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It has been suggested that at least twomechanismsmediate disparity processing, one for

coarse and one for fine disparities. Here we analyze individual differences in our previously

measured normative dataset on the disparity sensitivity as a function of spatial frequency

of 61 observers to assess the tuning of the spatial frequency channels underlying disparity

sensitivity for oblique corrugations (Reynaud et al., 2015). Inter-correlations and factor

analysis of the population data revealed two spatial frequency channels for disparity

sensitivity: one tuned to high spatial frequencies and one tuned to low spatial frequencies.

Our results confirm that disparity is encoded by spatial frequency channels of different

sensitivities tuned to different ranges of corrugation frequencies.
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INTRODUCTION

The visual system utilizes the displacement or disparity in the two images seen by the two eyes
to compute the depth of objects. In terms of the underlying mechanisms, Pulliam (1982) first
suggested that there were two global disparity mechanisms, one tuned to low spatial frequencies
involving coarse disparities and one tuned to high spatial frequencies involving fine disparities.
Yang and Blake (1991) also argued for only two spatial frequency channels for disparity processing
and their model was later refined by Tyler et al. (1994). Additional evidence for two spatial
frequency channels subserving disparity processing comes from the work of Norcia et al. (1985);
Wilcox and Allison (2009); Witz et al. (2014). However, other studies suggest a multiple channels
model (Julesz and Miller, 1975; Glennerster and Parker, 1997; Serrano-Pedraza et al., 2013).

Assessing the tuning of these channels has been of great importance for mechanistic models of
stereo computer vision (Marr and Poggio, 1979; Nishihara, 1984; Quam, 1987; Rohaly andWilson,
1993). These can be used to map different scales of matching in hierarchical structures (Nishihara,
1984; Quam, 1987) with, for instance, coarse-to-fine constraints (Rohaly and Wilson, 1993). In
robotic vision, these tuning properties can be used to calibrate cameras (Tsai, 1986) and vergence
algorithms (Piater et al., 1999; Lonini et al., 2013).

While most studies have used masking paradigms to characterize spatial frequency channels for
stereopsis (Julesz and Miller, 1975; Yang and Blake, 1991; Shioiri et al., 1994; Tyler et al., 1994;
Glennerster and Parker, 1997; Prince et al., 1998; Serrano-Pedraza et al., 2013), another possibility
comes from factor analysis of population data (Read et al., 2016). The individual differences are
then treated as systematic and meaningful, reflecting the true variability of underlying mechanisms
rather than random noise (Peterzell, 2016). Identifying the sources of variability within the
population will inform on the common processing mechanisms. Therefore, spatial and temporal
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frequency channels can be characterized by analyzing individual
differences and correlations. The rationale is that the correlation
in detection thresholds for pairs of stimuli should be higher
for stimuli detected by the same mechanism than for stimuli
detected by different mechanisms (Owsley et al., 1983; Sekuler
et al., 1984; Billock and Harding, 1996). Hence by looking at the
inter-correlations between individuals’ sensitivity at neighboring
frequencies, one is able to determine the presence of frequency
channels (Mayer et al., 1995; Billock and Harding, 1996; Peterzell
and Teller, 2000; Simpson and McFadden, 2005; Rosli et al.,
2009). Therefore, a factor analysis of the dataset consisting of a
principal component analysis (PCA) and a rotation of the factors
in order to determine a simple structure can characterize the
tuning curves of the channels (Simpson and McFadden, 2005).
Using factor analytics within the population sensitivities Peterzell
and Teller (1996, 2000) assessed spatial frequency channels
tuning for luminance and color contrast sensitivities. Here we
use similar methods to analyze individual differences in our
previously measured normative dataset on disparity sensitivity
as a function of spatial frequency for oblique corrugations of 61
observers (Figure 1; Reynaud et al., 2015) in order to assess the
spatial frequency tuning of the underlying disparity channels.

METHODS

In this paper, we analyze the normative dataset for the disparity
sensitivity as a function of spatial frequency of 61 observers (25
males, 36 females, mean age 26 years, ±5.7 SD, with normal or
corrected to normal-visual acuity) we measured previously using
the quick Disparity Sensitivity Function (qDSF, Reynaud et al.,
2015), a method adapted from the quick Contrast Sensitivity
Function (qCSF, Lesmes et al., 2010).

The stimuli used in this dataset were stereograms composed
of spatially filtered 2-D fractal noise carriers with oblique (45◦

or 135◦) sinusoidal corrugations at 0.24, 0.33, 0.46, 0.64, 0.89,
1.23, 1.72, and 2.39 c/d. The spatial frequency of the carrier was
4 times the spatial frequency of the corrugation (see Reynaud
et al., 2015). Disparity was modulated and the subjects’ task
was to identify the orientation of the corrugation in depth (45◦

or 135◦) in a single-interval identification task to measure the
disparity detection threshold. Stimuli were displayed on a passive
wide 23′′ 3D-Ready LED monitor ViewSonic V3D231, viewed
with polarized 3D glasses at 70 cm, in a dim-lit room. Measured
individual disparity sensitivity functions as a function of spatial
frequency and their average are reproduced in Figure 1. Analysis
was performed with Matlab R2016a (The MathWorks). The
hierarchical clustering analysis was specifically performed with
the statistics and machine learning toolboxes functions.

RESULTS

The average disparity sensitivity peaks are in the high spatial
frequency range, around 1.2 c/d. However, we can observe a
large variability in the individual sensitivities: some showing a
low-pass, band-pass or high-pass profiles (Figure 1). Hence a
factor analysis of these sensitivities might provide insight into the
common mechanisms mediating them.

FIGURE 1 | Normative dataset. Disparity sensitivity as a function of spatial

frequency is reported for 61 individual observers (thin color lines) and their

average (thick black line). Sketches at the top illustrate the stimulus at different

corrugations frequencies. Adapted with permission from Reynaud et al. (2015).

Figure 2 represents the scatterplot matrix of inter-correlations
(Peterzell, 2016) for log-disparity sensitivity of all 61 observers.
In each cell within the figure, the scatterplot represent the inter-
correlation of the log-disparity sensitivity of all observers at one
frequency (frequency indicated on the diagonal in the same
row) as a function of their sensitivity at another frequency
(frequency indicated on the diagonal in the same column) are
depicted. For instance, in the bottom-left cell, the log-disparity
sensitivity of each observer at 0.24 c/d is plotted pairwise against
its log-disparity sensitivity at 2.39 c/d. Then the coefficient of
determination R2 between the two frequencies is computed.
Two regions of high inter-correlations (R2 > 0.5) at low spatial
frequency (green) and high spatial frequency (blue) appear along
the diagonal.

These two regions are supported by the hierarchical clustering
analysis of the log-disparity sensitivity at all spatial frequencies.
The pairwise distance between observations was calculated as
one minus the sample linear correlation between observations
and the hierarchical cluster tree was computed with the average
distance. The resulting dendrogram is represented at the right of
the inter-correlation matrix, with each spatial frequency being
the leaves. Nevertheless, we can note that different distance
measures and different linkage procedures can result in relatively
different final clusters, some grouping the 3 lowest and 5 highest
frequencies for instance. The two cluster branches whose linkage
is less than the default 70% are represented in blue and green.
As for the first qualitative approach, these two groups suggest
the presence of two spatial frequency channels for disparity
sensitivity, which might correspond to the coarse and fine
disparity channels.
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FIGURE 2 | Scatterplot matrix of inter-correlations. In each cell, the scatterplot represent the inter-correlation of the log-disparity sensitivity (arbitrary units) of all 61

observer at one frequency (frequency indicated on the diagonal in the same row) as a function of their sensitivity at another frequency (frequency indicated on the

diagonal in the same column). The shade of the background in each cell indicates the value of the coefficient of determination R2 between the two frequencies (from

black = 0 to white = 1). Black datapoints indicate R2 > 0.5 and white datapoints R2 < 0.5. Blue and green squares highlight regions of high inter-correlations. On the

right is represented the classification dendrogram of the spatial frequencies. The pairwise distance was calculated as one minus the sample linear correlation between

observations and the hierarchical cluster tree was computed with the average distance.

In order to determine the precise tuning of these channels,
we performed a factor analysis on the dataset. If we decompose
the full dataset with a principal component analysis (PCA), we
obtain the components shown in Figure 3A, with a percentage
of explained variance (calculated from the eigenvalues of the
PCA) associated with each component reported in the scree plot
Figure 3B.

The first component has the shape of the average sensitivity
(see Figure 1). The two first components (blue and green) explain
more than 91% of the variance and the elbow of the scree plot
occurs between the second and third components (Figure 3B).
As we previously identified two regions of high inter-correlations
and that this percentage of explained variance is considered
enough to accurately describe the data (Simpson and McFadden,
2005), these two principal components were picked to describe
the underlying disparity sensitivity channels. In order to make
sense of them, these two principal components, or factors, were
then rotated using a varimax orthogonal rotation to obtain
a simple structure accounting for the channel tuning curves
(Kaiser, 1958; Peterzell and Teller, 2000; Simpson andMcFadden,
2005; Peterzell, 2016). These factors-tuning curves are reported
in Figure 3C. The first factor peaks at the highest measured

frequency 2.4 c/d and the second peaks around 0.65 c/d.
They characterize the high and low spatial frequency channels
identified by the inter-correlation analysis (respectively blue and
green regions in Figure 2).

We wanted to test if the two channels we identified could
in fact account for different classes within the population. In
order to estimate the weights β of each of these factors in each
individual sensitivity, we projected our dataset onto the basis
defined by the two identified factors. The best linear unbiased
estimator of β is obtained using the Moore-Penrose pseudo
inverse X+ (equation 1):

β = X+y (1)

where y is the matrix of all individual sensitivities, X+ is the
Moore-Penrose pseudo inverse of the new basis matrix X whose
two columns represent the two factors and β is a two-rowsmatrix
in wihich each column contains the pair of weights associated to
the two factors estimated for each subject (Friston et al., 1995;
Woolrich et al., 2004; Reynaud et al., 2011).

The sensitivities ŷ reconstructed solely from the linear
combination of these two factors are plotted in Figure 4A
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FIGURE 3 | Factor analysis. (A) Principal components of the dataset as a function of spatial frequency. Their order is indicated by colors in (B). (B) Scree plot of the

variance explained by each component of the principal component analysis (PCA) in (A). (C) First two components rotated using a varimax rotation.

FIGURE 4 | Channels weights. (A) Individual sensitivities replotted using only the two channels factors. Same color-code as in Figure 1. (B) Scatterplot of the weights

of the first factor β1 vs. the weights of the second factor β2 for all observers. Dashed line indicates linear regression on the log-values of the weights.

(Equation 2):

ŷ = Xβ (2)

We can see that they overall faithfully reproduce the original
sensitivities except for the very low-pass profiles whose peaks
shift to the right.

To determine whether these channels can account for different
classes within the population, we report a scatterplot of the
weights β1 of the first factor vs. the weights β2 of the second factor
in Figure 4B for all observers. The mean weights for the first
and second factor are, respectively, 1.76 and 1.48. As expected
from the explained variance (Figure 3B), the weight of the first
factor—the high-frequency channel—is greater than the weight
of the second—the low frequency channel—in 70% of the cases.
The distribution of these weights appears homogeneous and no
clusters are revealed. However, the weights of the first factor seem
to be relatively greater than the weights of the second in the high
values range whereas it seems to be slightly the opposite in the

low values range. This is further revealed by the slope of the linear
regression between the log-values of the weights 0.53, which is
inferior to 1 (dashed line). In fact, the correlation between the
weight is very high (coefficient of determination R2 = 0.51, p <

0.0001). Altogether, these observations suggest that the weight of
the low and high spatial frequency channels co-vary: when the
sensitivity is high for the low frequency channel, it is high for
the high frequency channel too. But the high frequency channel
contributes relatively more when the sensitivity is high and
the low-frequency channel contributes relatively more when the
sensitivity is low, in accordance with our previous observations
(Reynaud et al., 2015).

DISCUSSION

The qDSF method assumes the sensitivity function follows
the truncated log-parabola model and hence has a bell shape
with a constant part, an increase to a peak and a drop-off
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(Watson and Robson, 1981; Lesmes et al., 2010). We previously
showed that this model can accurately represent the sensitivity
function compared to non-constrained methods (Reynaud et al.,
2015) and documents large differences in sensitivities within
the population (see Figure 1). For different individuals, this
function can peak at very different frequencies and can show low-
pass, band-pass or high-pass profiles. The resultant variability
in sensitivity across spatial frequency provides a rich dataset
for inter-correlation analyses (Peterzell et al., 1995; Peterzell,
2016).

Because two regions of inter correlations were identified
among the population in Figure 1 and because 2 components
accounted for more than 91% of the variance, our data could
accurately be described by just 2 channels. However, the criterion
to select the number of meaningful components in a PCA may
vary. Popular selection methods such as a scree plot (Jackson,
1993) or the Random average under permutation analysis will
indeed determine 2 components while some other methods will
give less (the broken stick method gives 1 component) or more
(the parallel analysis gives barely 3, the kaiser Guttman criterion
which recommends eigenvalues >1 gives 3 too). Some methods
such as the Bartlett tests even recommends all the 8 components
which would not reduce the dimensionality of the data (Bartlett,
1950). A complete description of these methods can be found in
Peres-Neto et al. (2005).

Hence, we cannot completely rule out the possibility of a
single-channel or multiple-channels hypothesis. Serrano-Pedraza
and Read reported a single channel mechanism specific to
vertical corrugations (Serrano-Pedraza and Read, 2010, though
see Witz et al., 2014). However, the large difference we can
observe between the lowpass profile of sensitivity for some
observers compared to the bandpass of other ones would
indicate that more than one channel are involved. Several studies
suggested a multiple-channels mechanism (Julesz and Miller,
1975; Schumer and Ganz, 1979; Cobo-Lewis and Yeh, 1994;
Glennerster and Parker, 1997; Serrano-Pedraza et al., 2013) with
a broad channel tuning of ∼2–3 octaves, comparable to our
observations (Schumer and Ganz, 1979; Cobo-Lewis and Yeh,
1994). It is then possible that the 2 channels we observe are part
of a multiple-channels system covering a wider range of spatial
frequencies or could also overlap with intermediate channels
continuously covering the spatial frequency range. Yang and
Blake (1991) also observed two spatial frequency channels for
disparity sensitivity using a masking paradigm. They described
one channel centered around 3 c/d which could correspond to
the high spatial frequency channel we observed and one centered
around 5 c/d. However, their study and the present study didn’t
measure the same spatial frequency range which might explain
why they didn’t identify our low spatial frequency channel and
why we didn’t observe their high one.

The results of the present study suggests that there are
two channels (Figure 4B), a low frequency channel that
contributes to the detection of low corrugation frequencies
and a more sensitive high frequency channel that contributes
to the detection of high corrugation frequencies. We didn’t
observe any dichotomy based on these two channels within
our population (Wilcox and Allison, 2009) which confirms

the observations of most other population studies (Coutant
and Westheimer, 1993; Bohr and Read, 2013; Bosten et al.,
2015).

The implications of the assessment of the tuning of these
disparity channels could be important in computer vision to
design behaviorally relevant stereo matching algorithms. For
instance, it could be used to tune the different layers of multi-
scale algorithms (Rohaly and Wilson, 1993) or provide fine
and coarse scales for algorithms processing in center and
periphery, respectively, as stereopsis could be mediated by
different mechanisms in central and peripheral vision (Wardle
et al., 2012; Witz and Hess, 2013).

CONCLUSION

The analysis of the inter-correlations in the disparity sensitivity
as a function of the spatial frequency, revealed two disparity
channels. With a factor analysis of the population data, we
determined that the first channel is tuned to high spatial
frequencies (peaks at 2.4 c/d) and the second is tuned
to low spatial frequencies (peaks at 0.65 c/d). We also
observed that these two channels are well correlated with
each other. Our results confirm that disparity is encoded
by multiple spatial frequency channels that are of different
sensitivities and subserve different ranges of corrugation
frequencies.
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