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Dynamic joint stiffness determines the relation between joint position and torque, and

plays a vital role in the control of posture and movement. Dynamic joint stiffness

can be quantified during quasi-stationary conditions using disturbance experiments,

where small position perturbations are applied to the joint and the torque response

is recorded. Dynamic joint stiffness is composed of intrinsic and reflex mechanisms

that act and change together, so that nonlinear, mathematical models and specialized

system identification techniques are necessary to estimate their relative contributions to

overall joint stiffness. Quasi-stationary experiments have demonstrated that dynamic joint

stiffness is heavily modulated by joint position and voluntary torque. Consequently, during

movement, when joint position and torque change rapidly, dynamic joint stiffness will be

Time-Varying (TV). This paper introduces a new method to quantify the TV intrinsic and

reflex components of dynamic joint stiffness during movement. The algorithm combines

ensemble and deterministic approaches for estimation of TV systems; and uses a TV,

parallel-cascade, nonlinear system identification technique to separate overall dynamic

joint stiffness into intrinsic and reflex components from position and torque records.

Simulation studies of a stiffnessmodel, whose parameters varied with time as is expected

during walking, demonstrated that the new algorithm accurately tracked the changes in

dynamic joint stiffness using as little as 40 gait cycles. The method was also used to

estimate the intrinsic and reflex dynamic ankle stiffness from an experiment with a healthy

subject during which ankle movements were imposed while the subject maintained a

constant muscle contraction. The method identified TV stiffness model parameters that

predicted the measured torque very well, accounting for more than 95% of its variance.

Moreover, both intrinsic and reflex dynamic stiffness were heavily modulated through the

movement in a manner that could not be predicted from quasi-stationary experiments.

The new method provides the tool needed to explore the role of dynamic stiffness in the

control of movement.

Keywords: biological system modeling, nonlinear system identification, time-varying systems, dynamic joint

stiffness, joint neuromechanics
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1. INTRODUCTION

The role of the short-latency stretch reflex during movement
remains controversial (Dietz et al., 1979; Sinkjaer et al., 1996;
Zehr and Stein, 1999). While some studies suggest that reflex
response serves to facilitate all voluntary movements (Dufresne
et al., 1980; Gottlieb and Agarwal, 1980), others have proposed
that the reflex response plays a role only in extreme or
pathological cases (Dietz et al., 1980), or during early adaptation
to new tasks or conditions (Burdet et al., 2013).

EMG is often used to study the functional role of
reflexes (Dietz et al., 1979; Stein and Capaday, 1988; Zehr and
Stein, 1999; Burdet et al., 2013). However, EMG is influenced
by factors other than reflexes, such as voluntary activity, and it
is difficult to separate the reflex EMG response from the overall
EMG activity. In addition, the relation between EMG and joint
torque is influenced bymuscle length and contraction velocity, so
that is difficult to estimate themechanical contributions of stretch
reflex from EMG alone (Toft et al., 1991; Stein and Kearney, 1995;
Kearney et al., 1999).

H-reflexes have also been used to quantify the reflex
activity (Sinkjaer et al., 1993). However, H-reflexes bypass
the response of muscle spindles to joint position changes,
which can be heavily modulated during function via γ -motor
neurons (Sinkjaer et al., 1996). In addition, direct stimulation of
the nerve may excite a range of afferent mechanisms that project
to α−motorneurons (e.g., skin sensors, Golgi tendon organs) so
that the resultant response will be generated by unphysiological
combination of afferent activity (Van der Helm et al., 2002).
Consequently, the functional relevance of these H-reflex studies
is not completely clear.

A better approach would be to directly measure the

mechanical consequences of reflex activity. However, it is

difficult to separate reflex torques from those due to the

mechanical or intrinsic properties of the muscle and connective

tissue. Experimentally this has been achieved by comparing the
mechanical behavior of a joint before and after deafferentation
using surgery (Kirsch et al., 1994), or some other manipulation
to suppress the reflex response (Dietz et al., 1980; Allum and
Mauritz, 1984). However, it is not possible to be sure that the
deafferentation process affects only the stretch reflex, and to what
extent. This process will likely also affect the intrinsic properties
of the joint (Kearney et al., 1997; Van der Helm et al., 2002).

An alternative approach is to perform the “deafferentation” by
using mathematical models and system identification techniques
to separate the mechanical effects of intrinsic and reflex
mechanisms. System identification techniques, using small,
random position or torque perturbations to excite the intrinsic
and reflex dynamics, have been successfully applied to multiple
joints with different model types (Gottlieb and Agarwal, 1978;
Zhang and Rymer, 1997; Van der Helm et al., 2002; Klomp
et al., 2014). These models have typically been linear; however,
the mechanical response produced by stretch reflexes are highly
nonlinear (Stein and Kearney, 1995), so that these models fail to
completely characterize the stretch reflex mechanisms or simply
ignore it. The parallel-cascade model, proposed by Kearney et al.
(1997), describes the intrinsic and stretch reflex mechanisms in

terms of dynamic joint stiffness, that determines the dynamic
relation between joint position and torque. Intrinsic dynamic
stiffness, also referred to as joint impedance, arises from the
inertial and visco-elastic properties of the joint, passive tissue,
and active muscle fibers, and is described by a linear model
relating joint position and torque. Reflex dynamic stiffness arises
from changes in muscle activation due to the short-latency
stretch reflex, and is described by a nonlinear, Hammerstein
model relating joint velocity and torque (Kearney and Hunter,
1990).

Successful applications of these analytical techniques have
been typically limited to stationary conditions, where the
dynamic properties of the joint remain constant for the duration
of the experiment. Such experiments have shown that the
parallel-cascademodel parameters change with joint position and
voluntary torque (Mirbagheri et al., 2000; Guarin et al., 2013).
Consequently, during most functional activities when the joint
position and voluntary torque change rapidly and continuously,
the dynamic joint stiffness model parameters will be time-varying
(TV).

Several studies have characterized dynamic joint stiffness
during TV conditions by modeling the intrinsic and reflex
response together using a single linear model (Bennett et al.,
1992; MacNeil et al., 1992; Kirsch and Kearney, 1997; Rouse et al.,
2014; Lee andHogan, 2015). These type ofmodels cannot provide
any information regarding the modulation of reflex mechanisms
and likely overestimate the contribution of intrinsic mechanisms
to the overall dynamic joint stiffness. We have introduced
methods to estimate intrinsic and stretch reflex mechanisms
using the parallel-cascade model structure during TV conditions;
however, these methods require very large data sets for parameter
estimation, which severely limits their application (Giesbrecht
et al., 2006; Ludvig et al., 2011; Guarin and Kearney, 2012, 2015b);
or make the strong assumption that there is a static-nonlinear
relation between the parallel-cascade model parameters and joint
position or torque (Sobhani Tehrani et al., 2013; Jalaleddini et al.,
2015). Despite their limitations, these studies have shown that
the interpolation of parameter values obtained from stationary
experiments does not describe dynamic joint stiffness during
TV conditions. Therefore, methods able to track the fast, large
changes in the model parameters using short data records are
required to characterize the modulation of the dynamic joint
stiffness during function.

This paper develops and validates a novel method to
estimate the intrinsic and reflex components of dynamic joint
stiffness during periodic movements. This method improves over
previous algorithms in several ways: (i) it reduces the size of the
data set required for accurate parameter estimation; and (ii) it
parametrizes the system and noise plants independently, which
eliminates biases in parameter estimates due to the colored noise
present in measurements of joint torque.

This paper is organized as follows: Section 2 presents the TV,
parallel-cascade model of dynamic joint stiffness and introduces
a novel re-parameterization that approximates, the non-linear,
TV model with a set of linear, time-invariant models. It then
introduces an algorithm to estimate the parameters of this model
using data acquired during periodic, TV conditions. Section 3
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describes a simulation study that evaluated the performance of
the new model parameterization and identification algorithm.
Section 4 demonstrates the practical application of the algorithm
by using it to estimate intrinsic and reflex dynamic ankle
stiffness during experiments where movements were imposed on
subjects while they exerted a constant voluntary torque. Section 5
summarizes the contributions and discusses some important
aspects underlying the method and its application.

2. MODEL FORMULATION AND
PARAMETER IDENTIFICATION

2.1. Joint position perturbations and torque
Estimation of dynamic joint stiffness requires the application
of small position perturbations that do not modify joint
position and have power over a wide enough range of
frequencies to excite the system adequately (Kearney andHunter,
1990). Consequently, to estimate dynamic joint stiffness during
movement, small position perturbations must be superimposed
on the movement trajectory, producing an overall, perturbed
joint position given by

θ(tk) = θ0(tk)+ θp(tk), (1)

where θ0(tk) is the movement trajectory and θp(tk) is the position
perturbation.

Under stationary conditions, when the joint trajectory and
voluntary torque are almost constant, the net moment at the joint
is

TQ(tk) = TQ0 + TQp(tk),

where TQ0 is a constant torque, produced by passive mechanisms
due to θ0 (which might be equal to zero if the joint is at its neutral
position), and by active mechanisms due to the constant muscle
activation; and TQp(tk) is a perturbation torque, produced by the
excitation of intrinsic and reflex mechanisms given by

TQp(tk) = TQI(tk)+ TQR(tk)

where TQI(tk) and TQR(tk) are the torques produced by the
intrinsic and reflex mechanisms, which cannot be measured
directly. Under stationary conditions, an estimate of the
perturbation torque can be retrieved from measurements of
total joint torque by removing the constant offset TQ0. The
perturbation position and torque can then be used to estimate
the intrinsic and reflex contributions to the total torque.

In contrast, under TV conditions, when the joint trajectory
(θ0(tk)) and/or the muscle activation level vary, the torque
produced by passive and voluntary mechanisms (TQ0(tk)), is
no longer constant. Consequently, estimating the perturbation
torque from measurements of total joint torque requires three
steps: First, a perturbed joint trajectory is applied and the total
joint torque, given by

TQ(tk) = TQ0(tk)+ TQp(tk),

is recorded. Second, an unperturbed joint trajectory is applied
and the joint torque TQ∗

0(tk) is recorded. Finally, the difference

between the net joint torque in the two experiments is computed
to estimate the torque due to the perturbations. However, it is
not realistic to expect that the joint will follow exactly the same
trajectory and/or that the subject will exert exactly the same
voluntary torque in the perturbed and unperturbed experiments.
Therefore, under TV conditions, the perturbation torque will be
given by

TQp(tk) = TQI(tk)+ TQR(tk)+ TQ1(tk), (2)

whereTQ1(tk) is an additional torque due to difference in passive
and voluntary torques during the perturbed and unperturbed
experiments.

2.2. Time-Varying Dynamic Joint Stiffness
Once the perturbation position and torque are available, system
identification can be used to separate the intrinsic and reflex
components analytically. Under stationary conditions, this can
be achieved by modeling the overall dynamic joint stiffness with
a parallel-cascade model, where intrinsic stiffness is described by
a linear system relating joint position and intrinsic torque, and
reflex stiffness by a Hammerstein system relating joint velocity
and reflex torque (Kearney et al., 1997; Guarin et al., 2013;
Jalaleddini et al., 2016).

Under TV conditions, a TV version of the parallel-cascade
structure, shown in Figure 1, has been successfully applied to
describe the overall dynamic joint stiffness (Giesbrecht et al.,
2006; Ludvig et al., 2011; Guarin and Kearney, 2012, 2015b;
Jalaleddini et al., 2017). However, the identification algorithms
used to estimated the TV model parameters require very large
data sets and so are difficult to use in practice.

Here, we introduce an alternative parameterization of the TV,
nonlinear, parallel-cascade model of dynamic joint stiffness that
transforms it into a set of pseudo-linear, time-invariant models.
Next, we will introduce an identification algorithm that uses a
small data set to estimate the TV model parameters.

2.2.1. Intrinsic Dynamic Stiffness
Intrinsic dynamic stiffness is usually described by a second order,
linear model with limb inertia, joint viscosity, and static stiffness
relating perturbation position and torque (Kearney and Hunter,
1990)

TQI(tk) = K(tk)θp(tk)+ B(tk)
d[θp(tk)]

dtk
+ I

d2[θp(tk)]

d2tk
, (3)

where K(tk), B(tk) and I are the intrinsic static stiffness, viscosity
and inertia. However, recent experimental evidence suggests that
the intrinsic dynamics stiffness is more complex than second-
order (Sobhani Tehrani et al., 2017). Therefore, we choose to
describe intrinsic stiffness with the TV, non-parametric model

TQI(tk) =

τ=L∑

τ=−L

hI(τ , tk)θp(tk − τ ), (4)

where hI(τ , tk) is a TV, impulse response function (IRF) that
requires no a priori assumption of model order. The length of
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FIGURE 1 | Time-Varying, Parallel-Cascade model structure representing the intrinsic and reflex responses to small position perturbations. Measurable signals are

shown in blue while those that can only be estimated are shown in red.

the system memory must be specified a priori, and there is much
evidence than a memory of 40 ms is adequate for the ankle
joint (Kearney et al., 1997). Therefore, intrinsic dynamic stiffness
is represented by a two sided IRF with a memory from−40ms to
40ms.

2.2.1.1. Model re-parameterization
The TV parameters in Equation (4) will be approximated by a
linear combination of basis functions as

hI (τ , tk) =

j= nλ∑

j= 0

λτ ,j3j (tk) ,

where {3j(tk)}
j=nλ

j= 0 are a set of time-varying basis functions and

λτ ,j their coefficients. Intrinsic dynamic stiffness can then be
approximated by the linear, time-invariant (LTI) model

TQI(tk) =

τ=L∑

τ=−L

j=nλ∑

j=0

λτ ,j3j (tk) θp(tk − τ ). (5)

2.2.2. Reflex Dynamic Stiffness
Reflex dynamic stiffness can be described by a series connection
of a differentiator, a delay of 40 ms and a Hammerstein system,
comprising the series combination of a static-nonlinearity and a
second-order, linear dynamic system, relating joint velocity and
reflex torque (Kearney et al., 1997; Guarin et al., 2013; Guarin and

Kearney, 2015b). The input-output relation is given by

¯̇θp(tk) = g
(
θ̇p(tk), tk

)
, (6a)

d2[TQR(tk)]

dt2
k

+ 2ζ (tk)ω(tk)
d[TQR(tk)]

dtk
+ ω2(tk)TQR(tk)

= G(tk)ω
2(tk)

¯̇θp(tk), (6b)

where θ̇p(tk) is the delayed joint velocity, and g(•, tk) is a TV,
static non-linearity. G(tk), ω(tk), and ζ (tk) are the gain, natural
frequency and damping of the reflex linear dynamics.

This TV, continuous-time model can be approximated by the
set of discrete-time, transfer function models

TQR(tk) =
b0(tk)

(
1+ 2q−1 + q−1

)

1+ a1(tk)q−1 + a2(tk)q−2
¯̇θp(tk), (7)

where b0(tk), a1(tk) and a2(tk) are discrete-time, TV parameters
and q−1 is the backward shift operator. The continuous-time and
discrete-time parameters are related to each other by

G(tk) = 4

[
b0(tk)

1+ a1(tk)+ a2(tk)

]
,

ω(tk) =
2

Ts

[
1+ a1(tk)+ a2(tk)

1− a1(tk)+ a2(tk)

]1/2
,

ζ (tk) =
1− a2(tk)[(

1+ a1(tk)+ a2(tk)
) (
1− a1(tk)+ a2(tk)

)]1/2 .

where Ts is the sampling time in seconds.
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2.2.2.1. Model re-parameterization
The TV, static non-linearity will be approximated by

¯̇θp (tk) = g
(
θ̇p(tk), tk

)
≈

i=nc∑

i=0

ci (tk)Ci

(
θ̇p (tk)

)
,

where Ci(•) are a set of pre-defined basis functions (e.g.,
polynomials, radial basis) and ci are their TV coefficients.
Following the same procedure as before, these are approximated
by a linear combination of basis functions as

ci(tk) =

j=nγ∑

j=0

γi,jŴj (tk) ,

where {Ŵj(tk)}
j=nγ

j=0 are a set of time-varying basis functions and

γi,j their coefficients.
Similarly, the TV parameters of the linear dynamic element

will be approximated by a linear combination of basis functions

b0 (tk) =

j=nβ∑

j=0

β0,j9j (tk) ,

ai (tk) = αi,0 +

j=nα∑

j=1

αi,j5j (tk) , i = 0, . . . , na.

where αi,0 6= 0; {9j(tk)}
j=nβ

j=0 and {5j(tk)}
j=nα

j=0 are sets of time-

varying basis functions with 50(tk) = 1,∀tk; β0,j, and αi,j their
coefficients.

Using the approximations with the basis functions, the
relation between the reflex torque and joint velocity is now
time-invariant and can be described by the discrete-time, time-
invariant, Hammerstein system

¯̇θp (tk) =

i=nc∑

i= 0

j=nγ∑

j=0

γi,jŴj (tk)Ci

(
θ̇p (tk)

)
, (8a)

TQR (tk) =
1

F
(
q−1

)


−

nα∑

j= 1

α1,j5j (tk)TQR (tk − 1)

−

nα∑

j= 1

α2,j5j (tk)TQR (tk − 2) +

j=nβ∑

j= 0

β0,j9j (tk)
¯̇θp (tk)


 ,

(8b)

where F
(
q−1

)
is the polynomial

F
(
q−1

)
= 1+ α1,0q

−1 + α2,0q
−2,

2.2.3. Other Components
TQ1(tk) is expected to be a stochastic, low-frequency signal that
will be described by a linear combination of basis functions

TQ1(tk) =

j=np∑

j=0

piPi(tk), (9)

where {Pi(tk)}
j=np
j=0 are a set of time-varying basis functions and pi

their coefficients.

2.2.4. Overall Joint Stiffness
Using these re-parameterizations, the overall relation between
joint position and torque, shown in Figure 1, can be
approximated by the LTI models shown in Equations (5),
(8a), (8b), and (9) the unknown parameters

ρI =
[
λ−L,0 · · · λ−L,nλ

· · · λL,0 · · · λL,nλ

]
, (10a)

ρR =
[
α1,0 · · ·α1,nα · · ·α2,0 · · ·α2,nα β0,0 · · ·β0,nβ

γ0,0 · · · γ0,nγ · · · γnc ,0 · · · γnc ,nγ

]
, (10b)

ρ1 =
[
p0 · · · pnp

]
, (10c)

where ρI , ρR, and ρ1 are vectors containing the unknown
parameters used to describe the intrinsic, reflex and additional
torques, respectively.

2.3. Identification of TV, Dynamic Joint
Stiffness
We now describe an algorithm for the identification of the re-
parametrized models of TQI(tk), TQR(tk), and TQ1(tk). There
are four key elements to the algorithm: First, as Figure 1

illustrates, these torques cannot be measured directly so the
models describing each component cannot be estimated directly
from measured data. Consequently, the intrinsic and reflex
components will be estimated using an iterative algorithm that
estimates the parameters of each pathway sequentially, removing
the influence of the other pathways in the total torque before
estimating the parameters of each component (Kearney et al.,
1997; Guarin and Kearney, 2015b).

Second, the parameters of each element of the Hammerstein
system that represents the reflex component will be estimated
using a second iterative algorithm. This method estimates
the coefficients of the static nonlinearity and reflex dynamics
iteratively using a coordinate ascent approach. The algorithm
is guaranteed to converge to the true values under general
conditions (Bai and Li, 2004; Guarin and Kearney, 2015a).

Third, an instrumental variable approach, that provides
unbiased estimates of the model parameters even in the presence
of non-white noise, will be used to estimate the reflex linear
dynamic element (Laurain et al., 2010; Guarin and Kearney,
2016).

Finally, the identification algorithm assumes that there are
available multiple input-output trials presenting the same time-
varying behavior. The algorithm exploits this to estimate the

Frontiers in Computational Neuroscience | www.frontiersin.org 5 June 2017 | Volume 11 | Article 51

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Guarín and Kearney Dynamic Joint Stiffness during Movement

parameters’ time-course from multiple realization of input-
output data. Moreover, the algorithm assumes that the time-
varying behavior is periodic and it automatically estimates the
initial conditions at each trial.

The identification algorithm combines two TV identification
methodologies: temporal expansion and ensemble approaches.
We recently introduced this hybrid identification approach and
showed that it can track faster parameters changes than the
temporal expansion method while requiring less data than
classical ensemble approaches (Guarin and Kearney, 2016).

2.3.1. Identification Algorithm
Assume that n cycles, each with N data points, of joint
position and torque were measured for both the unperturbed
and perturbed joint movements. The position perturbation
and torque signals are computed by aligning and subtracting
the unperturbed from the perturbed measurements. Following
Equation (2), the noise-free perturbation torque for n cycles can
be organized in matrix form as



TQp{1}

...
TQp{n}


 =



TQI{1}

...
TQI{n}


 +



TQR{1}

...
TQR{n}


 +



TQ1{1}

...
TQ1{n}


 , (11)

where

TQp{j} =
[
TQp(1){j} · · ·TQp(N){j}

]T
,

is the perturbation torque for the j-th cycle. The identification
algorithm assumes that intrinsic and reflex dynamics have
the same TV behavior in each cycle and that the TV model
parameters are periodic. In contrast, TQ1(tk) is assumed to be
different for each cycle, so that the parameters describing it are
different for each cycle.

The identification algorithm proceeds as follows:

1. Initialize

T̂QI{j} = T̂QR{j} = O, j = 1, · · · , n.

2. Estimate TQ1 for each cycles as

T̃Q1{j} = TQp{j} −
(
T̂QI{j} + T̂QR{j}

)

- Use T̃Q1{j} and the linear, identification algorithm introduced in Guarin

and Kearney (Submitted) to estimate ρ̂1 for each cycle.

- Use these estimates to predict T̂Q1{j} for each cycle.

3. Estimate the intrinsic torque as

T̃QI{j} = TQp{j} −
(
T̂QR{j} + T̂Q1{j}

)

- Use the current prediction of the intrinsic torque and the perturbation

position with the algorithm introduced in Guarin and Kearney

(Submitted) to estimate ρ̂I . As the joint trajectory is the same at each

realization in the ensemble, the algorithm estimates a single set of

coefficients using all the realizations.

- Use these estimates and the perturbation position to update the

prediction of T̂QI{j} for each cycle.

4. Estimate the reflex torque as

T̃QR{j} = TQp{j} −
(
T̂QI{j} + T̂Q1{j}

)

- Use current prediction of the reflex torque, the perturbation velocity and

the algorithm introduced in Guarin and Kearney (2015a) to estimate ρ̂R.

As the joint trajectory is the same at each realization in the ensemble, the

algorithm estimates a single set of coefficients using all the realizations.

- Use these estimates and the perturbation velocity to update the prediction

of T̂QR{j} for each cycle.

5. Compute the net predicted torque for all cycles as

T̂Qp{j} = T̂QI{j} + T̂QR{j} + T̂Q1{j}

and calculate the variance accounted for (%VAF) between the predicted

and measured torque signals as

%VAF =



1−

tk=N∗n∑

tk=1

(
TQp(tk)− T̂Qp(tk)

)2

tk=N∗n∑

tk=1

(
TQp(tk)

)2



× 100%,

where N ∗ n is the total number of samples.

6. Repeat the procedure from step 2 until successive iterations fail to improve

the %VAF.

The identification algorithm predicts the intrinsic (T̂QI(tk)),
reflex (T̂QR(tk)), and additional (T̂Q1(tk)) torques, as well as the
model parameters ρ̂I and ρ̂R. A Matlab implementation of this
algorithm and an application example are provided by DLG in
GitHub1

3. SIMULATION STUDY

3.1. Methods
The accuracy of the new algorithm was evaluated using
simulations of TV, dynamic ankle stiffness throughout a periodic
movement resembling the ankle movement during gait.

3.1.1. Simulated Model
Figure 2 shows the TV, dynamic joint stiffness model used in the
simulation. Intrinsic stiffness was simulated as a TV, continuous-
time, second-order system. Reflex stiffness was modeled as
the series connection of a 40 ms delay, a differentiator, and
a Hammerstein system whose static-nonlinear element was a
half-wave rectifier with a TV threshold (th(tk)), and whose
linear dynamic element was a TV, continuous-time, second-order
system. The model was simulated in Simulink (the MathWorks)
using a third order solver with a sampling rate of 1 kHz.
Each simulated cycle lasted 1.4 s, which is equivalent to slow
walking Sinkjaer et al. (1996); 40 cycles were simulated so that
each trial lasted for 56 s. Perturbation position and torque were
filtered and decimated to 100 Hz for analysis. The 56 s trial was
repeated 100 times with a different input and noise realizations
to compute statistical properties for the parameter estimates.

3.1.1.1. Model parameters
Figure 3 shows how the simulated parameters were varied
periodically in the simulations. The variation of the intrinsic
stiffness parameters, shown in Figures 3A–C, was based on
results reported by Lee et al. (2016).

1https://github.com/dguari1/Frontiers2017.
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FIGURE 2 | Simulated, TV, Parallel-Cascade model. Intrinsic dynamic stiffness was modeled as a TV, second order, continuous-time system. Reflex dynamic stiffness

was modeled as a Hammerstein system comprising a TV static-nonlinearity followed by a second order, continuous-time system.

The variations of the parameters of the linear, reflex dynamics
are shown in Figures 3D–F. The reflex gain changes were
based on those reported by Sinkjaer et al. (1996), while those
of the natural frequency and damping were generated by
interpolating results from stationary experiments at different
joint positions (Guarin et al., 2013). The threshold of the reflex
static nonlinearity changed during the portion of the cycle where
the reflex gain was largest, and remained constant at zero during
the remainder of the cycle.

3.1.2. Typical Trial

3.1.2.1. Input
Figure 4A shows the position input perturbation sequence
which was a Pseudo Random Arbitrary Level Distributed Signal
(PRALDS) with a random switching rate drawn from a uniform
distribution between 250 and 350 ms, and a peak-to-peak
amplitude of 0.06 rad. PRALDS signals have velocities distributed
over the entire range of possible values and so it provides
a rich set of values with which to estimate the reflex static-
nonlinearity (Jalaleddini and Kearney, 2013).

3.1.2.2. Experimental noise
Figure 4B shows a realization of the noise used in the
simulations. This was obtained from a library of ankle torque
records acquired while subjects maintained a constant torque
at a fixed ankle position (Ranjbaran et al., 2013). The library
comprised 100 records each lasting 60 s, from six subjects
generating dorsiflexing torques corresponding to 5, 10, and 15%
of their maximum voluntary torque. The experimental noise

signal is composed of a low-frequency trend (corresponding to
TQ1(tk)), physiological tremor, 60 Hz noise, and white-Gaussian
measurement noise (Bezrukov et al., 2003; Ranjbaran et al., 2013).
For each simulation trial, a 56 s section of the recorded torque
noise was chosen at random from the library, its mean removed,
and its amplitude adjusted to give an average signal-to-noise ratio
(SNR) of 15 dB across the trial. This SNR is lower than that
expected experimentally; (Ludvig and Kearney, 2007) reported it
to be around 40 dB.

3.1.2.3. Output
Figure 4C shows the noise-free output-torque, the sum of the
simulated intrinsic and reflex torques.

3.1.3. Basis functions
Cubic B-splines were selected as the basis functions to represent

the TV coefficients of the intrinsic TV-IRF ({3j(tk)}
j=nλ

j=0 ); these

basis functions were selected because they describe smoothly
changing signals, such as the simulated TV parameters, very well.
A total of 10 B-splines were used to represent each TV parameter
since this was found to be the minimum order necessary to
account for 99% of the variability of the true TV parameters. The
B-splines knots were uniformly distributed along the cycle.

B-splines were also used to represent the TV, reflex static-

nonlinearity ({Ŵj(tk)}
j=nγ

j=0 ), and the numerator of the TV, reflex

linear dynamics ({9j(tk)}
j=nβ

j=0 ). However, they could not be

used to represent the parameters of the denominator due to
technical limitations associated with the identification algorithm
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FIGURE 3 | Simulated time-varying model parameters as a function of time. (A) Intrinsic Static Stiffness (K), (B) viscosity (B), and (C) inertia (I). (D) Reflex gain (G), (E)

natural frequency (ω), (F) damping (ζ ), and (G) reflex static-nonlinearity with the red line showing the TV threshold.

FIGURE 4 | Typical simulation results: (A) position perturbations (input), (B)

experimental noise and (C) perturbation torque (output).

as described in Guarin and Kearney (2016). Consequently,
Chebyshev polynomials of order 0–7 were selected as the basis
functions to represent the coefficients in the denominator of the

TV, reflex linear dynamics ({5j(tk)}
j=nα

j=0 ).

Chebyshev polynomials of order 0–4 were used to represent
TQ1(tk), since we found that they provided a more parsimonious
representation of the low-frequency component, TQ1(tk), than
cubic B-splines.

Moreover, Chebyshev polynomials were used to parametrize

the reflex, static-nonlinearity ({Cj(θ̇p(tk))}
j=nc
j=0 ). There are some

advantages of using this polynomial representation: (i) the first-
order polynomial is linear, C1(θ̇p(tk)) = θ̇p(tk), so that the
estimated parameters can be used to validate whether a nonlinear
model is needed or not; and (ii) the variance of the output is
finite in its support, which guarantees the numerical stability of
the estimation process. Polynomials of order 0–4 were used to
approximate the TV static-nonlinearity.

As the gain of the Hammerstein system can be arbitrarily
assigned to the static-nonlinearity or the linear dynamic element
without affecting the output, we assigned the gain of the reflex
pathway to the static-nonlinearity and fixed the gain of the linear
dynamics to unity.

3.1.4. Validation
The predictive ability of the estimated model parameters were
quantified in terms of the Variance Accounted For (VAF)
between the predicted and simulated torques. An average-VAF
was computed for the entire simulation trial as described in step
5 of the identification algorithm. In addition, a TV-VAF was
computed by dividing each gait cycle in 20 segments of equal
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length and computing the VAF between predicted and simulated
signals for each segment.

The joint intrinsic static stiffness (K(tk)), viscosity (B(tk)) and
inertia (I) were computed directly from the estimated TV-IRF
by using a non-linear least-squares fit algorithm (Kearney et al.,
1997), and compare to the simulated parameter.

The shape of the estimated reflex, TV, static-nonlinearity
(which includes the reflex gain) was compared to that of
the simulated TV, half-wave rectifier. The TV, reflex natural
frequency (ω) and damping (ζ ) were computed directly from
the estimated, discrete-time parameters and compared to the
simulated values.

3.1.4.1. Ensemble identification algorithm
For comparison purposes we estimated the model parameters
using the ensemble identification algorithm for estimation of the
parallel-cascade model structure previously introduced by our
group (Ludvig et al., 2011). This algorithm uses an ensemble only
identification approach for estimating the TV parameters of the
intrinsic and reflex dynamic joint stiffness.

3.1.4.2. Time-invariant, dynamic joint stiffness model
Furthermore, a time-invariant (TI), dynamic joint stiffnessmodel
was estimated between the perturbation position and noisy
torque signals using the entire record. The TI, intrinsic and
reflex model parameters were estimated using the new algorithm
with the orders of the basis functions used to represent the TV
intrinsic and reflex model parameters set to one, forcing them to
be a constant, all-ones vector.

3.2. Results
3.2.1. Time-Invariant Results
The TI model did not predict the simulated torque well, the
average-VAF was always less than 70% for both intrinsic and
reflex torques. Furthermore, Figure 5 shows that the TV-VAF
varied greatly across the cycle; it ranged between 0 and 99%
for the intrinsic and between 0 and 90% for the reflex torque,
indicating that the TI models did not captured the simulated
system dynamics.

3.2.2. Ensemble identification algorithm
The ensemble only identification algorithm required at least 400
input-output realizations to produced acceptable results. With
this large data set, the average-VAF was larger than 90% for both
intrinsic and reflex torques. Furthermore, Figure 5 shows that the
TV-VAF for the intrinsic torque was greater than 98% at all points
in the cycle, indicating that ensemble identification algorithm
accurately captured the linear, intrinsic dynamics. However, the
TV-VAF for the reflex models varied greatly across the cycle;
it ranged between 55 and 99%, indicating that the ensemble
identification algorithm did not captured the non-linear, reflex
dynamics.

3.2.3. Hybrid Identification Algorithm
The TV model predicted the output extremely well, the average-
VAF was always larger than 99% for both intrinsic and reflex
torques. Furthermore, Figure 5 shows that the TV-VAF for both
the intrinsic and reflex torques was greater than 97% at all points

in the cycle; the lowest values were observed around the portion
of the cycle where the gain of the intrinsic and reflex pathways
were smallest.

3.2.3.1. TV intrinsic dynamic stiffness
Figures 6A–C compares the simulated (red) and estimated (blue)
intrinsic static stiffness, viscosity and inertia, demonstrating that
the estimated parameter tracked the true value very closely and
with little variability in all 100 simulation trials.

3.2.3.2. TV reflex dynamic stiffness
Figures 7A–D present snapshots of the estimated and simulated
TV static-nonlinearity at different points of the cycle. It is evident
that the estimated, polynomial static-nonlinearity accurately
tracked both the TV threshold and slope of the simulated half-
wave rectifier. It can also be observed that the variability of
the polynomial nonlinearity was smaller for velocities around
zero. The bottom panels of the figure show the simulated and
estimated natural frequency and damping of the reflex, linear
dynamic element, demonstrating that the estimated parameters
tracked the true values closely. The reflex damping was slightly
underestimated; but this did no affect the VAF, indicating that the
model output is less sensitive to the damping than to the other
elements.

4. EXPERIMENTAL STUDY

The practical utility of the new TV, identification algorithm was
evaluated by using it to estimate the dynamic ankle stiffness from
experimental data acquired during an imposed movement with
constant voluntary torque. Data was acquired from one healthy
subject who provided written informed consent. The experiment
was approved by the McGill University Research Ethics Office.

4.1. Experimental Methods
The subject lay supine with his left foot attached to the pedal
of a stiff electrohydraulic actuator operating as a position
servo, which prevented the subject from voluntarily moving its
ankle, by means of a custom made fiberglass boot (Kearney
et al., 1997). Ankle movement was restricted to dorsiflexion
and plantarflexion, defined as positive and negative angles
respectively with respected to a zero-position reference, taken 90◦

between the foot and shank.
Ankle position, torque, and surface EMG from the medial and

lateral gastrocnemius (GM and GL), soleus (SOL) and tibialis
anterior (TA) were measured, filtered at 400 Hz to prevent
aliasing and sampled at 1 kHz by a 16-bit A/D converter. Data
were low-pass filtered and decimated to 100 Hz for analysis.
Surface EMG electrodes were placed following the SENIAM
recommendations (Hermens et al., 2000).

During each experimental trial the actuator moved the ankle
to zero position and held it there for a 1 min. Then, an
unperturbed trajectory, consisting of the angle of the ankle joint
during walking, with a duration of 2 s, was applied; this trajectory
was extracted from Lee and Hogan (2015). The trajectory was
repeated periodically 30 times; the trial was repeated twice to
obtain a total of 60 cycles.
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FIGURE 5 | TV-VAF between the noise-free torque and that predicted by the time-invariant (red) and time-varying models, estimated with the ensemble (green) and

hybrid (blue) algorithms. Bars represent the mean, 5th and 95th percentiles observed in 4,000 simulated cycles. (A) Intrinsic Torque, and (B) Reflex Torque.

FIGURE 6 | Intrinsic dynamic stiffness. Simulated (red) and estimated (blue) (A) static stiffness (K(tk )), (B) joint viscosity (B(tk )), and (C) limb’s inertia (I(tk )) as a function

of time.

The unperturbed trials were performed two times. The first
time the subject was instructed to (i) be relaxed, and (ii) not
react to the imposed movement. The second time, the subject
was instructed to: (i) maintain a constant plantarflexion torque
corresponding to 10% of its maximum torque at zero position
(recorded previously at 70 Nm); and (ii) not react to the imposed
movement. To assist with this task, the subject was presented

with a visual feedback of a low-pass filtered (0.7 Hz) version of
the measured torque minus the passive torque recorded in the
previous experiment. The subject was allowed to train for several
minutes before the beginning of the trial.

The trials were then repeated using a perturbed ankle
trajectory by adding a PRALDS signal, similar to that used in
the simulation study, to the walking trajectory. In the perturbed
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FIGURE 7 | Reflex dynamic stiffness. (A–D) Snapshots of the the simulated (red) and estimated (blue) TV, static nonlinearity at the four points of the cycle indicated

by vertical lines in (D,E). Simulated (red) and estimated (blue) (E) reflex natural frequency (ω(tk )), and (F) damping (ζ (tk )) as a function of time.

trials the subject was instructed to: (i) maintain a constant
plantarflexion torque corresponding to 10% of his maximum
torque; and (ii) not react to the imposed movement and
perturbations.

Perturbed and unperturbed position and torque records
were subtracted to give the perturbation position (θp(tk))
and torque (TQp(tk)). Each trial was then divided into
identification and validation segments; 40 cycles were
used for parameters estimation and the remaining 20
cycles for model validation; validation data was not used
for parameter estimation, only for model validation. The
model was validated by computing the average-VAF between
the measured and predicted torques for the validation
data.

The identification procedure was started with the same
number of basis functions used in simulations; a subset of basis
functions was then selected automatically by using a sparse
identification algorithm, which forces the weights associated to
basis function that do not contribute to the reduction of the
prediction error to zero so that they can be discarded Guarin and
Kearney (Submitted).

Finally, joint velocity was computed by numerically
differentiating the perturbation position signal. Then, the
reflex delay was computed by finding the time difference
between the positive peaks in the joint velocity signal and the

corresponding peaks in the soleus EMG signals associated with
the reflex response.

4.2. Results
4.2.1. Typical Trial
Figure 8 shows two cycles of the perturbed and unperturbed
position, where the dorsiflexion and plantarflexion directions
are indicated with black arrows; soleus EMG, and torque
records. The blue lines in Figures 9A,B show the corresponding
perturbation position (θp(tk)) and torque (TQp(tk)).

4.2.2. Time-Invariant Results
The output of the TI model estimated from these data did not
predict the ankle torque very well (data not shown). The average-
VAF never exceeded 75%, demonstrating that a TV model is
required to capture the system dynamics.

4.2.3. Time-Varying Model
In contrast, the estimated TV model predicted the measured
torque very well; the average-VAF for the validation trials
was never less than 95%. The brown line in Figure 9B shows
the predicted total torque (the sum of intrinsic, reflex and
additional torques) for two validation trials, whose average-
VAF was 95%. This excellent agreement between measured
and predicted torques indicates that the TV model estimates
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FIGURE 8 | Typical signals recorded during a un-perturbed (blue) and perturbed (brown) trajectory. (A) position, (B) Soleus EMG, and (C) torque.

FIGURE 9 | Results for a typical validation trial as a function of time. (A) Perturbation position input, (B) Measured (blue) and predicted (brown) perturbation torque,

(C) Estimated intrinsic torque, (D) Estimated reflex torque and (E) Estimated additional torque. The predicted perturbation torque is the sum of the intrinsic, reflex and

additional torques.

accurately captured the system dynamics. Figures 9C–E also
show the predicted T̂QI(tk), T̂QR(tk), and T̂Q1(tk) as a function
of time. The intrinsic torque accounted for most of the

variance of the measured data for this experiment; however,
both the reflex torque and TQ1(tk) were non-zero for all the
cycle.
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4.2.3.1. TV intrinsic dynamic stiffness
The parameters of the TV-IRF describing the intrinsic dynamic
stiffness underwent large, fast changes throughout the cycle.
Figure 10A presents the variation in the intrinsic static stiffness
along with the 95% confidence interval, computed by a bootstrap
analysis with 100 repetitions (Press, 2007). The intrinsic elasticity
increased three fold (from 35 Nm/rad to 100 Nm/rad) in the
first half of the cycle, it then decreased sharply and stayed nearly
constant during the remainder of the cycle.

Figure 10C shows the static intrinsic stiffness as a function
of ankle position, demonstrating that: (i) static intrinsic stiffness
is larger in plantarflexion than dorsiflexion; (ii) the relation
between joint position and intrinsic elasticity is nonlinear and
is influenced by the immediate history of the movement, as
different values of the static stiffness were observed for the same
joint position during different parts of the cycle.

Furthermore, the upper pathway of Figure 11 shows
the time-frequency response of the TV-IRF as a function
of the cycle with the purple line indicating the static
stiffness. The intrinsic dynamic stiffness showed a high-
pass behavior, typically observed during stationary
experiments (Kearney et al., 1999), and underwent large,
fast changes in the low and mid-frequency components,
related to the joint visco-elastic properties, throughout the
gait cycle. The high-frequency components, related to the
joint inertial properties, did not change much throughout
the cycle.

Attempts to fit a second order model to the estimated TV-
IRF provided inaccurate parametric models unable to properly
describe the intrinsic joint dynamics. This is consistent with
recent evidence that joint mechanical properties are more
complex than second order (Sobhani Tehrani et al., 2017).

4.2.3.2. TV reflex dynamic stiffness
The parameters of the polynomial nonlinearity representing
the reflex, static-nonlinearity underwent large, fast changes
throughout the gait cycle. Figure 10B shows the variation in the
reflex gain, computed as the slope of the static nonlinearity, along
with the 95% confidence interval. The reflex gain increased six
fold (from -2 Nm/rad/s to -12 Nm/rad/s) during the first half of
the cycle, and then decreased rapidly to an almost constant value
for the remainder of the cycle.

Figure 10D shows the reflex gain as a function of ankle
position. This plot indicates that: (i) the reflex gain is larger in
plantarflexion than dorsiflexion; (ii) the relation between joint
position and reflex gain is nonlinear and is influenced by the
immediate history of the movement.

The parameters of the second-order, linear system
representing the reflex, linear dynamics did not vary much.
The lower pathway of Figure 11 summaries the TV reflex
behavior. It shows the TV, static-nonlinearity as a function of
cycle and the frequency response of the linear dynamics. The
estimated static-nonlinearity resembles a half-wave rectifier;
whose gain underwent large, fast changes throughout the cycle.
The linear dynamics are low-pass in nature and did not vary
throughout the cycle. The shape of the static nonlinearity and
the cut-off frequency of the linear dynamic element are similar

to what has been observed in stationary experiments (Kearney
et al., 1999).

5. DISCUSSION AND CONCLUSIONS

This paper presents a new model parameterization and
identification algorithm for the accurate estimation of the
intrinsic and stretch reflex components of dynamic joint stiffness
during movement. The algorithm combines ensemble and
deterministic approaches to estimate TV model parameters from
position and torque records. Simulations demonstrated that
the new algorithm successfully decomposed the dynamic joint
stiffness into its intrinsic and reflex components, and accurately
tracked the fast, large changes in the parameters of each pathway
using only 40 cycles in the presence of complex, experimental
noise. This represents a much-needed improvement over
ensemble only algorithms, which were not able to accurately track
the changes in intrinsic and reflex dynamics even after using
400 cycles. Furthermore, the practical application of the method
was successfully demonstrated by using it to track the changes
in ankle stiffness in a human subject in an experiment that
involved an imposed walking movement with constant muscle
activation. The excellent agreement between the predicted and
experimental torques demonstrated that the new methodology
accurately describes the modulation of dynamic ankle stiffness
during the movement.

5.1. Methodological Issues and Limitations
Methods that estimate TV, dynamic joint stiffness make three
underlying assumptions: (i) The small perturbations applied to
the joint do not change much the operating point (Kearney
et al., 1997); (ii) the mechanical response of the joint to small
perturbations and to large changes in the operating point are
linearly superimposed (Gottlieb and Agarwal, 1978); and (iii)
changes in the system dynamics with joint position and torque
can be described by a set of local models at each point in
time (Bennett et al., 1992). The excellent agreement between the
predicted and measured torques suggests that these assumptions
hold for the slow ankle trajectory used in our experiments, which
resembles slow walking. However, it remains to be determined if
these assumptions are valid during faster joint movements.

Our methodology leverages these assumptions and introduces
a novel parameterization of the parallel-cascade model where the
time-course of the local models parameters are approximated by
a linear combination of basis functions. These approximations
transform the TV model into a set of TI models at the cost of
increasing the number of free parameters. This raises a number
of issues with the new algorithm:

First, the number of free-parameters increased by the
re-parameterization procedure; therefore, the identification
algorithm requires large data sets for accurate parameter
estimation. This limitation was addressed here by combining
the basis function expansion with an ensemble identification
approach, which uses multiple, input-output trials with the
same TV behavior. However, compared with ensemble-only
identification methods, our algorithm requires a lot less
repetitions, which translates into much shorter experiments
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FIGURE 10 | Gain of intrinsic and reflex stiffness as a function of time (A,B) and ankle position (C,D). Shadows represent the 95% confidence interval. The beginning

of the cycle is indicated by the diamond, arrows show the progression of the cycle.

FIGURE 11 | TV, Parallel-Cascade model estimated from experimental data. Intrinsic dynamic stiffness modeled as a TV-IRF model. Reflex dynamic stiffness

modeled as a Hammerstein system with TV static-nonlinearity followed by a time-invariant, low-pass filter.
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making it easier to acquire enough trials with the same TV
behavior.

Second, the type and number of basis functions used to
parametrize the TV coefficients must be known a priori; the
quality of the parameter estimates will depend on selecting a set of
basis functions capable of efficiently describing the TV parameter
changes. This study uses B-splines and Chebyshev polynomials,
both of these basis functions are well suited to describe smooth
parameter changes. B-splines are useful when the changes
are rapid, polynomial basis are adequate to approximate low-
frequency trends (Zou et al., 2003; He et al., 2013).

Third, this method was designed to work with data measured
in open-loop. This is the case in experiments, such as ours,
where a very stiff actuator, acting as a position servo, imposes
a desired joint trajectory so that any torques produced by the
joint in response to the perturbation do not result in position
changes. That is, the relation between joint position and torque
is open-loop. In contrast, during most natural movements, the
joint interacts with a compliant load so that torques generated
in response to position changes will in turn modify the joint
position, resulting in closed-loop measurement of joint position
and torque. Most methods for identification of dynamic join
stiffness have been designed to work with open-loop data,
and using these methods with data measured in closed-loop
will lead to biased parameter estimates (Kearney and Hunter,
1990).

The method presented is an open-loop method; however,
it can be reformulated to work with data measured in
closed-loop. This would require adopting a new model of
dynamic joint stiffness, with the feedforward and feedback
pathways comprising the intrinsic and reflex components
respectively (Van der Helm et al., 2002). The algorithm described
here for identification of intrinsic dynamics cannot be used
with closed-loop data as it will provide biased results. However,
an instrumental variable algorithm for parameter identification
can be used directly to estimate the intrinsic component from
closed-loop data as described in Guarin and Kearney (2016). The
method presented here for estimation of reflex dynamic stiffness
uses instrumental variables and so can be applied directly to
estimate the nonlinear, Hammerstein system representing the
reflex dynamics from data measured in closed-loop (Young,
2011).

Moreover, our implementation of the identification algorithm
assumes that the time-varying behavior is periodic, so that the
initial conditions of each trial in the ensemble will be the same
facilitating their estimation. However, the algorithm could be
modified to work with non-periodic data; this would require
estimating the initial conditions of each trial in the ensemble as
part of the identification problem as done in Jalaleddini et al.
(2017).

Finally, the algorithm relies on knowledge of the reflex
response delay to accurately separate the intrinsic and reflex
components from the measured position and torque data. It
assumes that the delay remains constant throughout the cycle.
We measured the reflex delay from joint velocity and soleus
EMG signals, and found that it remained constant across the
cycle.

5.2. Simulation study
System identification methods are often validated using idealistic
input and noise sequences. However, the performance of these
algorithms often degrades when applied to experimental data,
where inputs are non-ideal and the noise is neither zero-
mean, nor white. Our simulation was intended to mimic real
experiments; model parameters were based on those reported in
the literature; inputs signals had limited bandwidth; and the noise
was extracted from experimental observations. Consequently,
we believe that our simulation results are more relevant to
experimental conditions.

As Figures 6,7 show, the simulated, intrinsic and reflex
stiffness model parameters were accurately estimated by
the identification algorithm. The large variability in the
polynomial nonlinearity at large velocities is likely related
to the amplitude distribution of the velocity signal, which
despite having velocities distributed over the entire sets of
values, is highly concentrated around zero (Jalaleddini and
Kearney, 2013). Finally, the reflex natural frequency was
accurately estimated, and the reflex damping was slightly
underestimated. However, this did not affect the prediction
ability of the estimated models, indicating that the model
output is not very sensitive these small differences in the
damping.

5.3. Experimental Study
We also applied the new method to actual experimental data to
estimate the intrinsic and reflex dynamic ankle stiffness during
an movement. Results showed that the model structure predicted
the output torque to novel perturbation sequences, indicating
that the estimated model successfully captured the TV, nonlinear
dynamics.

Figure 10A shows that the static stiffness changed
dramatically during the imposed movement, it increased
substantially during the first part of the cycle (from around
35 Nm/rad to 100 Nm/rad) and then sharply decreased (to
20 Nm/rad) in just 200 ms, it maintained a nearly constant
value for the remainder of the cycle. Figure 10C demonstrates
that the ankle static stiffness can take different values for
the same ankle angle depending on the immediate history
of the movement. This demonstrates a true TV behavior in
the joint neuromuscular properties, and not just a static-
nonlinear dependency on joint position, as has been previously
assumed (Sobhani Tehrani et al., 2013; Jalaleddini et al.,
2015).

Figure 10B shows there were also large TV changes in the
reflex gain, it increased (from around −2 Nm/rad/s to −12
Nm/rad/s) during the first 800 ms of the cycle, then rapidly
decreased to almost zero over the next 400ms, and then remained
relatively constant for the remainder of the cycle. Moreover,
Figure 10D demonstrated that there is a significant history-
dependent behavior, with the reflex gain showing values with a
difference of up to 300% for the same value of joint position. The
other components of the reflex pathway did change during the
movement.

Furthermore, the reflex gain attained its maximum value
at least 100 ms before the intrinsic static stiffness, this is
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consistent with the idea that the tonic stretch reflex might
mediate the changes in muscle activation, leading to an increased
intrinsic static stiffness Feldman and Levin (2009). In addition,
the history-dependent behavior was observed in both the
intrinsic static stiffness and reflex gain; however, as Figure 10D
demonstrates, this behavior was much more significant for the
reflex than the intrinsic component. This might be explained
by the fact that reflex dynamic stiffness is generated only
by the active muscle response to stretch activation whereas
intrinsic dynamic stiffness is generated by both active and passive
components.

We conclude that the new algorithm will be a useful tool in
the study of dynamic joint stiffness during TV conditions and

that it will help further the understanding of the modulation of
this system during function.
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