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Tadej Petrič 1, 2*†, Cole S. Simpson 1, 3, 4 †, Aleš Ude 2 and Auke J. Ijspeert 1

1 Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2Department of Automatics,

Biocybernetics and Robotics, Jožef Stean Institute, Ljubljana, Slovenia, 3George W. Woodruff School of Mechanical

Engineering, Georgia Institute of Technology, Atlanta, GA, United States, 4Mechanical Engineering Department, Stanford

University, Stanford, CA, United States

While movement is essential to human wellbeing, we are still unable to reproduce the

deftness and robustness of human movement in automatons or completely restore

function to individuals with many types of motor impairment. To better understand how

the human nervous system plans and controls movements, neuromechanists employ

simple tasks such as upper extremity reaches and isometric force tasks. However, these

simple tasks rarely consider impacts and may not capture aspects of motor control that

arise from real-world complexity. Here we compared existing models of motor control

with the results of a periodic targeted impact task extended from Bernstein’s seminal

work: hammering a nail into wood. We recorded impact forces and kinematics from 10

subjects hammering at different frequencies and with hammers with different physical

properties (mass and face area). We found few statistical differences in most measures

between different types of hammer, demonstrating human robustness to minor changes

in dynamics. Because human motor control is thought to obey optimality principles,

we also developed a feedforward optimal simulation with a neuromechanically inspired

cost function that reproduces the experimental data. However, Fitts’ Law, which relates

movement time to distance traveled and target size, did not match our experimental

data. We therefore propose a new model in which the distance moved is a logarithmic

function of the time to move that yields better results (R2 ≥ 0.99 compared to R2 ≥ 0.88).

These results support the argument that humans control movement in an optimal way,

but suggest that Fitts’ Law may not generalize to periodic impact tasks.

Keywords: motor control, biomechanics, upper extremity, optimal control, arm movement, impact, Fitts’ Law

INTRODUCTION

Movement is essential to human wellbeing. However, the control of movement is a very difficult
problem. To produce deft and robust movements, the human nervous system must continuously
control over 600 muscles while handling nonlinearities, nonstationarities, delays, noise, and
uncertainties (Franklin andWolpert, 2011). Despite these difficulties, humans move with apparent
ease. However, human motor capability may become impaired due to age, illness, or injury.
Robotic systems are also faced with many of the same challenges (Egeland et al., 1991; Park, 2002;
Guigon et al., 2007; Peters et al., 2009), but meet with much less success than their healthy human
counterparts (Yang et al., 2011; Vanderborght et al., 2013). A better understanding of the roles that
the nervous and musculoskeletal systems play in producing movement will likely lead to advances
in rehabilitation and robotic control.

Many neuromechanists employ simple tasks to study the nervous system in action under
controlled conditions. Isometric tasks in which subjects interact with an immoble force sensor and
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reaching tasks in which the hand is moved from one
point to another are commonly used to study sensorimotor
learning (Rotella et al., 2015), movement control (Fitts, 1954),
and neurophysiology (Shadmehr and Krakauer, 2008) in the
upper extremity. Subjects may also be asked to interact with
robotic co-workers that can record reaching dynamics (Burdet
et al., 2001), generate disturbances, or create force fields
(Shadmehr and Mussa-Ivaldi, 1994) during these tasks. When
carefully considered, these experiments can provide a wealth of
information on how the nervous system controls movement.
However, these tasks are greatly simplified from real-world tasks.
To study more complex tasks, some researchers have developed
simple games, such as conkers, to study sensoriomotor learning
(Sternad et al., 2011). However, even these studies simplify real-
world tasks and rarely consider certain features of real-world
tasks such as impacts.

Despite many possible ways to performmost tasks (Bernstein,
1967), upper extremity movements are highly stereotyped.
Researchers note consistent characteristics such as bell-shaped
velocity curves (Hollerbach and Atkeson, 1987; Berardelli et al.,
1996) and speed-accuracy tradeoffs characterized by Fitts’ Law
(Fitts, 1954; Bootsma et al., 2004; Zhai et al., 2004). Fitts’ Law
expresses the time to complete a reach as a logarithmic function
of the size of the target and the distance to the target (see
Equation 1). In experiments relating to Fitts’ Law, the kinematics
(the beginning and final position of the arm or cursor) are
prescribed and the subject is left to determine the time to reach.
In certain periodic movements however, the time to complete an
upper extremity movement can be specified and the subject left
to determine the kinematics.

Movement is constantly refined by biological processes such as
learning and evolution (Todorov, 2004). Because of this constant
refinement, many researchers note that optimal control models
utilizing cost functions such as minimum variance (Harris and
Wolpert, 1998), minimum effort (Crowninshield and Brand,
1981), minimum jerk (Flash and Hogan, 1985), and minimum
torque change (Uno et al., 1989) can be excellent models for
the nervous system. In fact, many of the observed stereotypical
behaviors discussed in the previous paragraph can be explained
by optimality principles. Optimal control models have been used
to reproduce human-like behaviors such as reaches (Todorov
and Li, 2005), walking (Anderson and Pandy, 2001), and
jumps (Anderson and Pandy, 1999; Ong et al., 2016). Though
occasionally studied (Côté et al., 2008; Müller and Sternad, 2009),
one activity that remains conspicuously unmodeled is Bernstein’s
hammering task (Bernstein, 1967; Müller and Sternad, 2009) that
inspired much research into motor control and learning.

Here we extend Bernstein’s hammering task into a targeted
periodic impact task. We recorded impact forces and upper
extremity kinematics in hammering. In order to examine how
hammering strategies might change with different conditions,
we used a set of hammers with different physical properties
(hammer face area and mass) and prescribe different hammering
frequencies. We hypothesized that hammering impact velocity
and maximal height attained are the result of a tradeoff
between maximizing task performance (quantified here as a
maximal impact velocity) and minimizing effort (Crowninshield

and Brand, 1981; Nelson, 1983). In order to test whether
the mechanics of this task adhere to current theories in
optimal human motor control, we implemented a feedforward
optimal controller (Todorov, 2004) on a planar torque-driven
3-segment dynamical model of the upper extremity holding
a hammer (Figure 8) using model parameters from Winter
(2009). Our results show that humans appear to select optimal
impact velocities that reflect a tradeoff between accomplishing
the task and minimizing effort that do not adhere to
Fitts’ Law.

METHODS

Subjects
Ten healthy male volunteers (age = 27.6 ± 3.6 years, height
= 176.9 ± 5 cm, weight = 77.7 ± 11.2 kg) participated in
the study. All subjects were right-handed and had no known
neuromotor or sensory disorders (self-reported). Prior to their
participation, subjects were informed of the course of study
and gave their written informed consent in accordance with
the code for ethical conduct in research at the Swiss Federal
Institute of Technology (EPFL). This study was approved by
the EPFL Human Research Ethics Committee (HREC No.: 008-
2015/17.08.2015).

Experimental Protocol
Each subject was asked to step in front of a table on top of
which was a wooden board mounted on a force plate (Kistler
Instrument AG, Winterhur, Switzerland) as shown in Figure 1.
Subjects were given one of four differently sized and weighted
hammers (Table 1) and asked to drive a pre-started nail, i.e., a
nail that had previously been driven to the point at which it
would stand on its own, into the wooden board while matching
their hammer strikes to the clicks of a metronome. Please note
that subjects were not explicitly instructed to strike with their
maximum impact speed but were allowed to self-select the
best impact speed for their skill level. The metronome was set
to one of five frequencies: 1, 2, 3, 4, or 5 Hz. The hammer
used and metronome frequency for each trial were randomized.
Note that subjects were not allowed to do a training trial
first, but we assume that the random trial order cancels any
learning effects. Subjects were allowed to use their nondominant
hands to stabilize the wooden board. In each trial, the forces
on the wooden board and the kinematic motion (14 Prime
Series cameras, OptiTrac, USA) of the upper extremity and
hammer were recorded at 1 kHz and 250 Hz, respectively.
After completing the experimental trials, subjects were asked to
subjectively rank each of the hammers in order frommost to least
preferred.

Data Processing
Statistical analyses were performed using the Statistics and
Machine Learning Toolbox inMatlab.We calculated the hammer
velocity, average maximal heights of the hammer, average
times required for the hammer to go from maximal height to
impact, and average maximal impact forces during hammering
for each subject. We then used these average values from
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FIGURE 1 | Experimental setup of the study. Each subject was asked to stand

in front of a table on top of which a wooden board was placed on a force

plate. Subjects were given one of four differently sized and weighted hammers

at random and asked to drive a nail into the wooden board. The hammering

frequency was controlled by asking each subject to match their hammer

strikes with the clicks of a metronome. The forces on the wooden board were

recorded by the force plate and the kinematic motion of the subjects’ arms

and of the hammer were recorded using an optical motion capture system.

TABLE 1 | Specifications of the hammers used in these experiments.

Hammer Face size [cm × cm] Weight [kg]

Small heavy 1.4× 1.4 0.402

Small light 1.4× 1.4 0.218

Big heavy 2.2× 2.2 0.394

Big light 2.2× 2.2 0.217

each subject for statistical analyses. We investigated the effects
of time to impact, maximum height of the movement, and
maximal force normalized with the hammer weight using two-
way repeated-measures ANOVA with independent variables
[hammers(4)×(frequency(5)]. The effect of maximum height of
the movement, and maximal force normalized with the hammer
weight for each combination of hammers and frequency was
further determined using one-way repeated measures ANOVA.
The differences between maximal heights and the differences
between the normalized maximum forces at impact were
tested with post-hoc t-tests with Bonferroni correction. The
level of statistical significance used was 0.05 for all statistical
tests.

Modeling
In order to determine whether human hammering strategies
adhere to Fitts’ Law (Fitts, 1954; Bootsma et al., 2004; Zhai et al.,
2004), we attempted to fit Fitts’ model,

Tf = a+ b · log2(2D/W), (1)

with data collected in our experiment. In this formulation, the
movement time, Tf , is a function of the distance from the
hammer at peak height to the nail, D, and the face width of the
hammer, W. The values of a and b were selected using a least
squares difference regression.

In order to examine whether the human nervous system
uses optimality principles to control hammering movements,
we employed a feedforward optimal controller on two joints
(shoulder and elbow) while the wrist was maintained at a
desired position with an impedance controller. The human arm
holding a hammer was modeled as a 3 link torque-driven robot
operating in the saggital plane (Figure 8, right-hand column)
whose parameters were computed based on data from Winter
(2009) (see Appendix for more details) and whose dynamics are
given by

τ + JTFe = H(q)q̈+ h(q, q̇)+ g, (2)

where τ is a vector of joint torques, q, q̇, and q̈ are vectors
describing the joint angular position, velocity, and acceleration
respectively, H(q) is the inertia matrix, h(q, q̇) consists of the
Coriolis, centrifugal, and viscous friction force vectors, g is the
gravity force vector, Fe is a vector representing external forces
(zero throughout the simulation), and JT is the transpose of the
Jacobian matrix. The model was simulated inMatlab using a time
step of 0.001 s beginning at the instant after one impact and
terminating at the time of the next impact.

Human hammering is a difficult control task due to the need to
balance energy transfer to the nail with accuracy. We hypothesize
that the human nervous system determines an optimal tradeoff
between maximal impact velocity (complete the task in the most
effective manner) and minimal effort (Crowninshield and Brand,
1981; Nelson, 1983; Missenard and Fernandez, 2011). We thus
determine the optimal joint torques by minimizing the cost
function,

Cost = (1− α)

∑n
i=1

∑T
j=1 τ 2i,j

Cτmax

− α
yT−1 − yT

Cẏmax

, (3)

where τi,j represents joint torques for i = 1, . . . , n joints over
j = 1, . . . ,T discretized time points, yT and yT−1 are the vertical
positions of the hammer head at the last and second-to-last
time points of the simulation, 0 ≤ α ≤ 1 was designed as
an expertise factor to represent the tradeoff in relative emphasis
between impact velocity and effort (large α places more emphasis
on energy transfer to the nail and a small α places more emphasis
on effort conservation), Cτmax is a scaling factor representing
maximal effort (i.e., if maximal torque is applied for the duration
of the simulation), and Cẏmax is a scaling factor representing the
maximum achievable impact velocity. We compute Cτmax as the
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discrete integral of the joint torque limits (whichever direction
has the larger magnitude) over the length of the simulation and
Cẏmax by simulating a hammer trajectory in which α = 1 and
Cẏmax = 1. Because maximum effort and final velocity depend
on the length of the simulation, we computed unique values of
Cẏmax and Cτmax for each hammering frequency. We constrain
the model so that the hammer hits the same place in subsequent
impacts ((x0, y0) = (xT , yT)) and there is no initial velocity
((ẋ0, ẏ0) = (0, 0)). We match the initial posture (location of
(x0, y0) relative to the simulated shoulder) to the average posture
used by our subjects determined by inverse kinematics. The
terms, Cτmax and Cẏmax , are scaling factors included to facilitate
direct comparison of the two terms making up the cost function,
minimum effort and maximum final impact velocity. In order
to determine whether the parameter, α, is constant within or
across individuals, contours of constant α were generated and
compared with experimental results. The optimal joint torques
were determined using the interior point method implemented
with the Matlab Optimization Toolbox.

RESULTS

Experimental Results
Subjects were adept at matching hammering frequency withmost
of those dictated by the metronome. The hammering frequencies
achieved by the subjects for metronome frequencies 1, 2, 3, 4, and
5 Hz were 0.99± 0.01, 2.02± 0.01, 3.01± 0.03, 4.01± 0.01, and
4.71±0.04 Hz respectively (mean± standard error). Hammering
frequencies of 5 Hz were too fast for our subjects to reliably
match. A hammering frequency of 1 Hz was uncomfortably slow
for most subjects. To compensate, many subjects developed a
strategy of pausing after each impact before initating an up-
and-down hammering motion at a more comfortable frequency
(Figures 2, 3).

Vertical trajectories (Figure 2) and speeds (Figure 3)
exhibited by the subjects in hammering showed very few
differences between the different hammers. However, decreasing
the hammering frequency increased the variability in these
movements. Rather than the single bell-shaped speed profile
characteristic of reaching movements, subjects showed a
bell-shaped speed profile for raising the hammer and another
truncated bell-shaped speed profile for the descending motion
(Figure 3).

Analysis of variance showed significant effects of both
hammers [F(1.61, 14.5) = 4.95, p = 0.03] and frequencies
[F(1.14, 20.25) = 22.35, p < 0.01] on the time to impact
from maximum height. There was no significant interaction
[F(1.73, 16.05) = 2.56, p = 0.11] between the effects of hammers
and frequencies on the time to impact from maximum height.
The diagram in Figure 4 shows the means and standard errors
(SEM) of time to impact for all hammers and frequencies.

Analysis of variance showed significant effects of hammers
and frequencies on the normalized maximal heights. Significant
effects of both hammers [F(2.91, 26.2) = 22.8, p < 0.01],
frequencies [F(1.77, 15.99) = 53.09, p < 0.01] and interaction
between hammers and frequencies [F(4.14, 37.26) = 2.71, p =

0.04] were observed. Further analysis of the effects of hammers

on normalized maximal heights showed significant effects of
hammers [F(3, 27) = 6.46 − 11.08, p < 0.01] in all frequencies.
Post-hoc t-tests showed that Big Light and Small Heavy maximal
heights were statistically different from any of the others [t(9) =
2.97− 5.75, p < 0.01]. The diagram in Figure 5 shows the means
and standard errors (SEM) of normalized maximal heights for all
hammers and frequencies.

Similarly, analysis of variance showed significant effects of
hammers and frequencies on the impact forces normalized by
hammermass. Significant effects of both hammers [F(2.06, 23.42) =
32.07, p < 0.01], frequencies [F(1.34, 12.07) = 6.84], but
no significant effect of interaction between hammers and
frequencies [F(4.39, 39.55) = 0.69, p = 0.63] were observed.
Further analysis of the effects of hammers on the impact
forces normalized by hammer mass showed significant effects
of hammers [F(3, 27) = 11.8 − 17.97, p < 0.01] in all
frequencies. Post-hoc t-tests showed that Small Heavy was
statistically different than Small Light [t(9) = 4.71 − 5.65, p <

0.01] and Big Heavy [t(9) = 5.4 − 6.61, p < 0.01], and Big
Heavy was statistically different than Big Light [t(9) = 3.04 −

3.91, p < 0.01] for all frequencies. The diagram in Figure 6

shows the means and standard errors (SEM) of impact forces
normalized by hammer mass for all hammers and frequencies.
The number of impacts needed to totally drive in the nail under
each condition–a function of impact velocity–are reported in the
appendix (Table A2).

Modeling Results
Fitts’ Law accurately predicted the movement time from the
maximum height to impact (R2 ≥ 0.88). However, despite
the high value of R2, the accepted formulation for Fitts’ Law
does not appear to follow the contours of the experimental data
(Figure 7, light gray traces). Therefore, we propose a slightly
altered model that reverses the relationship between movement
time and distance to move and was able to improve upon Fitts’
predictions (R2 ≥ 0.99),

D = W/2
[

a+ b · log2(Tf )
]

, (4)

whereD is the maximal height of the hammer, Tf is the time from
the maximal height to impact in milliseconds,W is the minimum
width of the hammer face (our hammers were square, so both face
length and width were the same), and a and b are parameters fit
to the data using a least squares difference regression (Table 2).

The optimal feedforward model was able to accurately
reproduce the motions of the arm during hammering (Figures 2,
3, dashed lines, RMSE ≤ 0.1) using the cost function given by
Equation (3). This model allows for the generation of optimal
hammering trajectories by selecting just one parameter, α. This
model also shows that subjects use roughly the same value
of α for each hammer, despite the different properties of the
different hammers (Figures 2, 3, α values in each row are
very similar). The superpositioning of experimental data with
computed contours of constant α values (Figure 8) showed that
in practice subjects do not use a constant value of α for all
hammering frequencies, but rather emphasize lower effort at
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FIGURE 2 | Vertical movement for all hammers and frequencies. The normalized vertical position of the hammer head was plotted with respect to time. Solid lines

indicate the average trajectory while shading represents standard error. The black dashed line indicates the optimal behavior of the model using an estimated α

parameter for frequencies 1, 2, 3, 4, and 5 Hz. The root mean squared error (RMSE) of the model for each case has a root mean squared error of RMSE < 0.1.
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FIGURE 3 | Speeds for all hammers and frequencies. The speed (magnitude of the velocity vector) of the hammer head was plotted with respect to time. Solid lines

indicate the average speeds while shading represents standard deviation. The black dashed line indicates the optimal behavior of the model using an estimated α

parameter for frequencies 1, 2, 3, 4, and 5 Hz. The root mean squared error (RMSE) of the model for each case has a root mean squared error of RMSE < 0.1 m/s.
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FIGURE 4 | Means and standard errors (SEM) of time to impact for all

hammers and frequencies. The time from maximal height to impact was

statistically the same for all hammers at each hammering frequency despite

some statistically different maximal heights (Figure 5). The time to impact

decreases and becomes less variable as the hammering frequency increases.

FIGURE 5 | Means and standard errors (SEM) of the normalized maximal

height of all hammers and frequencies. The normalized vertical height of the

hammer head decreases as hammering frequency increases. Big Light and

Small Heavy maximal heights were statistically different from any of the others

(*p < 0.05).

slower hammering frequencies and energy transfer to the nail at
faster hammering frequencies.

The Big Heavy hammer was the most preferred hammer
followed by the Big Light, Small Heavy, and Small Light hammers
in that order based on subject ratings (Table 3).

FIGURE 6 | Means and standard errors (SEM) of the normalized maximal

impact forces for all hammers and frequencies. Impact forces normalized by

hammer mass varied between hammers. The heavy hammers generally had

lower impact forces per unit mass than the lighter hammers across hammering

frequencies. The Small Heavy hammer had the lowest normalized impact

forces across conditions. The Big Light hammer produced the highest

normalized impact forces, though the Big Heavy hammer produced the largest

absolute impact forces. The Small Light and Big Heavy hammers were similar

with statistical differences only found at 2 Hz (*p < 0.05).

FIGURE 7 | Relationship between time to impact and maximal height for all

four hammers. The average normalized height was plotted with respect to

average time to impact for each hammer. Fitts’ Law was fit to the experimental

data and overlayed on the experimental data (gray curves,

R2 ≥ 0.88,RMSE ≤ 0.24). Because Fitts’ Law appears to have opposite

curvature to the experimental data, a modified model was developed

(Equation 4) and overlayed on the experimental results (colored traces,

R2 ≥ 0.99,RMSE ≤ 0.02).

Frontiers in Computational Neuroscience | www.frontiersin.org 7 May 2017 | Volume 11 | Article 45

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
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TABLE 2 | Parameter estimations for Equation (4) and the original Fitts’ Law

Equation (1).

New model a b SSE RMSE R2

Small heavy −135 30.6 0.0005 0.015 0.99

Small light −150 34.5 0.0001 0.007 0.99

Big heavy −119 25.4 0.0012 0.020 0.99

Big light −103 24.4 0.0008 0.016 0.99

Fitts’ model a b SSE RMSE R2

Small heavy 223 100 776 16 0.93

Small light 201 99 871 17 0.92

Big heavy 226 118 1,350 21 0.93

Big light 197 117 1,841 24 0.88

DISCUSSION

The goal of this study was to examine the mechanics of a human
upper extremity impact task and determine whether existing
models of upper limb movement can explain the data. We found
that subjects plan optimal trajectories that are a tradeoff between
maximum impact velocity and minimal effort reminiscent of
Fitts’ Law and that are robust to different hammer conditions.
However, we found that an altered version of Fitts’ Law was
able to better match the data than the typical formulation. We
also found that end-effector speeds follow a “bell curve and a
half” trajectory in hammering in which the hammer head moves
upwards with a bell-shaped speed profile and then downwards
with a bell-shaped profile before being truncated before the
zenith of the curve (Figure 3).

Our analyses showed that Fitts’ Law can be applied to human
hammering (R2 ≥ 0.88). However, the large R2 values belie
an apparent discrepancy between the curves generated using
Fitts’ Law and the experimental results (Figure 7, gray lines).
Therefore, we identified a relationship between movement time
and target distance that better reproduces the experimental data
(Equation 4, R2 ≥ 0.99). In most Fitts’ Law experiments, subjects
are prescribed a reaching distance and are asked tomove as fast as
possible (Fitts, 1954). However, in our experiments, we constrain
permitted movement time using the metronome and subjects
were allowed to select the distance to reach. This difference may
account for the relative effectiveness of our inverted formulation
of Fitts’ Law. However, other previous studies have reported
violations of Fitts’ Law (Adam et al., 2006; Glazebrook et al.,
2015). Glazebrook et al. (2015) determined that these Fitts’ Law
violations are the result of pre-planning of movements. This
explanation is also certainly plausible in the context of a cyclical
task such as hammering. Finally, several studies have noted that
Fitts’ Law does not hold for movements in which subjects were
not asked tomove as quickly and as accurately as possible (Young
et al., 2009). We do not explicitly instruct our subjects to move as
quickly and accurately as possible. Instead, we instructed them
to accomplish a task that is directly dependent on the speed
of the movement and allow them to balance that movement
speed with their motor capability, which we believe to be an

approximation of the instructions to move as quickly and as
accurately as possible. In hammering frequencies above 1 Hz, the
computed values of α indicate that subjects weight movement
speed very highly (Figures 2, 3), and thus likely approach a fast-
as-possible movement for which Fitts’ Law is presumed to be
valid.

Our feedforward optimal hammering simulation was able
to reproduce many of the features of human hammering
(Figures 2, 3). Our simulations also allow us to show that
humans prefer to emphasize energy transfer to the nail (larger
values of α) when task constraints are high (high hammering
frequencies) and minimal efforts (smaller values of α) when
task constraints are low (low hammering frequencies; Figure 8).
Our cost function was formulated to minimize the sum squared
actuator effort, which serves to keep commanded joint torques
small. These small actuation signals prevent excessive energy
expenditure during the task (Crowninshield and Brand, 1981;
Missenard and Fernandez, 2011), but this quadratic formulation
might also serve to keep disturbances from motor noise whose
effects are multiplicative with actuator effort small (Harris and
Wolpert, 1998; Todorov and Li, 2005; Franklin and Wolpert,
2011). In this context, the adaptive prioritization that we
observed (changing values of α) might be due to fewer task
constraints permitting higher peak heights to be attained at slow
hammering frequencies, thus increasing the potential for errors
to accrue and increasing the relative importance of accuracy.
While the exact cost function used by the nervous system cannot
be known exactly, the current formulation reproduces many
of the features observed in the experimental results including
maximum heights attained, the general trajectories followed,
and the robustness to different hammers (similar values of α

for different hammers at the same hammering frequencies).
However, this model failed to capture the latency after impact
before initiating the upward movement of the hammer. This
discrepancy may be due to compliance in the musculoskeletal
system (e.g., series-elastic muscle-tendon units, Hill, 1938; Fung,
2013) that was not captured by our model.

Despite different hammer dynamics (Table 1), hammering
kinematics were fairly uniform across many different cases with
few statistical differences found between the different hammers
in the time from maximal height to impact, maximal hammer
height, and impact velocity. Previous studies have suggested
that the redundancy of the human musculoskeletal system
(Bernstein, 1967) may contribute to considerable robustness to
slight changes in dynamics (Martelli et al., 2015; Simpson et al.,
2015) or to dysfunction (Arnold et al., 2005; Hicks et al., 2008;
Correa et al., 2012; Steele et al., 2012). While these studies
rely on highly redundant lower body musculoskeletal models,
other studies examining less redundant body parts have shown
limited ability to compensate for dysfunction (Valero-Cuevas and
Hentz, 2002; Kutch and Valero-Cuevas, 2011). However, detailed
models of the upper extremity indicate muscular redundancy on
the same level as detailed models of the lower body (Table 4)
suggesting that similar robustness to perturbations might be
expected. The human nervous system may also select control
strategies that are purposefully robust (Mitrovic et al., 2010;
Franklin and Wolpert, 2011), but our formulation does not
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FIGURE 8 | Comparison between experimental results and constant contours of α. A map showing the maximal height attained and time to impact generated using

constant values of α (Equation 3) was overlayed on experimental results from two different hammers. Solid colored lines (yellow and orange) indicate mean

experimental results while dashed lines indicate the standard error. A direct comparison shows that subjects emphasize effort conservation (low values of α) at low

hammering frequencies (greater time between impacts) and energy transfer to the nail (high values of α) at high hammering frequencies (less time between impacts)

rather than a constant relationship for all hammering speeds. The plots on the right hand side show examples of arm trajectories using different values of α. The

specific values used are marked on the left hand plot by a white square, rhombus, and triangle for the top, middle, and bottom plots, respectively.

TABLE 3 | Results of subjects’ ranking of the hammers, e.g., S-H, Small Heavy;

S-L, Small Light; B-H, Big Heavy; and B-L, Big Light.

Ranking vs. Hammer S-H S-L B-H B-L

Best (10) 0 0 9 1

7 3 1 1 5

3 3 4 0 3

Worst (1) 4 5 0 1

Score 3.4 2.4 9.7 5.5

TABLE 4 | Musculoskeletal models used in examinations of robustness.

Body part Degrees of

freedom

Number of

muscles

References

Upper extremity 15 50 Holzbaur et al., 2005

Lower body 23 54+ Delp et al., 1990, 2007

Index finger 4 7 Kutch and Valero-Cuevas, 2011

Simple leg 3 14 Kutch and Valero-Cuevas, 2011

include any such criteria, suggesting that consistent movement
patterns across conditions might be due to embodied intelligence
(e.g., redundant actuators and compliance).

Stiffness, or impedance, is a crucial parameter modulated
by humans to stably interact with their environment (Burdet

et al., 2001; Franklin and Wolpert, 2011). Impedance is difficult
to record experimentally, but previous studies have attempted
to estimate joint stiffnesses based on muscle properties (Hu
et al., 2011), through simulation (Thelen et al., 2003), or by
experimentally recording endpoint stiffnesses (Burdet et al., 2000,
2001). Because of practical limitations, measurements of muscle
activity or impedance were not included in this study, but likely
play an important role in impact tasks and should be considered
in future works.

Despite the difficulty of controlling a highly nonlinear
plant using noisy control signals and noisy sensors with
variable delays in an uncertain environment, biological
movement appears to be highly robust. However, robustness
has not been well addressed in robot learning (Schaal and
Atkeson, 2010; Nguyen-Tuong and Peters, 2011) primarily
because it is difficult to design controllers that are robust
to the model structure or parameter errors. One possible
solution is to use control policies with optimization criteria
based on biological models. For example, the tradeoff
between maximizing task performance and accuracy could
potentially serve as an optimization criteria for robot
hammering.

In this paper, we have extracted the mechanics involved
in a targeted upper extremity impact task and demonstrated
that the human motor control strategies involved are robust
to many different conditions including hammer mass, hammer
face area, and timing constraints. We have shown that while
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many traditional models of human reaching hold for this novel
task (bell-shaped speed profiles and Fitts’ Law), an altered
version of Fitts’ Law can better match experimental results. We
have also demonstrated that optimality principles previously
demonstrated for reaching movements can be generalized
to targeted impact tasks and thus lay a framework that
can be used for the planning of targeted impact tasks in
robots.
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APPENDIX

Model Parameters
In this paper, we have modeled the human arm holding a
hammer as a torque driven 3 degree of freedom (DOF) robot
operating in the sagittal plane. Each DOF is driven by an
independently controlled torque generator capable of producing
both positive and negative torques. The robot parameters (link
lengths, center of mass locations, etc.) were computed based on
data from Winter (2009) using the mean height (176.9 cm) and

TABLE A1 | Parametes of the dynamical model.

Part Upper Arm Lower Arm Hand + Hammer

Link No. 1 2 3

Length 0.2794 0.2667 0.0855

Mass 2.0751 1.2225 0.4810

Center of mass location 0.1613 0.1220 0.0676

Inertia 0.0131 0.0067 0.0010

Note that all units are SI (m, kg). Note also that the center of mass location is relative to
the proximal end of the relevant link.

weight (77 kg) of subjects that participated in this study. The
hammers were simulated by adding the relevant mass to the end
effector. Parameters of the hammers are in Table 1. The robot
parameters are given in Table A1.

Hammer Hits
The table reports how many cycles were necessary to
totally drive in the nail with respect to the hammer and
frequency.

TABLE A2 | Number of impacts required to drive nail by hammer and frequency

(mean ± standard error).

Hammer

S-H S-L B-H B-L

Frequency 1 12 ± 5.114 9.9 ± 1.215 7.1 ± 1.663 8.5 ± 1.258

[Hz] 2 16 ± 3.303 12.2 ± 1.679 9.7 ± 2.285 13.4 ± 2.817

3 19.7 ± 4.6 14.4 ± 2.579 10.6 ± 1.655 14.4 ± 1.968

4 22 ± 3.48 19.5 ± 2.693 12.9 ± 2.089 14.1 ± 2.677

5 29.2 ± 6.2 23.8 ± 3.62 14.2 ± 2.732 20.2 ± 3.511

Frontiers in Computational Neuroscience | www.frontiersin.org 12 May 2017 | Volume 11 | Article 45

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Hammering Does Not Fit Fitts' Law
	Introduction
	Methods
	Subjects
	Experimental Protocol
	Data Processing
	Modeling

	Results
	Experimental Results
	Modeling Results

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	References
	Appendix
	Model Parameters
	Hammer Hits



