (FN) and low false positive (FP) levels despite the
large number of STPs to test (up to millions). For example, in
simulated data consisting of 100 neurons spiking independently
at an average rate of 15Hz each for a period of 1 s, an injected
STP was successfully isolated from the background activity as
soon as it involved at least 5 neurons and it repeated 3 times,
or it involved as low as 3 neurons and repeated 5 or more
times. The method showed high power (FN rate lower than 5%)
and reliability (FP rate lower than 5%) in different scenarios
replicating various features of the firing rates often observed in
experimental data, which typically represent strong generators of
FPs (Louis et al., 2010). These include abrupt and coherent rate
changes over time, largely different firing rates across neurons,
sudden rate changes propagating from one group of neurons to
the other. Our method performs well in all of these scenarios.

Besides qualifying STPs as excess patterns on the basis of
their statistical significance, we additionally explored various
ways to extract them from background activity on the basis of
their extensional or intensional stability. In FCA terminology, the
extent of a concept in our context (frequent closed pattern) is the
set of windows the patterns falls into. The intent of a concept is
its composition, i.e., the neuron index and time index (within the
window) of each composing spike. Intensional stability quantifies
the tendency of a pattern occurring in a set of windows to be
the largest pattern common to those windows (or any subset
thereof). Low intensional stability indicates that the intersection
of any number of those windows tends to contain supersets of
that pattern and, therefore, that the pattern occurrences may
have been the result of intersections of fewer occurrences of
different larger patterns. Similarly, extensional stability quantifies
the tendency of a set of windows to contain a subpattern of
the pattern which comprises its intent, such that the subpattern
is not found in any window that does not contain the pattern.
Intensional and extensional stability are used as indicators of
how reliably the pattern can be considered as a genuine event,
rather than the sum of occurrences of larger patterns or the
superposition of smaller patterns occurring in the same time
segments, respectively. In Yegenoglu et al. (2016) we explored
the use of intensional stability to isolate reliably re-occurring

STPs from high background activity. The exact computation
of the stability of each pattern, however, is computationally
very demanding, and was possible only on data comprising a
maximum of 50 neurons simulated for a few seconds. Here
we adopted the Monte-Carlo based approximation of stability
introduced by Babin and Kuznetsov (2012), which allowed us to
speed up the computation by several orders of magnitude while
introducing negligible errors and, thus, enabled the application
of intensional as well as extensional stability based pattern
filtering to larger data. In particular, we computed a statistical
threshold for both intensional and extensional pattern stability,
using independent surrogate data, and we filtered out patterns
whose (intensional, extensional, or both) stability values were
lower than the respective thresholds. Compared to the previous
approach based on pattern significance, all of these stability-
based criteria were computationally less demanding but yielded
increased FNs, especially when the injected STP to be retrieved
had low pattern size. Nevertheless, other combinations of these
approaches may be envisioned in the future to improve the
performance of the method even further if evenmore spike trains
become available in parallel.

Existing methods for the identification of repeating STPs are
either not applicable to data sets of large size, or limit the search
to patterns with specific features (of fixed, usually small size,
or exhibiting specific inter-spikes intervals such as synchronous
patterns). SPADE does not suffer from these limitations thanks
to a combination of attribute scaling, fast frequent item set
mining, and a hierarchy of tests of pattern significance, which
avoids severe multiple testing. Its extensive validation ensures
its reliability in applications to real data, as well as to simulated
data resulting from network models. SPADE can be applied not
only to spike data, but also to any data consisting of parallel
point processes, such as discretized calcium imaging data (e.g.,
Roth et al., 2012), discretized voltage-sensitive dye imaging data
(Ayzenshtat et al., 2010) or discretized MEG recordings (e.g.,
see Tal and Abeles, 2016). In the work of Ayzenshtat et al.
(2010) and Tal and Abeles (2016) the authors defined and
extracted special events from their analog recordings (voltage-
sensitive dye imaging and MEG, respectively) and reduced them
to point events. In the published work they analyzed subsets
of the resulting parallel point processes for pair-wise of triple-
wise correlations or spatio-temporal patterns, respectively, and
identified those in relation to the behavior. With SPADE the
complete data sets from these recordings (i.e., massively parallel
point processes) could be analyzed. The analysis time scale is
thereby not restricted to milliseconds (as employed here) but
can be freely adjusted depending on the research question. The
analysis time scale is not restricted to milliseconds (as employed
here) but can be freely adjusted depending on the research
question.
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